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Abstract

The paper considers two kinds of models for logics of knowledge and be-
lief, neighbourhood models and epistemic weight models, and traces con-
nections. Epistemic weight models combine knowledge and probability by
using epistemic accessibility relations and weights to define subjective prob-
abilities. We present a new Probability Comparison Calculus that is sound
and complete for epistemic weight models. This is a further simplification
of the calculus for probabilistic epistemic weight models that was presented
in AIML 2014.

The paper gives a definition of generic epistemic probabilistic update,
again a simplification of earlier proposals, with examples of how this is
used in epistemic probabilistic model checking. This application illustrates,
among other things, that update by public announcement and update by
Bayesian conditioning are two sides of the same coin. We end with a pro-
posal for capturing the distinction between risk and uncertainty in epistemic
weight models, and we put the question of the axiomatisation of the logic of
imprecise weight models on the agenda.
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Probability and Information

Dans les choses qui ne sont que
vraisemblables, la différence des
données que chaque homme a sur
elles, est une des causes principales
de la diversité des opinions que
l’on voit régner sur les mêmes
objects.
Tr: When concerned with things
that are only likely true, the
difference in how informed every
man is about them is one of the
principal causes of the diversity of
opinions about the same objects.

[Lap14]

A Bayesian learner is an agent who uses new information to update a subjective
probability distribution that somehow captures what she knows or believes about
the world. In a multi-agent setting, various learners could receive differents pieces
of information, and, if we are to believe the Count of Laplace, these differences
explain to a large extent the differences in viewpoints on the world that people
have.

If multi-agent logics of knowledge of belief are extended with update procedures
that implement the processing of new information, then this also gives a perspec-
tive on learning in a multi-agent setting. So it is natural to combine probability
theory and the update perspective on knowledge and belief from dynamic modal
logic.

Indeed, there exists already a modest tradition in combining DEL (Dynamic Epis-
temic Logic) and probabibility theory. The first combinations are in Kooi’s thesis
[Koo03], in Van Benthem’s [Ben03], and in the combined effort of Van Benthem
cs in [BGK09]. Inspiration for this goes back to work of Fagin and Halpern in
the 1990s [FHM90a]. A simplified combined system of DEL and probability the-
ory is presented in [ES14]. Further simplication of the base logic is provided in
[DR15]. A full blown probabilistic logic of communication and change, in the
spirit of [BvEK06], is given in [Ach14].
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A natural notion of belief that turns up in a setting of probabilistic dynamic epis-
temic logic is betting belief (or: Bayesian belief) in ϕ: P (ϕ) > P (¬ϕ). Van
Eijck & Renne [ER14] give a logical calculus for this that we will briefly review
below. A variation on this is threshold belief in ϕ: P (ϕ) > t, for some specific
t with 1

2
≤ t < 1. This is also known as Lockean belief. John Locke suggests

in his work that a person’s belief in a proposition ϕ is somehow connected to that
person’s confidence in ϕ. This confidence should then be connected in turn to the
evidence that the person has for ϕ. If it makes sense to talk about degree of belief
at all, then subjective probability is one way of making this precise [Fol09].

A logic with KD45 belief and an explicit belief comparison operator is presented
in [JG13]. See [Nar07] for an overview of the extensive literature on belief com-
parison operators. Related to neighbourhood models for belief are the evidence
models proposed in [BFDP14].

Next, there is stable belief in ϕ: For all consistent ψ: P (ϕ|ψ) > P (¬ϕ|ψ) (Leit-
geb [Lei10]). This is still defined in terms of probability. The notion of strong
belief is not; strong belief in ϕ is defined for plausibility models, e.g., locally
connected well-preorders. An agent strongly believes in ϕ if ϕ is true in all most
plausible accessible worlds. This yields a KD45 notion of belief (reflexive, eu-
clidean, and serial). Baltag & Smets [BS06, BS08] give details.

Finally, there is subjective certainty belief in ϕ: P (ϕ) = 1. This is used in epis-
temic game theory (Aumann [Aum99]).

To briefly compare these notions of belief, consider the well known lottery puzzle
or lottery paradox, first considered in [Kyb61].

The Lottery Puzzle

If Alice believes of each of the tickets 000001 through 100000 that they are not
winning, then this situation is described by the following formula:

100000∧
t=000001

Ba¬t.

If her beliefs are closed under conjunction, then this follows:

Ba

100000∧
t=000001

¬t.
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But actually, she believes, of course, that one of the tickets is winning:

Ba

100000∨
t=000001

t.

This is a contradiction.

Given that this is an argument with two premisses and a conclusion, there are
precisely three ways to get around it.

1. Deny that Alice believes that her ticket is not winning.

2. Block the inference from
∧100000
t=000001Ba¬t to Ba

∧100000
t=000001 ¬t.

3. Deny that Alice believes that there is a winning ticket.

It all depends on what we mean by “Alice believes that ϕ”. Betting belief would
accept that Alice believes that her ticket is not winning, but would block the in-
ference from a conjunction of beliefs to belief in a conjunction. Lockean belief
would maybe reject that Alice believes that her ticket is not winning, depending
on the treshold, but would also reject the inference from a a conjunction of beliefs
to belief in a conjunction. Stable belief would reject the claim that Alice believes
that her ticket is not winning, for it is conceivable that Alice has to update her
belief with the information that she has won the prize. Under all of these notions
of belief, and indeed under most reasonable notions that one can think up, it is
accepted that Alice believes that there is a winning ticket.

