
Relations, Equivalences, Partitions

Jan van Eijck

March 11, 2014

Abstract

This reports documents the implementation of equivalence relations as par-
titions, and of reflexive and symmetric relations (similarity relations) as
covers. The fusion of a cover is the finest coarsening of the cover that turns
it into a partition. This corresponds to the transitive closure of the similar-
ity defined by the cover. These are important ingredients of a concise and
efficient representation of multi-agent epistemic models, where knowledge of
agents is captured by equivalences. The final chapter computes generated
subdomains and bisimulation-minimal partition tables.

Chapter 1

Introduction

The implementation is in literate programming style [5], using Haskell [3].

module EREL where

import Data.List

It is useful to have an operator for material implication:

infix 1 ==>

(==>) :: Bool -> Bool -> Bool

p ==> q = (not p) || q

And the following quantifier is also handy:

forall = flip all

Construct a function from a table; lookup for arguments not in the table
generate an error:

1

apply :: Eq a => [(a,b)] -> a -> b

apply table x = let

Just y = lookup x table

in

y

Restriction of a table:

restrTable :: Eq a => [a] -> [(a,b)] -> [(a,b)]

restrTable xs t = [(x,y) | (x,y) <- t, elem x xs]

2

Chapter 2

Relations

Relations represented as lists of pairs.

type Rel a = [(a,a)]

We will assume that domains are ordered, and sets are represented as lists
without duplicates. Set union is implemented as merge:

merge :: Ord a => [a] -> [a] -> [a]

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys) = case compare x y of

EQ -> x : merge xs ys

LT -> x : merge xs (y:ys)

GT -> y : merge (x:xs) ys

Extend this to lists of lists:

mergeL :: Ord a => [[a]] -> [a]

mergeL = foldl’ merge []

3

The domain of a relation:

domR :: Ord a => Rel a -> [a]

domR [] = []

domR ((x,y):pairs) = mergeL [[x],[y],domR pairs]

Cartesian product of two lists:

cprod :: [a] -> [b] -> [(a,b)]

cprod xs ys = [(x,y) | x <- xs, y <- ys]

In terms of this, total relation:

totalR :: [a] -> Rel a

totalR xs = cprod xs xs

Least fixpoint operator:

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Use this to compute the transitive closure of a relation.

tc :: Ord a => [(a,a)] -> [(a,a)]

tc r = lfp (\ s -> (s ‘merge‘ (r@@s))) r

This uses the composition of two relations:

4

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s =

nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

5

Chapter 3

Similarities and Covers,
Equivalences and Partitions

A partition β of a set X is a family of subsets of X with the following
properties:

1.
⋃
β = X,

2. Y ∈ β implies Y 6= ∅,

3. Y,Z ∈ β ∧ Y 6= Z implies Y ∩ Z = ∅.

Call a family of subsets of X satisfying just (1) and (2) a cover of X. Call
a relation that is reflexive and symmetric a similarity.

It is not hard to see that covers correspond to similarities, in the following
way:

If β is a cover of X then R ⊆ X2 given by

{(x, y) ∈ X2 | ∃Y ⊆ β : {x, y} ⊆ Y }

is a reflexive and symmetric relation, and conversely, if R is a reflexive and
symmetric binary relation on X, the family β given by

{{xRy | y ∈ X} | x ∈ X}

is a cover of X.

6

If α, β are covers of X, then α∪β is also a cover of X. Similarities are closed
under union.

If α, β are partitions of X, then α ∪ β is not necessarily a partition of X.
Equivalences are not closed under union.

To see that the union of two equivalence relations need not be an equivalence,
take the example of R and S given by R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}
and S = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}. Then

R ∪ S = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.

Since (3, 2) and (2, 1) are in R ∪ S, but (3, 1) /∈ R ∪ S, the relation R ∪ S is
not transitive.

Proposition 1 If R,S are similarities on X, then R∪ S is a similarity on
X.

Proof. Let R,S be similarities on X. Then I ⊆ R, so I ⊆ R ∪ S, i.e.,
R∪S is reflexive. Consider x, y ∈ X with (x, y) ∈ R∪S. Then (x, y) ∈ R or
(x, y) ∈ S, and therefore, by symmetry of R and S, (y, x) ∈ R or (y, x) ∈ S.
It follows that (y, x) ∈ R ∪ S. 2

It follows immediately from Proposition 1 that the union of two equivalences
is a similarity, and that the union of an equivalence and a similarity is a
similarity.

