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Abstract

The paper compares two kinds of models for logics of knowledge and belief, neigh-
bourhood models and epistemic weight models. We give sound and complete calculi
for both, and we show that our calculus for neighbourhood models is sound but not
complete for epistemic weight models. Epistemic weight models combine knowledge
and probability by using epistemic accessibility relations and weights to define sub-
jective probabilities. Our Probability Comparison Calculus for this class of models is
a further simplification of the calculus that was presented in AIML 2014.
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1 Probability and Information

A Bayesian learner is an agent who uses new information to update a subjec-
tive probability distribution that somehow captures what she knows or believes
about the world. In a multi-agent setting, various learners could receive differ-
ents pieces of information, and if multi-agent logics of knowledge of belief are
extended with update procedures that implement the processing of new infor-
mation, then this also gives a perspective on learning in a multi-agent setting.
So it is natural to combine probability theory and the update perspective on
knowledge and belief from dynamic modal logic.

Indeed, there exists already a modest tradition in combining DEL (Dynamic
Epistemic Logic) and probabibility theory. The first combinations are in Kooi’s
thesis [23], in Van Benthem’s [3], and in the combined effort of Van Benthem,
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Gerbrandy and Kooi in [5]; [10] gives an overview. Inspiration for this goes
back to work of Fagin and Halpern in the 1990s [13]. A simplified combined
system of DEL and probability theory is presented in [12]. Further simplication
of the base logic is provided in [9]. The present paper extends work that was
presented at AIML 2014 in [12].

A natural notion of belief that turns up in a setting of probabilistic dynamic
epistemic logic is betting belief (or: Bayesian belief) in φ: P (φ) > P (¬φ).
Van Eijck & Renne [11] give a logical calculus for this, combined with an S5
operator for knowledge, that we will review and extend below. This is in fact
an extension of a calculus proposed by Burgess in [7]. A variation on this is
threshold belief in φ: P (φ) > t, for some specific t with 1

2 ≤ t < 1. This is also
known as Lockean belief. John Locke suggests in his work that a person’s belief
in a proposition φ is somehow connected to that person’s confidence in φ. This
confidence should then be connected in turn to the evidence that the person
has for φ. If it makes sense to talk about degree of belief at all, then subjective
probability is one way of making this precise [16]. A logic with KD45 belief
and an explicit belief comparison operator is presented in [21]. See [28] for an
overview of the extensive literature on belief comparison operators.

In this paper we will use a neighbourhood semantics ([8, Ch. 8] and [19])
for ‘belief as willingness to bet’. Related to neighbourhood models for belief
are the evidence models proposed in [4].

Attempts to develop a qualitative notion of probability date back to De
Finetti [14,15]. He proposed the following requirements for a binary relation �
on a (finite and non-empty) set W :

nonnegativity A � ∅
nontriviality ∅ 6�W

totality A � B or B � A
transitivity if A � B and B � C then A � C

quasi-additivity if (A ∪B) ∩ C = ∅ then A � B iff A ∪ C � B ∪ C
A probability measure on W is a function µ : P(W ) → R satisfying µ(∅) = 0,
µ(W ) = 1 and µ(A ∪ B) = µ(A) + µ(B) for A,B ⊆ W with A ∩ B = ∅
(additivity). The conjecture that the five requirements completely determine
a probability measure on W was refuted in [24].

Theorem 1.1 There is a relation satisfying De Finetti’s axioms that does not
agree with any probability measure [24].

Proof. Consider W = {p, q, r, s, t} with a weight map ν : W → N given by
ν(p) = 4, ν(q) = 1, ν(r) = 3, ν(s) = 2, ν(t) = 6. Extend ν to subsets of W by
putting ν(A) =

∑
a∈A ν(a). Let the relation �ν on W be given by A �ν B iff

ν(A) ≥ ν(B). Next, writing pq for {p, q}, define � as

� := �ν −{(st, pqr)}.
This yields (writing A ≈ B for A � B∧B � A and A � B for A � B∧B 6� A):
p ≈ qr, rs ≈ pq, qt ≈ pr, pqr � st. Check that this relation satisfies the De
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Fenetti axioms: Transitivity still holds, because pqr and st are the only two
sets that have ν-weights adding up to 8, so there can be no set A different from
pqr and st with st � A and A � pqr. Quasi-additivity still holds since the
only C with C ∩ pqrst = ∅ is C = ∅. The other three properties are obvious.
But the relation does not agree with any probability measure µ. For it follows
from µ(p) = µ(qr), µ(rs) = µ(pq), µ(qt) = µ(pr) that µ(st) = µ(pqr). Thus, µ
cannot agree with {p, q, r} � {s, t}. 2

Scott [29] gave an algebraic reformulation of the new axioms proposed in
[24]. Formulated in terms of subsets of a universe W , a pair of k-length se-
quences of sets (A1, . . . , Ak) and (B1, . . . , Bk) is balanced if for each w ∈ W it
holds that |{i | w ∈ Ai}| = |{i | w ∈ Bi}|. The Scott axiom for � for length k
says:

k-cancellation if (A1, . . . , Ak, X) and (B1, . . . , Bk, Y ) are balanced,

and Ai � Bi for each i with 1 ≤ i ≤ k, then Y � X.

It is not hard to see that if a relation � is representable by a probability
measure, then � must satisfy cancellation for any k. Scott showed that any �
relation satisfying nonnegativity, nontriviality, totality and cancellation for any
k ∈ N determines a probability measure, thus replacing the set of conditions
proposed by De Finetti by a complete set.

Notice that the example in the proof of Theorem 1.1 does not satisfy 3-
cancellation, for the pair (p, rs, qt, pqr) and (qr, pq, pr, st) is balanced and sat-
isfies p � qr, rs � pq, qt � pr, but st � pqr does not hold.

