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Abstract 

Embodiment theory predicts that mental imagery of object words recruits neural circuits 

involved in object perception. The degree of visual imagery present in routine thought and 

how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns 

elicited by participants reading objects’ names include embodied visual-object 

representations, and whether we can decode the representations using novel computational 

image-based semantic models. We first apply the image models in conjunction with text-

based semantic models to test predictions of visual-specificity of semantic representations in 

different brain regions. Representational similarity analysis confirms that fMRI structure within 

ventral-temporal and lateral-occipital regions correlates most strongly with the image models 

and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-

frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in 

representational similarity structure found within both image model and brain data sets to 

classify embodied visual representations with high accuracy (8/10) and then extend it to 

exploit model combinations to robustly decode different brain regions in parallel. By capturing 

latent visual-semantic structure our models provide a route into analyzing neural 

representations derived from past perceptual experience rather than stimulus-driven brain 

activity. Our results also verify the benefit of combining multimodal data to model human-like 

semantic representations. 

 

Keywords: Concept representation; Embodiment; Mental Imagery; Perceptual simulation; 

Language; Multimodal semantic models; Representational similarity; 

 

Introduction 

Embodiment theory predicts that visual aspects of object-related semantic knowledge are 

simulated in the visual system even when reading, but there is little quantitative information 

on the depth and spatial distribution of visual content in imagined representations. This article 

uses novel image-based computational models of generic concepts to distinguish visual from 
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non-visual aspects of fMRI activity patterns cued by reading object nouns, without the 

participant having been explicitly asked to mentally visualize specific object images (as in 

previous studies classifying mental imagery e.g. Reddy et al. 2010, Lee et al. 2012) and 

quantitatively demonstrates detailed visual imagery by decoding multiple categories from its 

content using the models. We target three questions:  

 

(1) Are visually embodied object representations elicited when people read and contemplate 

object words? 

 

(2) How are visually embodied representations distributed throughout the cortex and how 

does this distribution relate to language-based semantic representations? 

 

(3) How detailed is the visual-object mental imagery - can our models correctly assign labels 

to multiple object categories in unlabeled brain representations? 

 

Why might we expect reading to induce visual object representations in the brain? 

Building successively on behavioral evidence supporting both Paivo’s (1971) dual-coding 

theory and Glaser’s (1992) lexical hypothesis theory, behavioral/fMRI evidence for Barsalou 

et al.’s (2008) language and situated simulation theory, recent EEG results support the view 

that word comprehension involves initial activation of a shallow language-based conceptual 

representation (for rapid semantic evaluation) that is later complemented by a deeper 

simulation of the visual properties of the concept (Louwerse and Hutchinson, 2012). More 

generally speaking an increasing body of evidence supports the notion that conceptual 

representations are embodied in sensory and motor systems, as opposed to being purely 

language-based (recent reviews are Binder et al. 2011 and Pulvermüller, 2013). Conceptual 

representations of object words (animals, tools) are associated to brain regions linked to 

visual object perception (Martin, 2007), reading the names of objects that have acoustic 

properties (telephone) activates auditory processing regions (Kiefer et al. 2008) and reading 

action words elicits activity in representations of the body (e.g., kick activates foot/leg-related 

brain regions, Hauk et al., 2004). Beyond this relation between object words and 
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perceptual/motor brain regions linked to experiencing the objects, little is known about the 

nature of embodied representations. Are they internally synthesized in some detail as a 

valuable component of cognition (Barsalou, 2009, Pulvermüller et al. 2010, Trumpp et al. 

2013) or is perceptual and/or motor overlap a non-essential epiphenomena of thought (Bedny 

and Caramazza, 2011)? Regarding the depth of simulation Zwaan et al. (2002) observe 

behavioral differences consistent with perceptual representations of the overall shape of 

objects being automatically activated in sentence comprehension and Kellenbach et al. 

(2000) observe associated EEG signal differences using a perceptual semantic priming task. 

That detailed visually embodied aspects of concept representations elicited in language tasks 

can be extracted from fMRI data has not previously been demonstrated. 
 

Why might we expect to identify detailed visually embodied representations in fMRI concepts? 