Similarity relations represented as covers, equivalence relations represented
as partitions:

type Erel a = [[a]]

Overlap of lists, on the assumption that the lists are ordered:

7

overlap :: Ord a => [a] -> [a] -> Bool

overlap [] ys = False

overlap xs [] = False

overlap (x:xs) (y:ys) = case compare x y of

EQ -> True

LT -> overlap xs (y:ys)

GT -> overlap (x:xs) ys

Check that a cover is a partition. Note: this assumes each block in the cover
is ordered.

isPart :: Ord a => Erel a -> Bool

isPart [] = True

isPart (b:bs) = all (not.overlap b) bs &&

isPart bs

The domain of a cover or partition:

domE :: Ord a => Erel a -> [a]

domE = mergeL

The rank of a partition α of X is given by |X| − |α|:

rank :: Ord a => Erel a -> Int

rank r = let

dom = domE r

in

length dom - length r

The block of an element in a partition:

8

bl :: Eq a => Erel a -> a -> [a]

bl r x = head (filter (elem x) r)

Notes that blocks need not be unique if the cover is not a partition. If the
cover is a partition, the following can be used to check whether two items
are equivalent.

related :: Eq a => Erel a -> a -> a -> Bool

related p x y = elem y (bl p x)

Functions f generate equivalences with the recipe λxy 7→ fx = fy. From a
function to an equivalence:

fct2equiv :: Eq a => (b -> a) -> b -> b -> Bool

fct2equiv f x y = f x == f y

From a function to a partition, given a domain:

fct2erel :: (Eq a,Eq b) => (b -> a) -> [b] -> Erel b

fct2erel f [] = []

fct2erel f (x:xs) = let

xblock = x: filter (\ y -> f x == f y) xs

rest = xs \\ xblock

in

xblock: fct2erel f rest

Examples:

*EREL> fct2erel (\x -> mod x 3 == 1) [1..10]

[[1,4,7,10],[2,3,5,6,8,9]]

9

*EREL> fct2erel (\x -> mod x 3) [1..10]

[[1,4,7,10],[2,5,8],[3,6,9]]

*EREL> fct2erel (mod 3) [1..10]

[[1,3],[2],[4,5,6,7,8,9,10]]

The partition equivalent of a total relation:

totalE :: [a] -> Erel a

totalE xs = [xs]

From a characteristic function to a relation:

cfct2rel :: Eq a => [a] -> (a -> a -> Bool) -> Rel a

cfct2rel domain f =

[(x,y) | (x,y) <- totalR domain, f x y]

From a partition to a relation:

erel2rel :: Ord a => Erel a -> Rel a

erel2rel r =

[(x,y) | (x,y) <- totalR (domE r), elem y (bl r x)]

From a characteristic function of a relation to the cover corresponding to
the reflexive and symmetric closure of the relation:

cfct2erel :: Eq a =>

[a] -> (a -> a -> Bool) -> Erel a

cfct2erel [] r = []

cfct2erel (x:xs) r = xblock : cfct2erel rest r

where

(xblock,rest) = (x:filter (r x) xs,

filter (not . (r x)) xs)

10

Example:

*EREL> cfct2erel [1..10] (\ x y -> x+y < 5)

[[1,2,3],[4],[5],[6],[7],[8],[9],[10]]

Coarsening, Refinement Let α, β be partitions on the same setX. Then
α ≤ β (α is finer than β, α is a refinement of β, β is coarser than α) if every
element Y of α is a subset of some element Z of β.

The following implementation of sublist assumes that the input lists are
ordered and without duplicates.

sublist :: Ord a => [a] -> [a] -> Bool

sublist [] ys = True

sublist xs [] = False

sublist (x:xs) (y:ys) = case compare x y of

LT -> False

EQ -> sublist xs ys

GT -> sublist (x:xs) ys

finer :: Ord a => Erel a -> Erel a -> Bool

finer r s = all (\xs -> any (sublist xs) s) r

coarser :: Ord a => Erel a -> Erel a -> Bool

coarser r s = finer s r

The finer-than relation ≤ is a partial order on the set of all partitions of a
set X. If X is finite, the set of partitions of X forms a geometric lattice [2],
i.e., a lattice that is finite, atomistic and semimodular:

1. Any two elements α, β have a least upper bound α ∨ β and a greatest
lower bound α ∧ β.

11

2. The lattice has a bottom element ⊥ = {{x} | x ∈ X} and a top
element > = {{X}}.

3. The atoms of the lattice are the α with rank 1; these are the partitions
with one element of size 2, and all other elements of size 1.

4. Every element α is the least upper bound of a set of atoms.

5. The rank function r satisfies the semi-modularity law:

r(α) + r(β) ≥ r(α ∧ β) + r(α ∨ β).