Segerberg [30] showed how the balancedness requirements could be trans-
lated into modal logic (be it at formidable coding cost), and Segerberg [30] and
Gärdenfors [17] proposed axiomatisations for a logic with �, using an infinite
number of modal schemes (one for each sequence length k) to cover the bal-
ancedness conditions identified by Scott. This approach was later adopted in
Lenzen [26] for a logic of conviction (German: Überzeugung) and belief where
an agent’s conviction of φ is identified with assigning probability 1 to φ, and
belief in φ with assignming a probability greater than 1

2 . Later, Herzig also
incorporated action, in [20]. A difference between Lenzen’s approach and ours
are that Lenzen’s conviction does not imply truth. Another difference is that
we will not use the Scott axioms. The main difference between the approach
of Herzig and ours is that he relates betting belief to a KD45 modality, while
we relate betting belief to S5 knowledge.

2 Epistemic Neighbourhood Models

We now introduce epistemic neighbourhood models, where belief is represented
as truth in a neighbourhood.

Definition 2.1 [Epistemic Neighbourhood Models] An Epistemic Neigh-
bourhood Model M is a tuple (W,∼, N, V ) where

• W is a non-empty set of worlds.
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• ∼ is a function that assigns to every agent i ∈ Ag an equivalence relation ∼i
on W . We use [w]i for the ∼i class of w, i.e., for the set {v ∈W | w ∼i v}.

• N is a function that assigns to every agent i ∈ Ag and world w ∈ W a
collection Ni(w) of sets of worlds—each such set called a neighbourhood of
w—subject to the following conditions.
(c) ∀X ∈ Ni(w) : X ⊆ [w]i.
(n) [w]i ∈ Ni(w).
(a) ∀v ∈ [w]i : Ni(v) = Ni(w).
(m) ∀X ⊆ Y ⊆ [w]i : if X ∈ Ni(w), then Y ∈ Ni(w).
(d) ∀X ∈ Ni(w), [w]i −X /∈ Ni(w).
(sc) ∀X,Y ⊆ [w]i: if [w]i −X /∈ Ni(w) and X ( Y , then Y ∈ Ni(w).

• V is a valuation function that assigns to every w ∈W a subset of Prop.

Epistemic neighbourhood models are a variation on the well-known neigh-
bourhood models from modal logic. The difference is that they include an
epistemic component ∼i for each agent i. Since [w]i is the set of worlds agent
i knows to be possible at w, each X ∈ Ni(w) represents a proposition that the
agent believes at w. Notice that it follows from these semantics that knowledge
implies belief.

Property (c) This ensures that what is known is also believed.

Property (n) This ensures that what is logically true is believed.

Property (a) If X is believed, then it is known that X is believed.

Property (m) Belief is monotonic: if an agent believes X, then she believes
all propositions Y ⊇ X that logically follow from X.

Property (d) If i believes a proposition then i does not also believe the com-
plement of that proposition.

Property (sc) This is a form of “strong commitment”: if the agent does
not believe the complement X, then she must believe any strictly weaker Y
implied by X.

If follows from (n) and (d) that ∅ /∈ Ni(w). Indeed, by (n) [w]i ∈ Ni(w),
hence by (d), ∅ = [w]i − [w]i /∈ Ni(w). It follows from (d) and (m) that
the intersection of two neighbourhoods of w is non-empty. Indeed, suppose
X,Y ∈ Ni(w). Then [w]i −X /∈ Ni(w), by (d). Therefore, Y 6⊆ [w]i −X, by
(m). Thus, X ∩ Y 6= ∅. Incidentally, (m) follows from (d) and (sc). For let
X ∈ Ni(w). Then [w]i−X /∈ Ni(w) by (d). Let [w]i ⊇ Y ⊇ X. If Y = X then
Y ∈ Ni(w) by what is given about X. If Y ) X then Y ∈ Ni(w) by (sc).

Definition 2.2 [ED Language] Let p range over a set of basic propositions P
and i over a finite set of agents A.

φ ::= > | p | ¬φ | (φ ∧ φ) | Kiφ | Biφ.

We will employ the usual abbreviations for ⊥,∨,→ and↔, and we use Ǩiφ
for ¬Ki¬φ and B̌iφ for ¬Bi¬φ. This makes Ǩi, B̌i behave as duals (diamonds)
to the boxes Ki, Bi.
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Definition 2.3 [Truth in Neighbourhood Models] Key clauses are

M, w |= Kiφ iff for all v ∈ [w]i :M, v |= φ.

M, w |= Biφ iff for some X ∈ Ni(w)

it holds that X = {v ∈ [w]i | M, v |= φ}.
Our first example illustrates that neighbourhood belief is not closed under

conjunction.

Example 2.4

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

• In all worlds, K(p ∨ q ∨ r) is true.

• In all worlds B¬p, B¬q, B¬r are true.

• In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.

Example 2.4 illustrates that the lottery puzzle [25] is “solved” in neighbour-
hood models for belief by non-closure of belief under conjunction. A calculus
for ED logic is given in Figure 1.

Theorem 2.5 The schema Kiφ→ Biφ is derivable in the ED calculus.

Proof. Write ` φ for derivability in the ED calculus. By propositional logic,
` Kiφ → Ki(> → φ). From this and (M), by propositional reasoning: `
Kiφ → (Bi> → Biφ). By propositional reasoning: ` Bi> → (Kiφ → Biφ).
From this and (N), by MP: ` Kiφ→ Biφ. 2

Henceforth we use Kiφ→ Biφ as an extra axiom scheme, and call it (KB).

Theorem 2.6 The rule

Biφ φ→ ψ

Biψ

is derivable in the calculus of epistemic-doxastic neighbourhood logic.

Proof. Here is the derivation:

Biφ

φ→ ψ
Nec-K

Ki(φ→ ψ) Ki(φ→ ψ)→ Biφ→ Biψ M
MP

Biφ→ Biψ
MP

Biψ
2

Theorem 2.7 (Soundness) The calculus for ED logic is sound for epistemic
neighbourhood models.
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Axioms

(Taut) All instances of propositional tautologies

(Dist-K) Ki(φ→ ψ)→ Kiφ→ Kiψ

(T) Kiφ→ φ

(PI-K) Kiφ→ KiKiφ

(NI-K) ¬Kiφ→ Ki¬Kiφ

(N) Bi>.

