Hadoop Streaming:
An Introduction

Elia Bruni
Claudio Martella

9 Novermber 2011

Hadoop Streaming

HS is a utility that with the Hadoop distribution

HS allows you to use arbitrary programs for the
Mapper and Reducer phases of a MapReduce
job

Both Mappers and Reducers receive their input

on stdin and emit output (key, value) pairs on
stdout

Input and output are always represented
textually in Streaming

Python MapReduce
code

We use python's to read input data
and print our own output to

That's all we need to do because
HadoopStreaming will take care of everything
else!

Hadoop streaming

© Basically, write some code that runs like :
$ cat data | mapper.py | sort | reducer.py

Ex. 1: wordcount

We write a simple MapReduce program for
Hadoop in Python

Our program reads text files and counts how
often words occur

The input is text files and the output is text files,
each line of which contains a word and the
count of how often it occurred, separated by a
tab

Mapper

It will read data from STDIN, split it into words
and output a list of lines mapping words to their
(intermediate) counts to STDOUT

The Map script will not compute an
(intermediate) sum of a word’s occurrences

Instead, it will output “<word> 1" immediately —
even though the <word> might occur multiple
times in the input — and just let the subsequent
Reduce step do the final sum count

Reducer

It will read the results of the Mapper from
STDIN, and sum the occurrences of each word

to a final count, and output its results to
STDOUT

Pseudo-code

. class MAPPER
method MAP(docid a,doc d)
for all term ¢ € doc d do
EMIT(term ¢, count 1)

- class REDUCER

method REDUCE(term ¢, counts [cy, ¢3, . . .])
sum «— ()

for all count ¢ € counts [¢y,¢p,...] do
Sum «— sum -+ c¢
EMIT(term £, count sum)

EX. 2: cO-Occurrences

We want to build a word co-occurrence matrix
from a corpus where

The co-occurrence matrix is a square n x n
matrix where n is the number of unique words
in the corpus (i.e, the vocabulary size)

A cell mi; contains the number of times word
wi co-occurs with w; within a specific context —
a certain window of m words in our case

Mapper

It will read data from STDIN, split it into words
and output a list of lines mapping pair of words
to their (intermediate) counts to STDOUT

The Map script will not compute an
(intermediate) sum of a word’s co-occurrences

Instead, it will output “<pair> 1" immediately —
even though the <pair> might occur multiple
times in the input — and just let the subsequent
Reduce step do the final sum count

Reducer

It will read the results of the Mapper from
STDIN, and sum the co-occurrences of each
pair to a final count, and output its results to
STDOUT

Pseudo-code

: class MAPPER
method MAP(docid a,doc d)
for all term w € doc d do
for all term u € NEIGHBORS(w) do
EMiT(pair (w,u), count 1) > Emit count for each co-occurrence

: class REDUCER
method REDUCE(pair p, counts [cy, ¢y, ...|)
§ ()
for all count ¢ € counts [¢y, ¢y, ... do
s—s+c > Sum co-oceurrence counts
EMIT(pair p, count)

Run

$ cat data | mapper.py | sort | reducer.py
If that works, run it live

Put the data into hadoops Distributed File
System (DFS)

Run hadoop
Read the output data in the DFS

Run Hadoop

©® Stream data through these two files, saving the

output back to HDFS:
$HADOOP_HOME/bin/hadoop jar \
$HADOOP_HOME/hadoop-streaming.jar \

-input input_dir \

-output output dir \

-mapper mapper.py \

-reducer reducer.py \

-file mapper.py -file reducer.py

View output

® View output files:
* $ hadoop dfs -Is output dir

©® Note multiple output files ("part-00000", "part-
00001", etc)

® View output file contents:
* $ hadoop dfs -cat output_dir/part-00000

A more complicated
problem: Eva

Compute cosine similarity between each pair of
vectors of two matrices

Given two vectors A and B, the cosine similarity

IS represented using a dot product and
magnitude as

Z:z? a; X bz
VETTa? x (/i e
In python:
c = dot(v,w) / (norm(v) * norm(w))

The two matrices

reduced.matrix
A-level-n -148.59 1 053.17 ... 0.46

zoom-n \[\i -081.18 1 038.22 ... -2.61
add an-reduced.matrix
hot-]_blood-n [\t -839.47 1 -106.30 ... -0.22

hot-]_ woman-n 1\ -972.28 '\ -172.25 ... 1.19

Hints

The problem is fully parallelizable: you don't
need a Reducer

To simplify, add_an-reduced.matrix is small and
can be kept in memory, while reduced.matrix not
(not a necessary step, but useful to win the
competition!)

Presentation and code

https://github.com/eliabruni/hadoop-tutorial

Have fun!

	Title
	Hadoop Streaming
	Python MapReduce code
	Cat
	Wordcount
	Wordcount Mapper
	Wordcount Reducer
	Wordcount pseudo-code
	Cooccur
	Cooccur Mapper
	Cooccur Reducer
	Cooccur pseudo-code
	Run
	Run Hadoop
	View output
	Cosine-1
	Cosine-2
	Cosine-3
	Slide 19
	The end