Building on pioneering fMRI studies (Ishai et al. 2000; O’Craven et al. 1999), several recent 

multivariate analyses targeting relationships between visual perception and visual mental 

imagery (Stokes et al., 2009a, Reddy et al. 2010, Stokes et al. 2011, Lee et al. 2012)/visual 

attention (Peelen et al., 2009, Stokes et al. 2009b) provide evidence that internally induced 

visual object representations can be distinguished. More specifically, Stokes et al., (2009a), 

Reddy et al. (2010), Stokes et al. (2011), and Lee et al. (2012) demonstrate that fMRI activity 

evoked by explicit mental visualization of shape/object images can be discriminated by 

classifiers trained on fMRI data recorded when the respective images were perceived. Image-

perception driven fMRI object representations correlate with computer-vision models of the 

specific experimental images (Leeds et al. 2013), which adds to the argument that mental-

imagery representations discriminated in similar brain regions in the previous studies are 

indeed visually grounded. Peelen et al. (2009) suggest the existence and approximate 

anatomical location of object-category-specific abstract visual templates invoked in natural 

scene categorization that are “invariant to geometric and photometric changes and spatially 

unspecific”. As such visual templates must be regularly, rapidly and efficiently evoked in 

routine activities, it is reasonable that they would also be recruited in cognitive processing that 

is not driven by sensory input. 
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How do we detect visually embodied object representations in fMRI activity patterns?  

We introduce a new method to probe embodied representations with computational semantic 

models. By piggybacking on extensive research in computer vision, we build image-based 

models of generic object representations derived from natural image statistics, and use them 

to search for brain regions encoding similar information. Specifically, our approach is 

grounded on the argument that representational similarity structure (see Kriegeskorte et al. 

2008a) between image-based models and visually embodied brain representations should 

correlate (better than other aspects of brain representation and better than with non-visual 

models). 

 

How do we build an image-based model?  

We construct image-based models through a computational procedure (schematically 

illustrated in Figure 1) that links object names to combinations of abstract visual features 

automatically extracted from large collections of non-curated images (Bruni, Tran and Baroni 

2014, Sivic and Zisserman, 2003). The images are non-curated in sense that they have not 

been picked nor edited to be particularly representative of the depicted objects: they are 

pictures that were independently taken for other purposes, retrieved from the internet using 

the object name as search term, and only filtered out if they don't contain the object. However, 

the object can be occluded, it might occur in multiple instances, it might be only present in the 

background, etc. In this sense, it is a very "natural" data set. Figure 2 provides examples of 

the visual features that our algorithm spots and uses. Since the source images are natural 

pictures capturing widely differing instances of the same object (Figure 3), we incorporate 

real-world levels of visual variability. 

 

What is the difference between our image-based models and those previously applied? 

Although image-based models have previously been used in multi-voxel pattern analysis 

studies, unlike our generic object representations, they have all been stimulus-specific, and 

used to track visual processing of a pictorial/text stimuli (e.g., Kriegeskorte et al. 2008a; 

Hiramatsu et al., 2011; Connolly et al., 2012; Devereux et al., 2013; Leeds et al., 2013). 

These have been models of relatively low-level visual processing (in particular V1 and V4, 
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from the HMAX algorithm of Serre et al. 2007), with the exception of Leeds et al. (2013) and 

Khaligh-Razavi and Kriegeskorte (2014) who used various contemporary computer vision 

object recognition algorithms to build stimulus-specific image-based models, and our pilot 

analysis of Mitchell et al.’s (2008) image/text cued fMRI data with prototype models that did 

not differentiate imagery from other aspects of semantic representation (Anderson et al. 

2013). 

 

How can we distinguish visually embodied object representations from other aspects of 

embodied and disembodied representation?  

Our image-based models provide a means to spot visually grounded representations. 