(PI-KB) Biφ→ KiBiφ

(NI-KB) ¬Biφ→ Ki¬Biφ
(M) Ki(φ→ ψ)→ Biφ→ Biψ

(D) Biφ→ B̌iφ.

(SC) B̌iφ ∧ Ǩi(¬φ ∧ ψ)→ Bi(φ ∨ ψ)

Rules

φ→ ψ φ
ψ

(MP)
φ
Kiφ

(Nec-K)

Fig. 1. ED Calculus

Proof. The soundness of Dist-K follows from the fact that the Ki are modal
operators. The soundness of T, PI-K and NI-K follows from the fact that the
Ki are interpreted as equivalences. The soundness of N follows from property
(n). The soundness of PI-KB follows from property (a). The soundness of NI-
KB also follows from property (a). The soundness of M follows from property
(m). The soundness of D follows from property (d). The soundness of SC
follows from property (sc). The two rules preserve soundness, so all theorems
of the calculus are sound. 2

The following theorem was stated and proved for a weaker notion of neigh-
bourhood model and a weaker calculus, in the unpublished [11].

Theorem 2.8 Every consistent formula φ determines a canonical epistemic
neighbourhood model Mφ.

Proof. Suppose φ is consistent, i.e., 6` ¬φ. We construct a canonical epistemic
neighbourhood model for φ.

Let Φ be the closure of φ, that is, Φ is the minimal set such that (i) φ ∈ Φ,
> ∈ Φ, (ii) Φ is closed under taking subformulas (i.e., if χ is a subformula of a
formula ψ in Φ, then χ is in Φ), (iii) if ψ ∈ Φ, and ψ is not a negation, then
¬ψ ∈ Φ.

We define the canonical model Mφ = (W,∼, N, V ). W is the set of all
maximal consistent subsets of Φ. W is non-empty because φ is supposed to be
consistent. Valuations are defined as follows: V (w) = Prop ∩w.
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Since each w ∈W is a set of formulas, we can talk about what is derivable
from this set: w ` ψ means that ψ is derivable in the calculus from w.

Relations are defined as follows:

w ∼i u iff for all ψ ∈ Φ : w ` Kiψ iff u ` Kiψ and w ` KiBiψ iff u ` KiBiψ.

Clearly, all ∼i are equivalence relations.
Next, we define Ni by means of:

Ni(w) := {{v ∈ [w]i | ψ ∈ v} | ψ ∈ Φ,w ` Biψ}.

We check that the properties of neighbourhood functions hold. (c) holds by
definition of Ni. (n) holds by the fact that w ` Bi> (by (N)), and {v ∈ [w]i |
> ∈ v} = [w]i.

To show that (a) holds assume w ∼i u. Let X ∈ Ni(w). Then for some
ψ ∈ Φ, X = {v ∈ [w]i | ψ ∈ v} and w ` Biψ. Therefore, by (KB), w ` KiBiψ.
By the definition of ∼i it follows that u ` KiBiψ, and therefore by (T), u `
Biψ, and we have that X ∈ Ni(u).

To see that (m) holds, let ψ ∈ Φ and assume {v ∈ [w]i | ψ ∈ v} ∈ Ni(w).
Then w ` Biψ. Let ψ′ ∈ Φ and assume ` ψ → ψ′. Then by Theorem 2.6,
w ` Biψ′. Therefore {v ∈ [w]i | ψ′ ∈ v} ∈ Ni(w).

To see that (d) holds, assume for some ψ ∈ Φ, {v ∈ [w]i | ψ ∈ v} ∈ Ni(w).
Then w ` Biψ. By (D), w ` ¬Bi¬ψ. Thus, {v ∈ [w]i | ¬ψ ∈ v} /∈ Ni(w).

Finally, we show that (sc) holds. Let ψ ∈ Φ and let X = {v ∈ [w]i | ψ ∈ v}.
Then [w]i − X = {v ∈ [w]i | ¬ψ ∈ v}. Assume [w]i − X /∈ Ni(w). Then
w ` ¬Bi¬ψ. If X = [w]i there is nothing to prove. So assume there is some
v ∈ [w]i − X. Then there is ψ′ ∈ Φ with ψ′ ∈ v and for all u ∈ X : ψ′ /∈ u.
Then v ` (ψ′ ∧ ¬ψ), and therefore by (T), v ` Ǩ(ψ′ ∧ ¬ψ). Thus by (SC),
v ` Bi(ψ∨ψ′), and by (KB), v ` KiBi(ψ∨ψ′). From this, by the definition of
∼i, w ` KiBi(ψ ∨ ψ′), and by (T), w ` Bi(ψ ∨ ψ′). It follows that X ∪ {v} ∈
Ni(w). So we have indeed defined an epistemic neighbourhood model. 2

Lemma 2.9 (Truth Lemma) For all formulas ψ ∈ Φ, we have Mφ,w |= ψ
iff ψ ∈ w.

Proof. Induction on ψ. The cases of >, p and the Boolean combinations are
straightforward. For the case of Kiχ. We switch for convenience to the dual,
and prove Mφ,w |= Ǩiχ iff Ǩiχ ∈ w.

From left to right: Mφ,w |= Ǩiχ iff there is a v ∈ [w]i with Mφ,v |= χ iff
there is a v ∈ [w]i with χ ∈ v by induction hypothesis only if Ǩiχ ∈ v by (T)
and maximal consistency of v iff Ǩiχ ∈ w by definition of [w]i and maximal
consistency of w.

From right to left: Suppose Ǩiχ ∈ w. We have to showMφ,w |= Ǩiχ. For
that we have to construct v ∈ [w]i with χ ∈ v. So let

v− := {χ} ∪ {Kiψ ∈ Φ | Kiψ ∈ w} ∪ {¬Kiψ ∈ Φ | ¬Kiψ ∈ w}.