Advantage of (1) is that there is no need to sacrifice closure of belief under con-
junction. A disadvantage of (1) is that it imposes a rather severe restriction of
what counts as belief. Proponents of (1): many philosophers, easily recognizable
from the fact that they call the lottery puzzle the lottery paradox.

Advantage of (2): sacrifice closure of belief under conjunction is maybe not so bad
after all. Lots of nice logical properties remain (see below). Another advantage of
(2) is that there is no need to artificially restrict what counts as belief. Proponents
of (2) are subjective probabilists like Jeffrey [Jef04] and decision theorists like
Kyburg [Kyb61].

In this paper, we will pursue the second way out. How can we drop the closure
of belief under conjunction? For that we need an operator Bi that does not satisfy
(Dist).

Bi(ϕ→ ψ)→ Biϕ→ Biψ (Dist-B)
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This means: Bi is not a normal modal operator. A semantics in terms of standard
Kripke models will not work. What we need is neighbourhood semantics [Che80,
Ch. 8] See also [Zve10], [HKP09], and [BFDP14].

Epistemic Neighbourhood Models

Definition 1 (Epistemic Neighbourhood Models) An Epistemic Neighbourhood
ModelM is a tuple

(W,R, V,N)

where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence relation∼i
on W . We use [w]i for the ∼i class of w, i.e., for the set {v ∈ W | w ∼i v}.

• V is a valuation function that assigns to every w ∈ W a subset of Prop.

• N is a function that assigns to every agent i ∈ Ag and world w ∈ W a
collection Ni(w) of sets of worlds—each such set called a neighbourhood
of w—subject to a set of conditions.

Conditions are:

(c) ∀X ∈ Ni(w) : X ⊆ [w]i. This ensures that agent i does not believe any
propositions X ⊆ W that she knows to be false.

(f) ∅ /∈ Ni(w). This ensures that no logical falsehood is believed.

(n) [w]i ∈ Ni(w). This ensures that what is known is also believed.

(a) ∀v ∈ [w]i : Ni(v) = Ni(w). This ensures that if X is believed, then it is
known that X is believed.

(m) ∀X ⊆ Y ⊆ [w]i : if X ∈ Ni(w), then Y ∈ Ni(w). This says that belief
is monotonic: if an agent believes X , then she believes all propositions
Y ⊇ X that follow from X .
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Extra conditions (corresponding to additional properties of epistemic neighbour-
hood models) are:

(d) IfX ∈ Ni(w) then [w]i−X /∈ Ni(w). This says that if i believes a proposition
X then i does not believe the negation of that proposition. This ensures that
beliefs are consistent. If one wants to model Lockean belief with a threshold
below one half, this should be blocked.

(sc) ∀X, Y ⊆ [w]a: if [w]a − X /∈ Na(w) and X ( Y , then Y ∈ Na(w). If the
agent does not believe the complement [w]a−X , then she must believe any
strictly weaker Y implied by X . Property (sc) is a form of “strong com-
mitment”: if the agent does not believe the complement X , then she must
believe any strictly weaker Y implied by X . This is a principle of strong
commitment that should be blocked if one want to allow the possibility that
some pieces of information has zero weight.

The language of epistemic doxastic logic (ED) has operators for knowledge and
belief.

Definition 2 (ED Language) Let p range over a set of basic propositions P and
i over a finite set of agents A.

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Biϕ.

Definition 3 (Truth in Neighbourhood Models) Key clauses are

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff for some X ∈ Ni(w), for all v ∈ X :M, v |= ϕ.

Our first example illustrates that neighbourhood belief is not closed under con-
junction.

Example 1
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w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

• In all worlds, K(p ∨ q ∨ r) is true.

• In all worlds B¬p, B¬q, B¬r are true.

• In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.

Example 1 illustrates that the lottery puzzle is “solved” in neighbourhood models
for belief by non-closure of belief under conjunction.

The following calculus for epistemic doxastic neighbourhood logic is complete
for epistemic doxastic neighbourhood models (see [ER14] and [BvBvES14]). The
axioms (M), (D), (SC) correspond to the conditions (m), (d), and (sc).

Definition 4 (ED Calculus) AXIOMS

(Taut) All instances of propositional tautologies

(Dist-K) Ki(ϕ→ ψ)→ Kiϕ→ Kiψ

(T) Kiϕ→ ϕ

(PI-K) Kiϕ→ KiKiϕ

(NI-K) ¬Kiϕ→ Ki¬Kiϕ

(F) ¬Bi⊥.

(PI-KB) Biϕ→ KiBiϕ

(NI-KB) ¬Biϕ→ Ki¬Biϕ

(KB) Kiϕ→ Biϕ

(M) Ki(ϕ→ ψ)→ Biϕ→ Biψ

(D) Biϕ→ ¬Bi¬ϕ.

(SC) B̌aϕ ∧ Ǩa(¬ϕ ∧ ψ)→ Ba(ϕ ∨ ψ)
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RULES

ϕ→ ψ ϕ
ψ

(MP)
ϕ
Kiϕ

(Nec-K)

Use `ED for derivability in this calculus.