The finer-than relation ≤ also applies to covers. In particular, for any cover
α we can talk about the finest partition β with α ≤ β.

Proposition 2 The transitive closure of a similarity is an equivalence.

Proof. Let S be a similarity (reflexive and transitive relation) on X, and
let S∗ be the transitive closure of S (the smallest transitive relation that
contains S).

We have to show that S∗ is reflexive and symmetric. Reflexivity follows
from the fact that I ⊆ S ⊆ S∗. For symmetry, assume xS∗y. Then there
is a path x1 . . . xn with xiSxi+1 and x = x1, xn = y. By symmetry of S
xn . . . x1 is an S-path from y to x. Thus, yS∗x. 2

Call the finest coarsening of the cover that turns it into a partition the fusion
of the cover. This corresponds to the transitive closure of the similarity given
by the cover. The following function computes this partition, by fusing all
blocks in the cover that have elements in common, until a partition results:

fusion :: Ord a => [[a]] -> Erel a

fusion [] = []

fusion (b:bs) = let

cs = filter (overlap b) bs

xs = mergeL (b:cs)

ds = filter (overlap xs) bs

in

if cs == ds

then xs : fusion (bs \\ cs)

else fusion (xs : bs)

12

Compute the partition of the reflexive transitive symmetric closure of the
input relation:

rel2erel :: Ord a => Rel a -> Erel a

rel2erel [] = []

rel2erel ((x,y):pairs) = let

xypairs = filter (\ (u,v) ->

elem u [x,y] || elem v [x,y]) pairs

rest = pairs \\ xypairs

xyblock = domR ((x,y):xypairs)

in

fusion (xyblock : rel2erel rest)

If R and S are equivalences on X, it does not follow that R ◦ S is an
equivalence on X. Consider R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} and S =
{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}. Then

R ◦ S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.

Since (3, 1) /∈ R ◦ S, the result is not an equivalence.

Compute the partition corresponding to the reflexive transitive symmetric
closure of the composition of two (equivalence) relations:

concatE :: Ord a => Erel a -> Erel a -> Erel a

concatE r s = fusion [merge b (bl s x) | b <- r, x <- b]

Example:

r = [[1,2],[3]]

s = [[1],[2,3]]

*EREL> concatE r s

[[1,2,3]]

13

The following operation computes the partition corresponding to the finest
equivalence that includes the union of two equivalences. This corresponds to
the transitive closure of the union of the two equivalences. By Proposition
1 this is an equivalence.

unionRel :: Ord a => Erel a -> Erel a -> Erel a

unionRel r s = fusion (r++s)

unionRels :: Ord a => [Erel a] -> Erel a

unionRels = foldl1’ unionRel

The restriction of a partition to a domain:

restrict :: Ord a => [a] -> Erel a -> Erel a

restrict domain = nub . filter (/= [])

. map (filter (flip elem domain))

Split a partition α with a subset Y , to get:

{Z ∩ Y | Z ∈ α,Z ∩ Y 6= ∅} ∪ {Z − Y | Z ∈ α,Z − Y 6= ∅}.

split :: Ord a => Erel a -> [a] -> (Erel a, Erel a)

split r xs = let

domain = domE r

ys = domain \\ xs

in

(restrict xs r, restrict ys r)

Proposition 3 The intersection of two equivalences is an equivalence. The
intersection of any set of equivalences is an equivalence.

14

Proof. Let R,S be equivalence relations on X. Then reflexivity and
symmetry of R∩S are immediate. For transitivity, let xR∩Sy and yR∩Sz.
Then xRy, xSy, yRz, ySz. By transitivity of R and S: xRz and xSz. It
follows that xR ∩ Sz.

This is easily generalized to the intersection of a set of equivalences. 2

The following function computes the partition that corresponds to the in-
tersection of two equivalences, given as partitions:

intersectRel :: Ord a => Erel a -> Erel a -> Erel a

intersectRel r [] = []

intersectRel r (b:bs) = let

(xs,ys) = split r b

in

xs ++ intersectRel ys bs

Intersection of a list of relations, given as partitions.

intersectRels :: Ord a => [Erel a] -> Erel a

intersectRels = foldl1’ intersectRel

Call the coarsest refinement of a cover that is a partition the fission of the
cover. The following function computes this partition, by splitting all blocks
in the cover that have elements in common.

15

fission :: Ord a => Erel a -> Erel a

fission [] = []

fission (b:bs) = let

xs = filter (overlap b) bs

ys = bs \\ xs

zs = [[b\\c, c\\b, b ‘intersect‘ c] | c <- xs]

us = filter (/= []) $ concat zs

in

if xs == [] then b: fission bs

else fission (us++ys)

Proposition 4 Any similarity is a union of equivalences.