Then v− is consistent. For suppose not. Then there are

Kiψ1, . . . ,Kiψn,¬Kiσ1, . . . ,¬Kiσm ∈ v−
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with
` Kiψ1 → · · · → Kiψn → ¬Kiσ1 → · · · → ¬Kiσm → ¬χ.

With the Nec rule:

` Ki(Kiψ1 → · · · → Kiψn → ¬Kiσ1 → · · · → ¬Kiσm → ¬χ).

From this, with n+m applications of (Dist-K) and propositional reasoning:

` KiKiψ1 → . . .→ KiKiψn → Ki¬Kiσ1 → · · · → Ki¬Kiσm → Ki¬χ.

By construction of v−, Kiψ1, . . . ,Knψn,¬Kiσ1, . . . ,¬Kiσm are in w. There-
fore, by (PI-K) and (NI-K),

KiKiψ1, . . . ,KiKiψn,Ki¬Kiσ1, . . . ,Ki¬Kiσm

follow from w. But this means Ki¬χ ∈ w, by maximal consistency of w, and
contradiction with Ǩiχ ∈ w. It follows that v− is consistent. Therefore an
extension v that is Φ maximal consistent exists. By construction, v ∈ [w]i,
and χ ∈ v. Therefore, by the induction hypothesis, M,v |= χ, and it follows
that M,w |= Ǩiχ.

This leaves the case of Biχ. Mφ,w |= Biχ iff (truth definition for Biχ)
{v ∈ [w]i | Mφ,v |= χ} ∈ Ni(w) iff (induction hypothesis) {v ∈ [w]i | χ ∈
v} ∈ Ni(w) iff (Biχ and χ are in Φ) {v ∈ [w]i | χ ∈ v} ∈ Ni(w) iff (definition
of Ni, plus the fact that Biχ ∈ Φ) Biχ ∈ w. 2

Theorem 2.10 (Completeness of ED Logic) The calculus of epistemic-
doxastic neighbourhood logic is complete for epistemic neighbourhood models:

If |= φ then ` φ.

Proof. Let 6` φ. Then ¬φ is consistent, and one can find a maximal consistent
set w in the closure of ¬φ with ¬φ ∈ w. By the Truth Lemma,M¬φ,w |= ¬φ,
i.e., M¬φ,w 6|= φ. Therefore, 6|= φ. 2

3 Epistemic Weight Models and Incompleteness

An alternative semantics for the language of epistemic doxastic logic can be
given with respect to Epistemic Weight Models. As it turns out, the calculus
given above is sound but incomplete for this alternative semantics.

Definition 3.1 [Epistemic Weight Models] An epistemic weight model for
agents I and basic propositions P is a tuple M = (W,R,L, V ) where

• W is a non-empty countable set of worlds,

• R assigns to every agent i ∈ I an equivalence relation ∼i on W ,

• L assigns to every i ∈ I a function Li from W to Q+ (the positive rationals),
subject to the following boundedness condition (*).

∀i ∈ I∀w ∈W
∑
u∈[w]i

Li(u) <∞. (*)

where [w]i is the cell of w in the partition induced by ∼i.
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• V assigns to every w ∈W a subset of P ,

Use Li(X) for
∑
x∈X Li(x).

Definition 3.2 [Truth of ED formulas in Epistemic Weight Models] Key
clauses are:

M, w |= Kiφ iff for all v ∈ [w]i :M, v |= φ.

M, w |= Biφ iff

Li({v ∈ [w]i | M, v |= φ}) > Li({v ∈ [w]i | M, v |= ¬φ}).

If we interpret ED formulas in epistemic weight models, we get:

Theorem 3.3 The ED calculus is sound for epistemic weight models.

Proof. The axioms are sound, and the rules preserve soundness. 2

Definition 3.4 [Agreement] LetM = (W,R,N, V ) be a neighbourhood model
and let L be a weight function forM. Then L agrees withM if it holds for all
agents i and all w ∈W that

X ∈ Ni(w) iff Li(X) > Li([w]i −X).

The following theorem shows that the ED calculus is incomplete for epis-
temic weight models. A version of this theorem for a weaker notion of neigh-
bourhood model was proved in the unpublished [11], as an adaptation of ex-
ample 2 from [31, pp. 344-345].

Theorem 3.5 There exists an epistemic neighbourhood model M that has no
agreeing weight function.

Proof. Consider the Fano plane from finite geometry (see, e.g., [27, Chapter
9]).

a e
f

c

g

db

Every pair of distinct points determines a line, every line has exactly three
points on it. Let Prop := {a, b, c, d, e, f, g}. Assume a single agent 0. Define X
as the set of lines in the Fano plane (notation: xyz for {x, y, z}):

X := {abc, cde, afe, agd, cgf, egb, bdf}.
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No complement of a line contains a line (check this in the figure). Moreover,
if one extends the complement of a line with another point, the result will
contain a line. This is because any element of a line lies on two points of
the complement (check this in the figure). Thus, the members of X ′ are the
maximal sets that do not contain a line:

X ′ := {abc, cde, afe, agd, cgf, egb, bdf}
= {defg, abfg, bcdg, bcef, abde, acdf, aceg}.

Now define the neighbourhoods Y as the sets that contain (the points of) at
least one line:

Y := {Y | ∃X ∈ X : X ⊆ Y ⊆W}.

Let M := (W,R,N, V ) be defined by W := Prop, R0 = W ×W , V (w) = {w},
and for all w ∈ W , N0(w) = Y. So the neighbourhoods are the sets that
contain (the points of) at least one line from the Fano plane.

Check that X ′ ∩ Y = ∅. This shows that condition (d) holds. Condition
(sc) holds because adding a point to any member of X ′ yields a neighbourhood.
The other conditions for neighbourhood models are also easily checked. So M
is a neighbourhood model.

Toward a contradiction, suppose there exists a weight function L that agrees
withM. Since each letter p ∈W occurs in exactly three of the seven members
of X , we have: ∑

X∈X
L0(X) =

∑
p∈W

3 · L0({p}).