However, as language can describe similarities/differences between visual patterns (bananas 

and lemons are yellow and cucumbers are green), and indeed, due to the tendency of words 

to co-vary with the percepts they denote, sensorial knowledge is deeply embedded in 

language (Connell and Lynott 2014, Louwerse 2008), the models risk detecting visual aspects 

of language-based brain patterns. To deal with this we introduce a strategy where image-

based models are used in combination with text-based semantic models to interpret fMRI 

activity patterns. These text-based models, induced from patterns of co-occurrence of words 

in large text corpora, are extensively used in cognitive and computer science as proxies to the 

linguistic aspects of human semantic memory (Landauer and Dumais 1997, Lund and 

Burgess 1996, Turney and Pantel 2010). Thus, they should capture those aspects of 

conceptual similarity that people could extract by statistical generalization over their linguistic 

experience. Mitchell et al. (2008) demonstrated that such text-based semantic models encode 

linguistically-based semantic information sufficient to predict widely distributed activity 

patterns elicited when people think about object nouns (see section on Computational text-

based semantic models for details about our text-based model and e.g. Murphy et al. 2012; 

Devereux, B. et al. 2010; for a comparison of different text-based models applied to neural 

decoding).  If there is a significant difference in correlation strength between a brain region 

and the image- or text-based model, it suggests that semantic representation in that region is 

visually/linguistically dominated (even if both models significantly correlate with it, because of 

the systematic word-percept covariance patterns we mentioned above). In particular, if a 
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region correlates significantly more strongly with the visual model, we can be reasonably 

confident that it is sensitive to visual imagery information beyond what might be encoded in 

language. With only two models, the technique still does not safeguard against detecting 

embodied representations in other modalities. Since we have not developed 

motor/audio/smell/etc.-based computational models yet, we deal with this risk by taking into 

account prior knowledge of brain region modal-specificity through specific hypothesis tests, 

e.g., image-based models should correlate best with brain representations in known visual 

processing areas, and text-based models with linguistic/amodal brain regions. We make no 

claim about correlation in brain areas strongly linked to non-visual modalities.  

 

Having detected visually embodied objects how can we quantify representational detail?  

If we can discriminate object categories in visually embodied neural representations, we have 

proof of principle that imagery in a verbal task, whether it is conscious or unconscious, 

contains at least category-level visual detail (and classification accuracy provides a simple 

metric of this detail). This in turn would suggest that category-based decision making relying 

on internally simulated visual properties (e.g. “which image-category would look best…”) is at 

least a possibility, which would extend beyond the view that grounded representations are 

functionally irrelevant epiphenomena of linguistic activity (though our study does not attempt 

to distinguish between epiphenomenal visual processing and functionally relevant 

processing). We use an unsupervised representational-similarity-based decoding algorithm 

(Raizada and Connolly, 2012) to classify visual-brain patterns using the image-based model. 

In addition, in line with recent proposals about how both perceptual and linguistic evidence is 

characterizing conceptual knowledge (Barsalou et al., 2008), and given that the previous 

analyses suggest that image- and text-based models provide complementary sources of 

information, we tailor the algorithm for multi-model brain-wide decoding. In a mixture-of-

experts strategy, we use the image-based model to decode visually-specific brain regions in 

parallel with the text-based model decoding more linguistic regions. 

 

In summary, we present: 
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(1) A hypothesis-driven representational similarity analysis (RSA) targeting specific brain 

regions and distinguishing visual/linguistic representations by differential correlation with 

image/text-based models. 

 

(2) An exploratory searchlight RSA charting the spread and overlap of localized correlation 

with image/text-based models throughout the brain. 

 

(3) Image-model driven unsupervised classification of visually embodied representations, and 

image/text-model decoding of multiple brain regions in parallel. 
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Materials and Methods 
fMRI Experiment 

We re-analyzed fMRI data for a popular set of stimuli (Table 1) consisting of 60 concrete 

nouns belonging to 12 taxonomic categories (because of limitations in the ImageNet database 

we use to construct our image-based computational model, we had coverage for 51 words 

and 11 classes) originally recorded by Just et al. (2010), but also forming the basis of, e.g., 

Mitchell et al. (2008); Leeds et al. (2013). Eleven consenting adults (consent approved by the 

University of Pittsburgh and Carnegie Mellon Institutional Review Boards), eight female, all 

right handed and all from the Carnegie Mellon community were shown each word six times 

over, and were asked to actively think about the properties of the object to which the word 

referred as further described below. Just et al.’s (2010) original experiment demonstrated 

latent, ecologically interpretable and spatially distributed semantic dimensions in the brain 

activity of participants thinking about the nouns. Details of data collection and preprocessing 

are as follows. 