Proof. Let S be a similarity (reflexive and symmetric relation) on X.
For any x ∈ X, define the relation Sx as

Sx = {(y, z) ∈ X2 | y = z ∨ (xSy ∧ xSz ∧ ySz)}.

Then each Sx is an equivalence relation on X, and S =
⋃

x∈X Sx. 2

It is immediately clear from the representation of similarities as covers that
the fission of a cover corresponds to the intersection of the set of all maximal
equivalences contained in a relation. More precisely, Ř, the fission of R, is
given by

Ř =
⋂
{S | S ⊆ U ⊆ R | S equiv and if S 6= U then U not equiv }.

If a cover represents R then the fission of the cover is a partition that rep-
resents Ř.

Question: can Ř be defined from R in terms of first order operations plus
transitive closure?

16

Chapter 4

Product of Equivalences

For product update of an S5 model with an S5 action model, we need a defi-
nition of the product of two equivalence relations (partitions). The product
of two equivalences is an equivalence. Here is the corresponding partition:

prod :: Erel a -> Erel b -> Erel (a,b)

prod r s = [[(x,y) | x <- b, y <- c] | b <- r, c <- s]

This gives:

*EREL> prod [[1,2],[3,4]] [[1,3],[2,4]]

[[(1,1),(1,3),(2,1),(2,3)],[(1,2),(1,4),(2,2),(2,4)],

[(3,1),(3,3),(4,1),(4,3)],[(3,2),(3,4),(4,2),(4,4)]]

For product update in the sense of [1], this has to be combined with a check
whether the pairs satisfy a restriction:

restrictedProd :: (Eq a,Eq b) =>

Erel a -> Erel b -> [(a,b)] -> Erel (a,b)

restrictedProd r s domain =

[[(x,y) | x <- b, y <- c, elem (x,y) domain] |

b <- r, c <- s]

17

Applying this to two tables of partitions:

restrictedProdT :: (Eq a, Ord b, Ord c) =>

[(a,Erel b)] -> [(a,Erel c)]

-> [(b,c)] -> [(a,Erel (b,c))]

restrictedProdT table1 table2 domain =

[(i, restrictedProd r s domain) |

(i,r) <- table1, (j,s) <- table2, i == j]

It is useful to be able to convert tables of type [(a,Erel (b,c))] again into
tables of type [(a,Erel d)]. This can be done with the following universal
conversion function for partition tables.

convert :: Ord a => [b] -> [(t, Erel a)] -> [(t, Erel b)]

convert newstates table = let

sts = states table

f = apply (zip sts newstates)

in

[(a,map (map f) erel) | (a,erel) <- table]

18

Chapter 5

Constraints on Equivalence
Relations

From a list of equality constraints to a partition:

eqs2erel :: Ord a => Rel a -> Erel a

eqs2erel = rel2erel

From a list of inequalities to a check on a partition:

ineqsProp :: Ord a => Rel a -> Erel a -> Bool

ineqsProp [] _ = True

ineqsProp ((x,y):pairs) p = let

domain = domE p

check (u,v) =

elem u domain && elem v domain

==> bl p u /= bl p v

in

check (x,y) && ineqsProp pairs p

Use this to check that a list of equality constraints and a list of inequality
constraints are consistent with each other.

19

consistentCs :: Ord a => Rel a -> Rel a -> Bool

consistentCs eqs ineqs =

ineqsProp ineqs (eqs2erel eqs)

This gives, e.g.:

*EREL> consistentCs [(1,2),(2,3),(4,5)] [(1,4)]

True

*EREL> consistentCs [(1,2),(2,3),(4,5)] [(1,3)]

False

20

Chapter 6

Generated Subdomain,
Bisimulation Closure

The fusion function can be used to find the domain of a submodel generated
from an element x and a set of equivalences: the set (or, in the implemen-
tation, list) of all elements that are reachable from x via the equivalences.

gendomain :: Ord a => a -> [Erel a] -> [a]

gendomain x rs = head (fusion $ [x]: concat rs)

Applying this to a table of partitions:

genD :: Ord a => a -> [(b,Erel a)] -> [a]

genD x = gendomain x . map snd

To compute bisimulation minimal partition tables, we need to start out from
a valuation. A valuation can be any function, represented as a table. Here
is a check whether two worlds have the same valuation:

21

sameVal :: (Eq a,Eq b) => [(a,b)] -> a -> a -> Bool

sameVal = fct2equiv.apply

The problem of finding the smallest Kripke model modulo bisimulation is
similar to the problem of minimizing the number of states in a finite au-
tomaton [4]. In the particular case where all the relations are equivalences,
all we need as input are a partition table and a valuation table. The algo-
rithm for finding a bisimulation minimal version of the partition table uses
partition refinement, in the spirit of [6]. Note: in our particular application,
we will construct a ‘table of partitions of partitions’, i.e., a table of type
[(a,Erel [b])].