Since each letter p ∈W occurs in exactly four of the seven members of X ′, we
have: ∑

X∈X ′

L0(X) =
∑
p∈W

4 · L0({p}).

On the other hand, from the fact that L0(X) > Lo(X) for all members X of
X we get: ∑

X∈X
L0(X) >

∑
X∈X

L0(X) =
∑
X∈X ′

L0(X).

Contradiction. So no such L0 exists. 2

4 Epistemic Weight Models and Completeness

We will now rephrase the system of simplified probabilistic epistemic logic of
[12], using an alternative syntax, following [9]. We call the result Epistemic
Comparison Logic. In the next definition, we use ⊕ as a list-forming operation
for formulas, so φ1 ⊕ · · · ⊕ φn should be thought of as the n-element formula
list (φ1, . . . , φn). We will use Φ to range over formula lists, and φ ⊕ Φ for the
extension of the formula list Φ at the front with the formula φ.

Definition 4.1 [EC Language]

φ ::= > | p | ¬φ | φ ∧ φ | Φ ≤i Φ Φ ::= φ | φ⊕ Φ



van Eijck and Renne 11

Abbreviations: As usual for ⊥,∨,→,↔. Φ <i Ψ for Φ ≤i Ψ ∧ ¬Ψ ≤i Φ.
Φ =i Ψ for Φ ≤i Ψ ∧ Ψ ≤i Φ. Biφ for (¬φ) <i φ, B̌iφ for (¬φ) ≤i φ (“Belief
as willingness to bet”), Kiφ for > ≤i φ, Ǩiφ for ⊥ <i φ (“Knowledge as
certainty”).

Definition 4.2 [Truth for EC Logic] Let M = (W,R,L, V ) be an epistemic
weight model, let w ∈W .

[[φ]]M := {w ∈W | M, w |= φ}
[[φ]]w,iM := [[φ]]M ∩ [w]i
Lw,iφ := Li([[φ]]w,iM )

M, w |= > always
M, w |= ¬φ iff not M, w |= φ
M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2

M, w |= Φ ≤i Ψ iff
∑
φ∈Φ Lw,iφ ≤

∑
ψ∈Ψ Lw,iψ

Note that in
∑
φ∈Φ, we sum over occurrences of φ in the list Φ.

Weight function and epistemic accessibility relation together determine
probability:

PMw,iφ :=
Lw,iφ
Lw,i>

(
=

Li([[φ]]M ∩ [w]i)

Li([w]i)

)
In a slogan: “Probabilities are weights normalized for epistemic partition cells.”

Example 4.3 Two bankers i, j consider buying stocks in three firms a, b, c
that are involved in a takeover bid. There are three possible outcomes: a for
“a wins”, b for “ b wins”, and c for “c wins.” i takes the winning chances to be
3 : 2 : 1, j takes them to be 1 : 2 : 1. i: solid lines, j: dashed lines.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)

We see that i is willing to bet 1 : 1 on a, while j is willing to bet 3 : 1 against
a. It follows that in this model i and j have an opportunity to gamble, for, to
put it in Bayesian jargon, they do not have a common prior.

Suppose j has foreknowledge about what firm c will do.

a : (i, 3), (j, 1) b : (i, 2), (j, 2)

c : (i, 1), (j, 1)
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Taut instances of propositional tautologies

ProbT (> ≤i φ)→ φ

ProbImpl > ≤i (φ→ ψ)→ (φ ≤i ψ)

PropPos (Φ ≤i Ψ)→ > ≤i (Φ ≤i Ψ)

PropNeg (Φ >i Ψ)→ > ≤i (Φ >i Ψ)

PropAdd (φ ∧ ψ)⊕ (φ ∧ ¬ψ) =i φ

Tran (Φ ≤i Ψ) ∧ (Ψ ≤i Ξ)→ (Φ ≤i Ξ)

Tot (Φ ≤i Ψ) ∨ (Ψ ≤i Φ)

ComL (Φ1 ⊕ Φ2 ≤i Ψ)↔ (Φ2 ⊕ Φ1 ≤i Ψ)

ComR (Φ ≤i Ψ1 ⊕Ψ2)↔ (Φ ≤i Ψ2 ⊕Ψ1)

Add (Φ1 ≤i Ψ1) ∧ (Φ2 ≤i Ψ2)→ (Φ1 ⊕ Φ2 ≤i Ψ1 ⊕Ψ2)

Succ (Φ⊕> ≤i Ψ⊕>)→ (Φ ≤i Ψ)

MP From ` φ and ` φ→ ψ derive ` ψ
NEC From ` φ derive ` 1 ≤i φ

Fig. 2. EC Calculus

The probabilities assigned by i remain as before. The probabilities assigned by
j have changed, as follows. In worlds a and b, j assigns probability 1

3 to a and
2
3 to b. In world c, j is sure of c.

We may suppose that this new model results from j being informed about
the truth value of c, while i is aware that j received this information, but
without i getting the information herself. So i is aware that j’s subjective
probabilities have changed, and it would be unwise for i to put her beliefs to
the betting test. For although i cannot distinguish the three situations, she
knows that j can distinguish the c situation from the other two. Willingness of
j to bet against a at any odds can be interpreted by i as an indication that c
is true, thus forging an intimate link between action and information update.

The probability comparison calculus is given in Figure 2.

Definition 4.4 [EC Derivability] Γ ` φ holds if either φ ∈ Γ, or φ is an axiom,
or φ follows by means of the rules of the calculus from axioms or members of
Γ, while taking care that application of NEC only is allowed when the set of
premisses Γ is empty.

Let `EC denote derivability in the probability comparison calculus. The
deduction theorem holds for this calculus:

Theorem 4.5 Γ ∪ {φ} ` ψ iff Γ ` φ→ ψ.

Proof. The proof for this is folklore, but see [18] for an explanation of why
the restriction on the use of NEC is crucial for this. 2
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The deduction theorem will help us to state a number of useful derivable
principles.