 
Table 1. Classes and words from Just et al. (2010) covered by ImageNet 

Animals Bear, Cat, Cow, Dog Horse 
Buildings Apartment, Barn, Church, House 
Building parts Arch, Chimney, Closet, Door, Window 
Clothing Coat, Dress, Pants, Shirt, Skirt 
Furniture Bed, Chair, Desk, Dresser, Table 
Insects Ant, Bee, Beetle, Butterfly, Fly 
Kitchen utensils Bottle, Cup, Glass, Knife, Spoon 
Man-made objects Bell, Key, Refrigerator, Telephone, Watch 
Tools Chisel, Hammer, Screwdriver 
Vegetables Celery, Corn, Lettuce, Tomato 
Vehicles Airplane, Bicycle, Car, Train, Truck 
 

 
Experimental paradigm and task 

The sequence of words was presented in a random order in six runs. Individual words were 

displayed for 3s, followed by a 7s rest, during which time a fixation cross was shown. The 

fixation cross was also displayed 12 extra times for periods of 31s to give a baseline.  

 

On word presentation, participants actively thought about the properties of the object to which 
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the word referred. To prompt consistent responses across all presentations of the same word 

participants had previously listed a set of word properties that they personally and freely 

associated with the noun. Different to Fairhall and Caramazza (2013) and Devereux et al. 

(2013), participants were not required to implicitly or explicitly reference the superordinate 

object category and different to Reddy et al. (2010) and Lee et al. (2012) participants were not 

asked to rehearse vivid mental imagery of the stimuli prior to the experiment or to specifically 

visualize the object. 

 

fMRI acquisition and preprocessing 

Just et al. (2010) recorded functional images on a Siemens Allegra 3.0T scanner, with a 

gradient echo EPI pulse sequence (TR=1000ms, TE=30ms and 60º degree flip angle). 

Seventeen 5mm thick oblique-axial slices were imaged with a 1mm gap between slices and 

the acquisition matrix was 64*64 with 3.125mm*3.125mm*5mm voxels. They subsequently 

corrected data for slice timing, participant motion and linear trend, before normalizing to MNI 

space and resampling to a 3*3*6mm3 grid. The voxel-wise percentage signal change between 

stimulus and fixation conditions was calculated, and the mean of the 4 images acquired 4s 

after stimulus onset was taken to represent each word. Voxel values within each word were 

normalized by subtracting the mean and dividing by the standard deviation. To create a single 

brain representation per word per participant, we took the mean per voxel of the six 

presentations of each word. To create a single category representation per participant, we 

took the mean per voxel of all presentations of all words in that category. 

 

Computational image-based semantic models 
We describe here the procedure we adopted to construct our image-based representations of 

concepts. First we extract low-level visual descriptors from a large image collection, inducing 

a higher-level vocabulary of discrete features capturing simple visual properties that, following 

standard usage in the computer vision literature are called with the slightly misleading term 

“visual words”. To avoid confusion here between “visual words” and the visually presented 

written word experimental stimuli, we will use the term “visual features” in place of “visual 

words”. We represent the contents of a single image with a vector recording how many times 
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each visual feature occurs in it. This is the so-called Bag-of-Visual-Words representation of 

the image (Sivic and Zisserman, 2003; Csurka et al., 2004), which we here shall refer to as 

Bag-of-Visual-Features (BoVF). Following up on our recent work (Bruni, et al. 2014), we 

approximate the visual meaning of a concept (as opposed to a single depiction of it) by 

averaging the BoVF vectors of all images that are captioned with the relevant concept name 

in a large image corpus. The pipeline to extract concept representations from sets of images 

is summarized in Figure 1. The model construction parameters described in this section were 

picked without tuning, based on their effectiveness in our earlier experiments. 