Epistemic Weight Models

An alternative semantics for the language of epistemic doxastic logic can be given
with respect to Epistemic Weight Models. As it turns out, the calculus given above
is incomplete for this alternative semantics.

Definition 5 (Epistemic Weight Models) An epistemic weight model for agents
I and basic propositions P is a tupleM = (W,R, V, L) where

• W is a non-empty countable set of worlds,

• R assigns to every agent i ∈ I an equivalence relation ∼i on W ,

• V assigns to every w ∈ W a subset of P ,

• L assigns to every i ∈ I a function Li fromW to Q+ (the positive rationals),
subject to the following boundedness condition (*).

∀i ∈ I∀w ∈ W
∑
u∈[w]i

Li(w) <∞. (*)

where [w]i is the cell of w in the partition induced by ∼i.

Definition 6 (Truth in Epistemic Weight Models) Key clauses are:

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff∑
{Li(v) | v ∈ [w]i,M, v |= ϕ} >

∑
{Li(v) | v ∈ [w]i,M, v |= ¬ϕ}.
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Definition 7 (Agreement) Let M = (W,R, V,N) be a neighbourhood model
and let L be a weigth function forM. Then L agrees withM if it holds for all
agents i and all w ∈ W that

X ∈ Ni(w) iff Li(X) > Li([w]i −X).

The following theorem shows that the ED calculus is incomplete for epistemic
weight models.

Theorem 8 [ER14] There exists an epistemic neighbourhood modelM that has
no agreeing weight function.

Proof. Adaptation of example 2 from [WF79, pp. 344-345]

Let Prop := {a, b, c, d, e, f, g}. Assume a single agent 0. Define:

X := {efg, abg, adf, bde, ace, cdg, bcf}.

X ′ := {abcd, cdef, bceg, acfg, bdfg, abef, adeg}.
Notation: xyz for {x, y, z}.

Y := {Y | ∃X ∈ X : X ≤ Y ≤ W}.

LetM := (W,R, V,N) be defined by W := Prop, R0 = W ×W , V (w) = {w},
and for all w ∈ W , N0(w) = Y .

Check that X ′ ∩ Y = ∅. SoM is a neighbourhood model.

Toward a contradiction, suppose there exists a weight function L that agrees with
M. Since each letter p ∈ W occurs in exactly three of the seven members of X ,
we have: ∑

X∈X

L0(X) =
∑
p∈W

3 · L0({p}).

Since each letter p ∈ W occurs in exactly four of the seven members of X ′, we
have: ∑

X∈X ′

L0(X) =
∑
p∈W

4 · L0({p}).

On the other hand, from the fact that L0(X) > Lo(W −X) for all members X of
X we get: ∑

X∈X

L0(X) >
∑
X∈X

L0(W −X) =
∑
X∈X ′

L0(X).

Contradiction. So no such L0 exists. 2
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Strengthening the Axiom System

It is possible to strengthen the axiom system to get completeness. For this we
need the so-called Scott axioms [Sco64]. Intuitively, what the Scott axioms say is
this: If agent a knows the number of true ϕi is less than or equal to the number
of true ψi, agent a believes ϕ1, and the remaining ϕi are each consistent with her
beliefs, then agent a believes one of the ψi.

It turns out that this is expressible in the KB language [Seg71]. In Segerberg
notation:

(ϕ1, . . . , ϕmIaψ1, . . . , ψm)

abbreviates a KB formula expressing that agent a knows that the number of true
ϕi’s is less than or equal to the number of true ψi’s.

Put another way, (ϕiIaψi)mi=1 is true if and only if every one of a’s epistemically
accessible worlds satisfies at least as many ψi as ϕi.

The Scott axioms can now be phrased as follows.

(Scott) [(ϕiIaψi)mi=1 ∧Baϕ1 ∧
∧m
i=2 B̌aϕi]→

∨m
i=1Baψi

Fact 9 Adding the Scott axioms to the KB calculus yields a system that is sound
and complete for epistemic weight models [ER14].

What does this mean? At least that qualitative and quantitative belief are different.

Since any epistemic weight model determines a neighbourhood model, one may
interpret this as saying that there are subtleties about belief that are not captured
by probability.

What are natural examples of situations that are correctly described by a neigh-
bourhood model that cannot be extended to a weight model? Maybe one has to
think of propositions that have their weight determined by context?

We will now present the system of simplified probabilistic epistemic logic of
[ES14], but with alternative syntax, following [DR15].

Definition 10 (Probabilistic Epistemic Logic Simplified: Language)

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Φ ≤i Φ

Φ ::= ϕ | ϕ⊕ Φ

Abbreviations:
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As usual for ⊥,∨,→,↔.

Φ <i Ψ for Φ ≤i Ψ ∧ ¬Ψ ≤i Φ.

Φ =i Ψ for Φ ≤i Ψ ∧Ψ ≤i Φ.

Biϕ for (¬ϕ) <i ϕ, B̌iϕ for (¬ϕ) ≤i ϕ. “Belief as willingness to bet”

Kiϕ for > ≤i ϕ, Ǩiϕ for ⊥ <i ϕ. “Knowledge as certainty”

Definition 11 (Probabilistic Epistemic Logic Simplified: Semantics) LetM =
(W,R, V, L) be an epistemic weight model, let w ∈ W .