(i) From ProbImpl, with propositional reasoning:

` > ≤i (φ↔ ψ)→ (φ =i ψ).

(ii) Consider the following instance of ProbT: ` (> ≤i ⊥) → ⊥. By proposi-
tional logic, ` ¬(> ≤i ⊥), i.e., ` ⊥ <i >.

(iii) ` Φ =i Φ by Tot.

(iv) From PropAdd, ` (φ ∧ ⊥) ⊕ (φ ∧ >) =i φ. By propositional reasoning,
` ⊥ ⊕ φ =i φ.

(v) ` ⊥ ⊕ Φ =i Φ by an easy induction using the previous two items.

(vi) Plugging in > as a special case in (3), we get ` ⊥ ⊕> =i >.

(vii) Plugging in ⊥ as a special case in (3), we get ` ⊥ ⊕⊥ =i ⊥.

(viii) From ` φ → ψ, derive ` > ≤i (φ → ψ), by NEC. Combine this with
` > ≤i (φ → ψ) → (φ ≤i ψ) (ProbImpl) to get ` φ ≤i ψ. Thus we have
derived the rule PR:

` φ→ ψ

` φ ≤i ψ
(ix) Assume ` φ ↔ ψ. Then also ` φ → ψ and ` ψ → φ. From the for-

mer, with PR (previous item), ` φ ≤i ψ, and from the latter ` ψ ≤i φ.
Combining these, we get ` φ =i ψ. This gives the derived inference rule:

` φ↔ ψ

` φ =i ψ

(x) From PropAdd, ` (>∧φ)⊕ (>∧¬φ) =i >, so by propositional reasoning,
` φ⊕ ¬φ =i >.

(xi) Assume ` φ =i >. Then ` ¬φ⊕ φ =i ¬φ⊕>, and hence ` ¬φ⊕> =i >,
by the previous item. Since ` ⊥ ⊕ > =i > we get ` ¬φ ⊕ > =i ⊥ ⊕ >,
and therefore, by Succ, ` ¬φ =i ⊥. By the deduction theorem, we have
derived ` φ =i > → ¬φ =i ⊥.

(xii) In a similar way we can derive: ` φ =i ⊥ → ¬φ =i >.

(xiii) Assume ` > ≤i φ and ` > ≤i φ → ψ. From this: ` φ =i > and
` φ→ ψ =i >. From ` φ =i >, ` ¬φ ∧ ¬ψ =i ⊥ and from ` φ→ ψ =i >
we get that ` φ ∧ ¬ψ =i ⊥. Since ` ¬ψ =i (φ ∧ ¬ψ) ⊕ (¬φ ∧ ¬ψ), by
PropAdd, we derive that ` ¬ψ =i ⊥, and it follows that ` ψ =i >, hence
` > ≤i ψ. By the deduction theorem, we have derived the distribution
principle for certainty: ` (> ≤i φ ∧ > ≤i (φ→ ψ)→ > ≤i ψ.

(xiv) Using the previous item, we get:

` φ→ ψ
NEC

` > ≤i (φ→ ψ)
Distribution` > ≤i φ→ > ≤i ψ
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(xv) From Tot, by the definitions of <i, >i and =i:

` Φ <i Ψ ∨ Φ =i Ψ ∨ Φ >i Ψ.

(xvi) By Tran and the definition of <i:
` Φ <i Ψ ∧Ψ ≤i Ξ→ Φ <i Ξ,
` Φ <i Ψ ∧Ψ ≤i Ξ→ Φ <i Ξ,
` Φ <i Ψ ∧Ψ <i Ξ→ Φ <i Ξ.

(xvii) By Add, and the definition of =i:

` Φ1 =i Φ2 ∧Ψ1 =i Ψ2 → Φ1 ⊕Ψ1 =i Φ2 ⊕Ψ2.

(xviii) Assume ` φ ≤i ψ. Then by Add, ` ¬φ ⊕ ¬ψ ⊕ φ ≤i ¬φ ⊕ ¬ψ ⊕ ψ. By
rearranging and applying (x), ` ¬ψ⊕ 1 ≤i ¬φ⊕ 1. By Succ, ` ¬ψ ≤i ¬φ.
By the deduction theorem we have shown ` φ ≤i ψ → ¬ψ ≤i ¬φ.

Given the abbreviations for Kiφ and Biφ given after Definition 4.1, we see
that we can take the ED language of Definition 2.2 to be a fragment of the EC
language of Definition 4.1. It then turns out that everything that is derived in
the ED calculus is also derived in the EC calculus.

Theorem 4.6 For all φ in the ED language and Γ of ED-formula sets: if
Γ `ED φ then Γ `EC φ.

Proof. We show that the (translations of the) axioms and rules of the ED
calculus are all derivable in the EC calculus.

Ki necessitation. This is NEC.
Dist-K Ki(φ→ ψ)→ Kiφ→ Kiψ. This was proved in (xiii) above.
T: Follows from PropT.
PI-K: Follows from ProbPos
NI-K: Follows from ProbNeg
N: This is ⊥ <i >. Proved in (ii) above.
PI-KB: Follows from ProbNeg.
NI-KB: Follows from ProbPos.
M: Assume ` > ≤i (φ → ψ) and ` ¬φ <i φ. We have to show that

` ¬ψ <i ψ. From ` > ≤i (φ→ ψ) get ` φ ≤i ψ by ProbImpl. From ` φ ≤i ψ
we get ` ¬ψ ≤i ¬φ by (xviii) above. From ` ¬φ <i φ and ` φ ≤i ψ, by Trans,
` ¬φ < ψ. From this and ` ¬ψ ≤i ¬φ by Trans ` ¬ψ < ψ.

D: From ` ¬φ <i φ by Tot ` ¬φ ≤i φ.
SC: Assume ` (¬φ <i φ) and ` ⊥ <i (¬φ ∧ ψ). We have to show `

(¬φ ∧ ¬ψ) <i (φ ∨ ψ). For this we can use the equivalence of φ ∨ ψ and
(φ ∧ ¬ψ) ∨ (φ ∧ ψ) ∨ (¬φ ∧ ψ). 2

Theorem 4.7 Every consistent EC formula φ determines a canonical epis-
temic weight model Mφ.