Initializing a partition by putting worlds that have the same valuation in
the same block. The valuation is given by a table.

initPartition :: (Eq a,Eq b) => [(a,b)] -> [a] -> [[a]]

initPartition = fct2erel.apply

If a is the type of agents, then [(a,Erel b)] is the type of a table with
equivalence partitions, one for each agent. Agents of a table, on the assump-
tion that the table is non-empty:

agents :: [(a,Erel b)] -> [a]

agents = map fst

The states in a table, again on the assumption that the table is non-empty:

states :: Ord b => [(a,Erel b)] -> [b]

states = domE.snd.head

Accessible blocks for an agent, given a relation table, and an actual state:

22

accBlocks :: (Eq a,Eq b) =>

[(a,Erel b)] -> [[b]] -> a -> b -> [[b]]

accBlocks table part ag s = let

rel = apply table ag

xs = bl rel s

in

nub [bl part x | x <- xs]

The relation of having the same accessible blocks (for a list of agents given
by a table), given a partition.

sameAB :: (Eq a,Eq b) =>

[(a,Erel b)] -> [[b]] -> b -> b -> Bool

sameAB table part s t = let

ags = agents table

f = accBlocks table part

in

and [f ag s == f ag t | ag <- ags]

If two worlds in a block b have the same accessible blocks, then there is no
need to split the block b; otherwise there is. This block splitting refines the
partition.

So a refine step in the partition refinement algorithm works like this: split
the blocks in the current partition, using the sameAB relation to do the
splitting.

refineStep :: (Eq a,Eq b) =>

[(a,Erel b)] -> [[b]] -> [[b]]

refineStep table p = let

f bl =

(cfct2erel bl (sameAB table p) ++)

in

foldr f [] p

23

Carry out refinement steps until the process stabilizes, using least fixpoint:

refine :: (Eq a,Eq b) =>

[(a,Erel b)] -> [[b]] -> [[b]]

refine table = lfp (refineStep table)

Miminize a table of partitions, given a valuation.

minimize :: (Eq a, Ord b, Eq c) =>

[(a,Erel b)] -> [(b,c)] -> [(a,Erel [b])]

minimize table val = let

sts = states table

initP = initPartition val sts

sts’ = refine table initP

f = bl sts’

in

[(a, map (nub.(map f)) erel) | (a, erel) <- table]

Example:

table = [(1,[[1,2,3],[4,5,6]]), (2,[[1,2,3,4,5,6]])]

val = map (\ n -> (n,even n)) [1..6]

mini = minimize table val

This gives:

*EREL> mini

[(1,[[[1,3],[2]],[[4,6],[5]]]),(2,[[[1,3],[2],[4,6],[5]]])]

Note that in the output we have blocks of worlds rather than worlds as
ingredients of epistemic partitions.

24

Computing the bisimulation-minimal version of a table of partitions, given a
valuation. Definition in point-free style, but see the line that is commented
out:

bisim :: (Eq a, Enum a, Ord b, Eq c, Num d, Enum d) =>

[(a, Erel b)] -> [(b,c)] -> [(a, Erel d)]

--bisim table f = convert [0..] $ minimize table f

bisim = (convert [0..] .) . minimize

Example again:

example = bisim table val

The result:

*EREL> example

[(1,[[0,1],[2,3]]),(2,[[0,1,2,3]])]

25

Bibliography

[1] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announce-
ments, common knowledge, and private suspicions. In I. Bilboa, editor,
Proceedings of TARK’98, pages 43–56, 1998.

[2] Garrett Birkhoff. Lattice Theory. American Mathematical Society, 1995.

[3] The Haskell Team. The Haskell homepage. http://www.haskell.org.

[4] J.E.Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. In Zvi Kohavi and Azaria Paz, editors, Theory of Machines
and Computations. Academic Press, 1971.

[5] D.E. Knuth. Literate Programming. CSLI Lecture Notes, no. 27. CSLI,
Stanford, 1992.

[6] Robert Paige and Robert E. Tarjan. Three partition refinement algo-
rithms. SIAM J. Comput., 16(6):973–989, 1987.

26