[[ϕ]]M := {w ∈ W | M, w |= ϕ}
[[ϕ]]w,iM := [[ϕ]]M ∩ [w]i

Lw,iϕ :=
∑

u∈[[ϕ]]w,i
M

Li(u)

M, w |= > always
M, w |= p iff p ∈ V (w)

M, w |= ¬ϕ iff notM, w |= ϕ

M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 andM, w |= ϕ2

M, w |= Φ ≤i Ψ iff
∑
ϕ∈Φ

Lw,iϕ ≤
∑
ψ∈Ψ

Lw,iψ

Weight function and epistemic accessibility relation together determine probabil-
ity:

PMw,iϕ :=
Lw,iϕ
Lw,i>

(
=

∑
u∈[[ϕ]]M∩[w]i

Li(u)∑
u∈[w]i

Li(u)

)
In a slogan: “Probabilities are weights normalized for epistemic partition cells.”

Example 2 Two bankers i, j consider buying stocks in three firms a, b, c that are
involved in a takeover bid. There are three possible outcomes: a for “a wins”, b
for “ b wins”, and c for “c wins.” i takes the winning chances to be 3 : 2 : 1, j
takes them to be 1 : 2 : 1.

i: solid lines, j: dashed lines.
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a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)

We see that i is willing to bet 1 : 1 on a, while j is willing to bet 3 : 1 against a.

It follows that in this model i and j have an opportunity to gamble, for, to put it in
Bayesian jargon, they do not have a common prior.

Example 3 Suppose j has foreknowledge about what firm c will do.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)

The probabilities assigned by i remain as before. The probabilities assigned by j
have changed, as follows. In worlds a and b, j assigns probability 1

3
to a and 2

3
to

b. In world c, j is sure of c.

• We may suppose that this new model results from j being informed about
the truth value of c, while i is aware that j received this information, but
without i getting the information herself.

• So i is aware that j’s subjective probabilities have changed, and it would be
unwise for i to put her beliefs to the betting test. For although i cannot dis-
tinguish the three situations, she knows that j can distinguish the c situation
from the other two.

• Willingness of j to bet against a at any odds can be interpreted by i as an
indication that c is true, thus forging an intimate link between action and
information update.
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A model M = (W,R, V, L) is single weight if ∀i, j ∈ L∀w ∈ W : Li(w) =
Lj(w).

Theorem 12 [ES14]: Every epistemic weight model has an equivalent single
weight model.

Theorem 13 [ES14]: There are finite epistemic weight models that only have
infinite single weight counterparts.

These theorems are proved with an appropriate notion of bisimulation for our
language. If X ⊆ W then we use Li(X) for

∑
x∈X Li(x).

Definition 14 (Bisimulation) LetM = (W,R, V, L) andM′ = (W ′, R′, V ′, L′)
be two epistemic weight models, and let B be a relation on W ×W ′. Then B is a
bisimulation if wBw′ implies:

Invar w and w′ satisfy the same atomic formulas.

Zig For every i, every set E ⊆ [w]i there exists a set E ′ ⊆ [w′]i such that

• for all u′ ∈ E ′ there exists u ∈ E with uBu′,

• Li(E) ≤ L′i(E ′).

Zag Similarly in the other direction.

Example 4 Two modelsM,M′ and a bisimulation relation B

w
a : 1

2

u
a : 1

2

w′
a : 1

a

B

B

M M′
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This notion of bisimulation is well-behaved:

• We can prove a Hennessy-Milner theorem

• Bisimulations are closed under composition and union.

Example 5 (Fair or Biased?) Two agents i (solid lines) and j (dashed lines) are
uncertain about the toss of a coin. i holds it for possible that the coin is fair f and
that it is biased f , with a bias 2

3
for heads h. j can distinguish f from f . The two

agents share the same weight (so this is a single weight model), and the weight
values are indicated as numbers in the picture.

hf 2 hf 3

hf 2 hf 1

In world hf , i assigns probability 5
8

to h and probability 1
2

to f , and j assigns
probability 1

2
to h and probability 1 to f .

Example 6 (Fair or Biased; Normalized Version) Give each agent its own weight,
and normalize the weight functions using the epistemic accessibilities.

hf
i : 1

4
, j : 1

2

hf
i : 1

4
, j : 1

2

hf
i : 3

8
, j : 3

4

hf
i : 1

8
, j : 1

4
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Definition 15 (SC Calculus)

Taut instances of propositional tautologies
ProbT (> ≤i ϕ)→ ϕ

ProbImpl > ≤i (ϕ→ ψ)→ (ϕ ≤i ψ)

PropPos (Φ ≤i Ψ)→ > ≤i (Φ ≤i Ψ)

PropNeg (Φ >i Ψ)→ > ≤i (Φ >i Ψ)

PropAdd (ϕ ∧ ψ)⊕ (ϕ ∧ ¬ψ) =i ϕ

Tran (Φ ≤i Ψ) ∧ (Ψ ≤i Ξ)→ (Φ ≤i Ξ)

Tot (Φ ≤i Ψ) ∨ (Ψ ≤i Φ)

ComL (Φ1 ⊕ Φ2 ≤i Ψ)↔ (Φ2 ⊕ Φ1 ≤i Ψ)

ComR (Φ ≤i Ψ1 ⊕Ψ2)↔ (Φ ≤i Ψ2 ⊕Ψ1)

Add (Φ1 ≤i Ψ1) ∧ (Φ2 ≤i Ψ2)→ (Φ1 ⊕ Φ2 ≤i Ψ1 ⊕Ψ2)

Succ (Φ⊕> ≤i Ψ⊕>)→ (Φ ≤i Ψ)

MP From ` ϕ and ` ϕ→ ψ derive ` ψ
PR From ` ϕ→ ψ derive ` ϕ ≤i ψ

Definition 16 (Derivability) Γ ` ϕ holds if either ϕ ∈ Γ, or ϕ is an axiom, or ϕ
follows by means of the rules of the calculus from axioms or members of Γ, while
taking care that application of PR only is allowed when the set of premisses Γ is
empty.