Proof. Suppose φ is consistent, i.e., 6` ¬φ. We construct a canonical epistemic
weight model for φ.

Let Φ be the set of all subformulas of φ, closed under single negations. The
subformulas of Ψ ≤i Ξ are all subformulas of formulas ψ that occur as ⊕ terms
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in Ψ or Ξ, plus the results Ψ′ ≤i Ξ′ of leaving out ⊕ terms in Ψ or Ξ while
taking care that Ψ′ and Ξ′ are not empty.

We define the canonical model Mφ = (W,R,L, V ). W is the set of all
maximal consistent subsets of Φ. W is non-empty because φ is supposed to be
consistent.

Valuations are defined as follows: V (w) = Prop ∩w.
Let sat(w) = {ψ ∈ Φ | w ` ψ}, that is, sat(w) is the set of Φ-formulas that

are provable from w.
Notice that it follows by the soundness of the probability comparison cal-

culus that all members of sat(w) are true in w.
Relations ∼i are defined as follows: w ∼i u iff sat(w) and sat(u) contain

the same i-comparison formulas. Clearly, all ∼i are equivalence relations.
Now it remains to define L. Consider an agent i and an equivalence class

[w]i in the canonical model Mφ. All worlds u of [w]i contain the same i-
comparison formulas.

We show how to transform all these i-comparison formulas in a system of
linear inequalities that is consistent.

For all u ∈ W , we write φu for the conjunction of all formulas in u. We
have:

• ` φu → ¬φv if u 6= v by propositional logic.

Given any formula ψ of Φ, we have

• ` ψ ↔
∨
{u∈W |ψ∈u} φu by propositional logic.

Since the φu are all mutually inconsistent we can prove in the calculus:

• ` ψ =i

⊕
{φu | u ∈W and ψ ∈ u}.

Now, when we i-compare φu to ⊥ in w, we should obtain >i iff u ∈ [w]i.
Let us prove this fact.

• If u ∈ [w]i, we have:
(i) ` φu → ⊥ <i φu by (ProbT) and (PropAdd).
(ii) ⊥ <i φu ∈ sat(u);

(iii) ⊥ <i φu ∈ sat(w) because u ∈ [w]i.
Therefore, ⊥ <i φu follows from w.

• Suppose u /∈ [w]i. Then u and w differ by at least one i-comparison formula
Ψ ≤i Ξ ∈ Φ. Without loss of generality, assume Ψ ≤i Ξ ∈ w and Ψ ≤i Ξ /∈ u.
Then we have:

(i) ` φw → Ψ ≤i Ξ by propositional logic;
(ii) ` Ψ ≤i Ξ→ ¬φu by propositional logic;
(iii) ` Ψ ≤i Ξ→ > ≤i (Ψ ≤i Ξ) by axiom (PropT);
(iv) ` φw → > ≤i (Ψ ≤i Ξ) by propositional logic;
(v) ` φw → > ≤i (¬φu) by ii and iv.
(vi) ` φw → (φu ≤i ⊥) from the above by PropAdd and propositional reason-

ing.
Therefore φu ≤i ⊥ follows from w.

Thus, ψ has the same i-weight as {φu | u ∈ [w]i and ψ ∈ u}. We can prove
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in the calculus:

• ` ψ =i

⊕
{φu | u ∈ [w]i and ψ ∈ u}.

Now let Ψ ≤i Ξ be any i-comparison formula of w. Then we can replace any
⊕ term ψ occurring in either Ψ or Ξ by a list of terms

⊕
{φu | u ∈ [w]i and ψ ∈

u} with the same i-weight. Let the result of this be Ψ′ ≤i Ξ′. Regrouping the ⊕
terms in Ψ′ and Ξ′, using the abbreviation nχ for χ⊕ · · · ⊕ χ︸ ︷︷ ︸

n times

, 0 for ⊥⊕· · ·⊕⊥,

m for >⊕ · · · ⊕ >︸ ︷︷ ︸
m times

, and replacing ⊕ by + and ≤i by ≤ gives a linear inequality

a1φu1 + · · ·+ anφun + k ≤ b1φv1 + · · ·+ bmφvm + l

where ai, bj , k, l are non-negative integers, and the φu and φv figure as vari-
ables. Applying this recipe to each i-comparison formula in w, we get a system
of linear inequalities made up of i-inequalities in w.

The set sat(w) is consistent so the above system, which is a rephrasing of
inequations that are in sat(w), is also consistent and therefore satisfiable [13,
Theorem 2.2]. Let (x∗u)u∈[w]i be a solution, and define Li(u) = x∗u. 2

Lemma 4.8 (Truth Lemma) Let φ be a consistent EC formula and Φ the
set of all its subformulas closed under single negations. Then for all formulas
ψ ∈ Φ, we have Mφ,w |= ψ iff ψ ∈ w.

Proof. Induction on ψ. 2

Theorem 4.9 (Completeness of Epistemic Comparison Logic) The
calculus of epistemic comparison logic given in Figure 2 is complete for
epistemic weight models:

If |= φ then `EC φ.

Proof. Let 6` φ. Then ¬φ is consistent, and one can find a maximal consistent
set w in the closure of ¬φ with ¬φ ∈ w. By the Truth Lemma,M¬φ,w |= ¬φ,
i.e., M¬φ,w 6|= φ. Therefore, 6|= φ. 2

From Epistemic Probability Models to Epistemic Neighbourhood Models:
If M = (W,R,L, V ) is an epistemic weight model, then M• is the tuple
(W,R,N, V ) given by replacing the weight function by a function N , where
N is defined as follows, for i ∈ Ag, w ∈W .

Ni(w) = {X ⊆ [w]i | Li(X) > Li([w]i −X)}.
Theorem 4.10 For any epistemic weight modelM it holds thatM• is a neigh-
bourhood model.