The deduction theorem holds for this calculus:

Theorem 17 Γ ∪ {ϕ} ` ψ iff Γ ` ϕ→ ψ.

Proof. The proof for this is folklore, but see [HN12] for an explanation of why
the restriction on the use of PR (counterpart to the rule of necessitation in standard
modal logic) is crucial for this. 2

The deduction theorem will help us to state a number of useful derivable princi-
ples.

1. From ProbImpl, with propositional reasoning:

` > ≤i (ϕ↔ ψ)→ (ϕ =i ψ).
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2. Consider the following instance of ProbT: ` (> ≤i ⊥) → ⊥. By proposi-
tional logic, ` ¬(> ≤i ⊥), i.e., ` ⊥ <i >.

3. ` Φ =i Φ by Tot.

4. From PropAdd, ` (ϕ ∧ ⊥) ⊕ (ϕ ∧ >) =i ϕ. By propositional reasoning,
` ⊥ ⊕ ϕ =i ϕ.

5. ` ⊥ ⊕ Φ =i Φ by an easy induction using the previous two items.

6. Plugging in > as a special case in (3), we get ` ⊥ ⊕> =i >.

7. Plugging in ⊥ as a special case in (3), we get ` ⊥ ⊕⊥ =i ⊥.

8. Assume ` ϕ ↔ ψ. Then also ` ϕ → ψ and ` ψ → ϕ. From the former,
with PR, ` ϕ ≤i ψ, and from these, we get ` ϕ =i ψ. This gives the
derived inference rule:

From ` ϕ↔ ψ, derive ` ϕ =i ψ.

9. From PropAdd, ` (>∧ϕ)⊕ (>∧¬ϕ) =i >, so by propositional reasoning,
` ϕ⊕ ¬ϕ =i >.

10. Assume ` ϕ =i >. Then ` ¬ϕ⊕ϕ =i ¬ϕ⊕>, and hence ` ¬ϕ⊕> =i >,
by the previous item. Since ` ⊥ ⊕ > =i > we get ` ¬ϕ ⊕ > =i ⊥ ⊕ >,
and therefore, by Succ, ` ¬ϕ =i ⊥. By the deduction theorem, we have
derived ` ϕ =i > → ¬ϕ =i ⊥.

11. In a similar way we can derive: ` ϕ =i ⊥ → ¬ϕ =i >.

12. Assume ` > ≤i ϕ and ` > ≤i ϕ → ψ. From this: ` ϕ =i > and ` ϕ →
ψ =i >. From ` ϕ =i >, ` ¬ϕ ∧ ¬ψ =i ⊥ and from ` ϕ → ψ =i >
we get that ` ϕ ∧ ¬ψ =i ⊥. Since ` ¬ψ =i (ϕ ∧ ¬ψ) ⊕ (¬ϕ ∧ ¬ψ), by
PropAdd, we derive that ` ¬ψ =i ⊥, and it follows that ` ψ =i >, hence
` > ≤i ψ. By the deduction theorem, we have derived the distribution
principle for certainty: ` (> ≤i ϕ ∧ > ≤i (ϕ→ ψ)→ > ≤i ψ.

13. From Tot, by the definitions of <i, >i and =i:

` Φ <i Ψ ∨ Φ =i Ψ ∨ Φ >i Ψ.

14. By Tran and the definition of <i:
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` Φ <i Ψ ∧Ψ ≤i Ξ→ Φ <i Ξ,

` Φ <i Ψ ∧Ψ ≤i Ξ→ Φ <i Ξ,

` Φ <i Ψ ∧Ψ <i Ξ→ Φ <i Ξ.

15. By Add, and the definition of =i:

` Φ1 =i Φ2 ∧Ψ1 =i Ψ2 → Φ1 ⊕Ψ1 =i Φ2 ⊕Ψ2.

Definition 18 (Translating Knowledge and Belief) If ϕ is an ED formula, then
ϕ• is the formula of the language of epistemic comparison logic given by the
following instructions:

>• = >
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)• = ϕ•1 ∧ ϕ•2
(Kiϕ)• = > ≤i (ϕ•)

(Biϕ)• = ¬ϕ• <i ϕ
•.

If Γ is a set of formulas then Γ• is the corresponding set of •-transations.

Theorem 19 For all ϕ in the ED language: if Γ `ED ϕ then Γ• `SC ϕ•.

Proof. We show that the (translations of the) axioms and rules of the ED calculus
are all derivable in the SCD calculus.

Ki necessitation.

Assume `SC ϕ. Then `SC > → ϕ, hence by PR `SC > ≤i ϕ. By the translation
convention, `SC Kiϕ.