Proof. Check that all neighbourhood conditions hold for M•. In particular,
(sc) holds, because for every agent every world has strictly positive weight. 2

Finally, it follows from the fact that the interpretation of Biφ formulas
only uses neighbourhoods that it makes no difference whether we interpret ED
formulas in epistemic weight models or in their corresponding neighbourhood
models.
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Theorem 4.11 For all ED formulas φ, for all epistemic probability models
M, for all worlds w of M: M•, w |= φ iff M, w |= φ.

5 Updates

You are from a population with a statistical chance of 1 in 100 of having disease
D. The initial screening test for this has a false positive rate of 0.2 and a false
negative rate of 0.1. You tested positive (T). Should you believe you have
disease D? We can model this with public announcement update.

Example 5.1 [Disease and Test]

dt 0.9 dt 0.1

dt 0.2 ∗ 99 dt 0.8 ∗ 99

⇒ ±t⇒

dt 0.9

dt 0.2 ∗ 99

dt 0.1

dt 0.8 ∗ 99

Extend the EC language with an operator [±φ], for publicly announcing
the value of φ. This operator is defined as a map on epistemic weight models
that maps M to M±φ, where M±φ is given by the next definition.

Definition 5.2 If M = (W,∼, L, V ) is an epistemic weight model and φ is a
formula of the EC language, then M±φ = (W±φ,∼±φ, L±φ, V ±φ) is given by:

• W±φ = W ,

• ∼±φi = {(w, v) ∈W 2 | w ∼i v and M, w |= φ iff M, v |= φ}.
• L±φ = L,

• V ±φ = V .

Intuitively, what the operation [±φ] does is cut the i-accessibility links
between φ and ¬φ worlds, for all agents i. Everything else remains the same.

The model shows that after the update with t the probability of d equals
0.9

0.9+0.2∗99 = 9
207 = 1

23 , and after the update with ¬t the probability of d equals
0.1

0.1+0.8∗88 = 1
704 . A huge difference, but with both outcomes it is vastly more

probable that you do not have the disease than that you have it.
Compare this with applying Bayes’ Rule:

Example 5.3 [Applying Bayes’ Rule]

P (D|T ) =
P (T |D)P (D)

P (T )
=

P (T |D)P (D)

P (T |D)P (D) + P (T |¬D)P (¬D)

Filling in P (T |D) = 0.9, P (D) = 0.01, P (¬D) = 0.99, P (T |¬D) = 0.2 gives
P (D|T ) = 1

23 .
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Public announcement update of an epistemic weight model and application
of Bayes’ rule give the same result, in the precise sense that the probability in
the input model gives the prior and the probability in the updated model the
posterior.

Public announcement can also be defined for epistemic neighbourhood mod-
els, which gives us a kind of poor man’s Bayesian update. To interpret [±φ] in
epistemic neighbourhood models, define:

Definition 5.4 If M = (W,∼, N, V ) is an epistemic neighbourhood model
and φ is a formula of the ED language, then M±φ = (W±φ,∼±φ, N±φ, V ±φ)
is given by:

• W±φ = W ,

• ∼±φi = {(w, v) ∈W 2 | w ∼i v and M, w |= φ iff M, v |= φ}.
• N±φi (w) = {X ∩ [w]±φi | X ∈ Ni(w)},
• V ±φ = V .

Thus, inM±φ the epistemic accessibilities for all agents are adjusted by cut-
ting the links between φ and ¬φ worlds, and all neighbourhoods are restricted
to the appropriate new epistemic accessibility cells. It is not hard to check
that the definition is correct: ifM is an epistemic neighbourhood model, then
M±φ is an epistemic neighbourhood model. Axiomatizing the logic of poor
man’s Bayesian belief (the logic of ED plus the [±φ] operation on epistemic
neighbourhood models) is future work.

6 Conclusion and Further Work

We have compared two classes of models for knowledge and belief, one based on
neighbourhood semantics, one based on adding weights to worlds in S5 Kripke
models, and we have given sound and complete calculi for both model classes.
We have also shown that the calculus for neighbourhood models is sound but
incomplete for weight models. One can view this as a point in favour of weight
models, but one might just as well say that neighbourhood models allow us to
make distinctions between shades of belief that are lost in weight models.

In [5], update models for probabilistic epistemic logic are built from sets of
formulas that are mutually exclusive. In the present set-up, it is possible to stay
a bit closer to the original update model from [2]. A weighted update model
is like a weighted epistemic model, but with the valuation function replaced
by a function that assigns preconditions and actions (substitutions) to events.
The actions take care of factual changes: changes in the values of proposition
letters. Update is a product operation, as in [2]. The new i-weight for (w, e) is
computed as the product the weights of w and of e. Update products satisfy
the requirements for epistemic weight models. Example 5.1 is a special case of
this definition. A full blown probabilistic logic of communication and change,
in the spirit of [6], is given in [1]. It is future work to give a similar axiomatic
treatment to extend the EC calculus.

Alternatively, one might wish to carve out a ‘natural’ subspace of the set of
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all possible operations on epistemic weight models, by focussing on a limited
set of operations, such as [±φQ], for the operation that reveals the value of
φ to a subset Q of the set of all agents, and [(φ,N,M)Q] (with N,M strictly
positive natural numbers), for the operation that multiplies the i-weights of
the φ worlds by N/M (and that of the other worlds by 1 − N/M) for agents
i ∈ Q, [σQ], for the operation that applies the factual change operation σ,
and makes the result visible to agents in Q, while other agents confuse this
with ‘no change’, and finally, [(p :=?, N,M)] for nondetermined change, an
update action that makes p true with probability N/M . Each of these operators
presents an axiomatisation challenge of its own. Next, one would like to find an
illuminating description of the class of updates that the combination of [±φQ],
[(φ,N,M)Q], [σQ] and [(p :=?, N,M)] allows.

In future, we also would like to extend our treatment to capture the impor-
tant distinction made in [22] between risk and uncertainty.
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