Dist-K Ki(ϕ→ ψ)→ Kiϕ→ Kiψ

Assume ` > ≤i (ϕ → ψ) and ` > ≤i ϕ. Then by propositional reasoning,
` > =i (ϕ→ ψ), and by PropAdd and propositional reasoning, ` ⊥ =i ϕ ∧ ¬ψ.
From ` > ≤i ϕ, by propositional reasoning, ` > =i ϕ, and substitution yields
` ⊥ =i >∧¬ψ, and therefore ` ⊥ =i ¬ψ. It follows by PropAdd that ` > =i ϕ.

T: Follows from PropT.

PI-K: Follows from ProbPos
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NI-K: Follows from ProbNeg

F: From ProbT, ` (> ≤i ⊥) → ⊥, hence by propositional reasoning, ` ⊥ <i >,
and therefore by propositional reasoning ` ⊥ ≤i >.

PI-KB: For this assume ` > ≤i ϕ. From this: ` ϕ =i >. Earlier we derived
` ¬ϕ ⊕ ϕ =i > and > =i ⊥ ⊕ >. From this, with propositional reasoning:
` ¬ϕ⊕> =i ⊥⊕>, and hence by Succ, ` ¬ϕ =i ⊥. From this, with `i ⊥ <i >
(derived earlier), `i ¬ϕ <i ϕ, i.e., ` Biϕ.

M: Assume ` > ≤i (ϕ→ ψ) and ` ¬ϕ <i ϕ. We have to show that ` ¬ψ <i ψ.
From ` > ≤i (ϕ → ψ) we can derive ` ϕ ≤i ψ (todo: show derivation). From
` ϕ ≤i ψ derive ` ¬ψ ≤i ¬ϕ (todo: show derivation). From ` ¬ϕ <i ϕ and
` ϕ ≤i ψ and by Trans `6= ϕ < ψ. From this and ` ¬ψ ≤i ¬ϕ by Trans
`6= ψ < ψ.

D: From ` ¬ϕ <i ϕ by Tot ` ¬ϕ ≤i ϕ.

SC: Assume ` (¬ϕ <i ϕ) and ` ⊥ <i (¬ϕ∧ψ). We have to show ` (¬ϕ∧¬ψ) <i

(ϕ ∨ ψ). For this we can use the equivalence of ϕ ∨ ψ and (ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ) ∨
(¬ϕ ∧ ψ). 2

Theorem 20 Every consistent formulaϕ determines a canonical epistemic weight
modelMϕ.

Proof. Suppose ϕ is consistent, i.e., 6` ¬ϕ. We construct a canonical epistemic
weight model for ϕ.

Let Φ be the set of all subformulas of ϕ, closed under single negations. The
subformulas of Ψ ≤i Ξ are all subformulas of formulas ψ that occur as ⊕ terms
in Ψ or Ξ, plus the results Ψ′ ≤i Ξ′ of leaving out ⊕ terms in Ψ or Ξ while taking
care that Ψ′ and Ξ′ are not empty.

We define the canonical modelMϕ = (W,R, V, L). W is the set of all maximal
consistent subsets of Φ. W is non-empty because ϕ is supposed to be consistent.

Valuations are defined as follows: V (w) = Prop ∩ w.

Let sat(w) = {ψ ∈ Φ | w ` ψ}, that is, sat(w) is the set of Φ-formulas that are
provable from w.

Notice that it follows by the soundness of the probability comparison calculus that
all members of sat(w) are true in w.

Relations are defined as follows: wRiu iff sat(w) and sat(u) contain the same
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i-comparison formulas. Clearly, all Ri are equivalence relations.

Now it remains to define L. Consider an agent i and an equivalence classRi(w) in
the canonical modelMϕ. All worlds u of Ri(w) contain the same i-comparison
formulas.

We show how to transform all these i-comparison formulas in a system of linear
inequalities that is consistent.

For all u ∈ W , we write ϕu for the conjunction of all formulas in u. We have:

• ` ϕu → ¬ϕv if u 6= v by propositional logic.

Given any formula ψ of Φ, we have

• ` ψ ↔
∨
{u∈W |ψ∈u} ϕu by propositional logic.

Since the ϕu are all mutually inconsistent we can prove in the calculus:

• ` ψ =i

⊕
{ϕu | u ∈ W and ψ ∈ u}.

Now, when we i-compare ϕu to ⊥ in w, we should obtain >i iff u ∈ Ri(w). Let
us prove this fact.

• If u ∈ Ri(w), we have:

1. ` ϕu → ⊥ <i ϕu by (ProbT) and (PropAdd).
2. ⊥ <i ϕu ∈ sat(u);
3. ⊥ <i ϕu ∈ sat(w) because u ∈ Ri(w).

Therefore, ⊥ <i ϕu follows from w.
• Suppose u /∈ Ri(w). Then u and w differ by at least one i-comparison

formula Ψ ≤i Ξ ∈ Φ. Without loss of generality, assume Ψ ≤i Ξ ∈ w and
Ψ ≤i Ξ /∈ u. Then we have:

1. ` ϕw → Ψ ≤i Ξ by propositional logic;

2. ` Ψ ≤i Ξ→ ¬ϕu by propositional logic;

3. ` Ψ ≤i Ξ→ > ≤i (Ψ ≤i Ξ) by axiom (PropT);

4. ` ϕw → > ≤i (Ψ ≤i Ξ) by propositional logic;
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5. ` ϕw → > ≤i (¬ϕu) by 2. and 4.

6. ` ϕw → (ϕu ≤i ⊥) from the above by PropAdd and propositional
reasoning.

Therefore ϕu ≤i ⊥ follows from w.

Thus, ψ has the same i-weight as {ϕu | u ∈ Ri(w) and ψ ∈ u}. We can prove in
the calculus:

• ` ψ =i

⊕
{ϕu | u ∈ Ri(w) and ψ ∈ u}.

Now let Ψ ≤i Ξ be any i-comparison formula of w. Then we can replace any ⊕
term ψ occurring in either Ψ or Ξ by a list of terms

⊕
{ϕu | u ∈ Ri(w) and ψ ∈

u} with the same i-weight. Let the result of this be Ψ′ ≤i Ξ′. Regrouping the ⊕
terms in Ψ′ and Ξ′, using the abbreviation nχ for χ⊕ · · · ⊕ χ︸ ︷︷ ︸

n times

, 0 for ⊥⊕ · · · ⊕⊥,

m for >⊕ · · · ⊕ >︸ ︷︷ ︸
m times

, and replacing ⊕ by + and ≤i by ≤ gives a linear inequality

a1ϕu1 + · · ·+ anϕun + k ≤ b1ϕv1 + · · ·+ bmϕvm + l

where ai, bj, k, l are non-negative integers, and the ϕu and ϕv figure as variables.
Applying this recipe to each i-comparison formula in w, we get a system of linear
inequalities made up of i-inequalities in w.

The set sat(w) is consistent so the above system, which is a rephrasing of in-
equations that are in sat(w), is also consistent and therefore satisfiable [FHM90b,
Theorem 2.2]. Let (x∗u)u∈Ri(w) be a solution, and define Li(u) = x∗u. 2

Lemma 21 (Truth Lemma) For all formulas ψ ∈ Φ, we have Mϕ,w |= ψ iff
ψ ∈ w.

Proof. Induction on ψ. 2

Theorem 22 (Completeness of Epistemic Comparison Logic) The calculus of
epistemic comparison logic is complete for epistemic weight models:

If |= ϕ then `SC ϕ.

Proof. Let 6` ϕ. Then ¬ϕ is consistent, and one can find a maximal consistent
set w in the closure of ¬ϕ with ¬ϕ ∈ w. By the Truth Lemma,M¬ϕ,w |= ¬ϕ,
i.e.,M¬ϕ,w 6|= ϕ. Therefore, 6|= ϕ. 2
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From Epistemic Probability Models to Epistemic Neighbourhood
Models

IfM = (W,R, V, L) is an epistemic weight model, thenM• is the tuple (W,R, V,N)
given by replacing the weight function by a functionN , whereN is defined as fol-
lows, for i ∈ Ag, w ∈ W .

Ni(w) = {X ⊆ [w]i | Li(X) > Li([w]i −X)}.

Fact 23 For any epistemic weight modelM it holds thatM• is a neighbourhood
model.

Fact 24 The calculus of epistemic-doxastic neighbourhood logic is sound for in-
terpretation in epistemic probability models. Probabilistic beliefs are neighbour-
hoods.

Theorem 25 For all ED formulas ϕ, for all epistemic probability modelsM, for
all worlds w ofM:

M•, w |= ϕ iffM, w |= ϕ•.

Theorem 26 Let `ED denote derivability in the neighbourhood calculus for ED.
Let `SC denote derivability in the probability comparison calculus. Then `ED ϕ
implies `SC ϕ•.

Updates

You are from a population with a statistical chance of 1 in 100 of having disease
D. The initial screening test for this has a false positive rate of 0.2 and a false
negative rate of 0.1. You tested positive (T). Should you believe you have disease
D? We can model this with public announcement update.

Example 7 (Disease and Test)
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dt 0.9 dt 0.1

dt 0.2 ∗ 99 dt 0.8 ∗ 99

⇒ !t⇒

dt 0.9

dt 0.2 ∗ 99

The model shows that after the update with t the probability of d equals 0.9
0.9+0.2∗99

=
9

207
= 1

23
.

Example 8 (Applying Bayes’ Rule) Compare this with applying Bayes’ Rule:

P (D|T ) =
P (T |D)P (D)

P (T )
=

P (T |D)P (D)

P (T |D)P (D) + P (T |¬D)P (¬D)

Filling in P (T |D) = 0.9, P (D) = 0.01, P (¬D) = 0.99, P (T |¬D) = 0.2 gives
P (D|T ) = 1

23
.

Public announcement update of an epistemic weight model and application of
Bayes’ rule give the same result.

In [BGK09], update models for probabilistic epistemic logic are built from sets
of formulas that are mutually exclusive. We will stay a bit closer to the original
update model from [BMS98, BM04]. A weighted update model is like a weighted
epistemic model, but with the valuation function replaced by a function that as-
signs preconditions and actions (substitutions) to events.

Definition 27 (Binding) A binding is a map from proposition letters to formulas,
represented by a finite set of links

{p1 7→ ϕ1, . . . , pn 7→ ϕn}

where the pk are all different, and where no ϕk is equal to pk. It is assumed that
each p that does not occur in a left-hand side of a binding is mapped to itself.

We use S for the set of bindings.

Definition 28 (Update Model) An update model for probabilistic comparison logic
is a tuple

(E,pre, S, T,K)

where
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• E is a non-empty set of events

• pre is a function E → L that assigns a L formula ϕ (the precondition) to
each event e ∈ E.

• S is a function E → S that assigns a binding to each event e ∈ E.

• T is a function that maps each agent i to an equivalence ∼i on E.

• K is a function from agents to L-functions for events.

Update is a product operation, as in [BMS98, BM04]. The new i-weight for (w, e)
is computed as the product the weights of w and of e.

Definition 29 (Update Product) The update execution of static modelM = (W,R, V, L)
with action model A = (E,pre, S, T,K) is a tuple

M~A = (W ′R′, V ′, L′)

where:

• W ′ = {(w, e) | M, w |= pre(e)}.

• R′i is given by

{((w1, e1), (w2, e2)) | w1 ∼i w2 and e1 ∼i e2}.

• V ′(p) = {(w, e) ∈ W ′ | M, w |= S(e)(p)}.

• Li(w, e) = Li(w)× Li(e).

We will illustrate this definition with a model of an example from Lewis Carroll.
An urn contains a single marble, either white or black. Mr a puts another marble
in the urn, a white one. The urn now contains two marbles. Next, Mrs b draws one
of the two marbles from the urn. It turns out to be white. What is the probability
that the other marble is also white [Gar81]? As a slight modification, let’s assume
that while Mr a puts his white marble in the urn, he takes a look at what is already
in there, and Mrs b notices this.

Call the first white marble p and the second one q. Mrs b does not know whether
she is drawing from ¬p+ q or from p+ q.

To model the complete sequence of events, we start out from a model of complete
ignorance about p, for two agents a (solid) and b (dashed):
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p p

Update model for a learning whether p is the case, while b observes that a learns,
but without learning herself.

?p ?¬p

Result of the update with this:

p p

The action of putting a second white marble into the urn:

q := >

Result of the update with this:

w : pq v : pq

The final action: an update model for removing either p or q from the urn. Neither
Mr a nor Mrs b knows which of these two takes place. Note that removing p from
the urn has as precondition that p is true, and similarly for q.

e :?p, p := ⊥ f :?q, q := ⊥

The result of updating with this:
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(w, e) : pq

(w, f) : pq

(v, f) : pq

The relevant property to check now is p ∨ q. Since all possibilities are equally
likely for both agents, in world (w, e), the probability for Mr a that p∨ q is 1, and
for Mrs b it is 2

3
.

Further Work: Risk Versus Uncertainty

Recall the famous distinction made in [Kni21] between risk and uncertainty: a
risky choice is a choice involving known probabilities, an uncertain choice is a
choice involving unknown probabilities. This distinction is used by Keynes in
[Key21] to explain how the insurance business works, where underwriters distin-
guish routinely between risks which are properly insurable and risks which cannot
be calculated or made into a “book” that covers all possibilities “. . . and which
cannot form the basis of a regular business of insurance” [Key21, p. 21]

If we want to incorporate the useful distinction between risk and uncertainty in
our weight models, we should allow for propositions that agents are not willing to
bet on, because they do not trust their own estimations of the probability.

A traditional way to tackle this is by distinguishing between lower and upper
probabilities. If these are wide apart, the agent is not willing to bet at all [Sha76,
Hal03]. Or think of it as buying and selling. The lower probability is like the price
for which I can sell, the higher probability is like the price for which I can buy.

In an epistemic weight model, we can simply replace weights by weights with
margin of error. Instead of a single value, we assign a pair of values (x, y), and
we say that the lower value is x, and the higher value x + y. Thus, y gives the
spread. Old style weights are a special case, with (x, y) such that y = 0.

Let Li give the lower value, and Lεi the spread. Add a new comparison relation
Φ <i Ψ to the language. Interpretation instructions for Φ ≤i Ψ and Φ <i Ψ now
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get modified as follows:

M, w |= Φ ≤i Ψ iff
∑
ϕ∈Φ

(Lw,iϕ+ Lεw,iϕ) ≤
∑
ψ∈Ψ

Lw,iψ.

M, w |= Φ <i Ψ iff
∑
ϕ∈Φ

(Lw,iϕ+ Lεw,iϕ) <
∑
ψ∈Ψ

Lw,iψ.

Note that Φ ≤i Ψ and Φ <i Ψ are no longer interdefinable. Also, totality does no
longer hold, for it may be that neither Φ ≤i Ψ nor Ψ ≤i Φ.

If we use Φ =i Ψ for the conjunction of Φ ≤i Ψ and Ψ ≤i Φ we see that Φ =i Ψ
holds iff the lower weights of Φ and Ψ are the same, and the spreads of both Φ
and Ψ equal 0.

A bet on ϕ is safe iff the L-value of ϕ is greater than one half (or, equivalently,
the L plus Lε value of ¬ϕ is less than one half).

This perspective is connected to what is sometimes called imprecise probability
theory (See Walley [Wal91]). The distinction between lower and spread probabil-
ities makes the probabilistic belief logic weaker. It is not quite clear yet what that
means. Can we now get a precise match between imprecise weight models and
epistemic doxastic neighbourhood models? Also on the agenda for further work
is the question of the axiomatisation of imprecise epistemic probability logic. Fi-
nally, what is the appropriate notion of generic imprecise update?
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