 

 
Figure 1. (a) Visual representation of a single image. Our pipeline extracts low-level SIFT descriptors from 

equally spaced regions of the image. These low-level descriptors are then discretized by mapping them to a set 

of higher-level visual features (that have been determined in advance by clustering low-level descriptors from a 

larger image collection). The image is represented by a vector that records (a function of) how often each visual 

feature occurs in it (akin to the "bags-of-words" representation of documents in information retrieval, see, e.g., 

Manning, Raghavan and Schuetze 2008). (b) Visual representation of a concept. Given a set of images 

depicting the same concept (e.g., a buffalo), the concept representation is obtained by summing the vectors 

representing all the input images. 
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Source data 

We retrieved pictures from ImageNet (Deng et al., 2009), one of the largest freely available 

image databases (14M pictures), with each picture manually captioned. We chose ImageNet 

for its high-quality images and labels, and because it provides bounding boxes localizing the 

object within a picture. Despite its size, ImageNet does not contain pictures with bounding 

boxes for 9 concepts used by Just et al. (2010), namely arm, carrot, eye, foot, hand, igloo, 

leg, pliers, saw (in Just et al. 2010), so we run our experiments on 51 concepts with a total of 

17,765 images (350 images per concept on average). 

 

Low-level feature vector extraction 

Scale Invariant Feature Transform (SIFT) is one of the most effective low-level descriptor 

extraction methods for computer vision tasks such as object recognition and image retrieval 

(Grauman and Leibe, 2011, Lowe, 2004). Its success is due to its robustness to image scale, 

noise, distortion and partial invariance to illumination changes. SIFT produces descriptors that 

are actually 128-dimensional vectors encoding the magnitude gradients (directional changes 

in intensity) within a given image patch. In our implementation, we extract SIFT vectors from 

the whole image at regular pixel intervals. In particular, we densely sample the image on a 

regular grid, iterating through the image in steps of 5 pixels, at 4 different scales (10, 15, 20, 

25 pixel radii), zeroing descriptors that correspond to very low contrast regions (which results 

in a small portion of the selected pixels not being associated to SIFT vectors). SIFT features 

are extracted for each component of the HSV (Hue, Saturation and Value) color space, 

resulting in 3x128-dimensional vectors, with 128 features per channel. Thus, in general, from 

an image with N pixels, we extract in the order of N/5 SIFT vectors. 

 

Visual feature dictionary construction and Bag-of-Visual-Features representation of specific 

images  

We construct a visual dictionary by clustering all SIFT vectors extracted from our dataset into 

25K clusters (visual features), using a Gaussian mixture model (GMM), which can be seen as 

a probabilistic visual vocabulary that approximates the SIFT vector distribution via soft-
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clustering (Chatfield et al., 2011). To take uncertainty into account, each SIFT vector in the 

collection is associated to a probability distribution over clusters (visual features), instead of 

being assigned to the single nearest centroid. We use a large visual feature dictionary to 

account for the wealth of visual information encountered in the 18K images from our 

collection. We will later reduce the full feature space to a small set of more general features, 

sufficient to represent the 51 concepts of interest, as described below (Visual concept 

representations paragraph). 

 

For the representation of a specific image, each of its SIFT vectors is matched to the 

dictionary, and counted as an instance of the visual feature with the nearest centroid. For this 

last operation we use Fisher encoding, which captures average first and second order (mean 

and covariance) differences between GMM centers and SIFT vectors. The image as a whole 

is then represented in “visual feature space” by a higher-level vector that records how many 

times each visual feature occurs in it.  

 

The original BoVF method completely discards information about the relative location of visual 

features in the image. In our implementation, we preserve partial spatial information by 

dividing the image into 8 regions, repeating the BoVF pipeline for each region and 

concatenating the resulting vectors (Grauman and Darrell, 2005; Lazebnik et al., 2006). The 

final vectors thus contain 200K dimensions (25K visual features × 8 regions). While the 

choice of preserving just approximate spatial information might be surprising, it insures that 

the BoVF approach is robust to the infinity of possible variations in part locations. The head of 

an animal will generally be above its legs, but a model attempting to encode precise head 

location would fail to generalize across pictures in which the head is on one or other side, 

from far or from near, etc. (Grauman and Leibe, 2011). Leeds et al. (2013) have observed 

that BoVF representations of images correlate with neural representations in the ventral visual 

pathway, suggesting that spatial information might not play such a crucial role as intuitively 

expected in human object recognition either. 

 

To give intuition about the information that visual features are capturing, we utilize the 
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backprojection technique of Yanulevskaya et al. (2012), allowing us to highlight all the pixels 

in an image whose SIFT vectors were assigned to a specific visual feature. Figures 2a-e 

show all the pixels associated to two frequent visual features (with arbitrary yellow and green 

color coding) in a few pictures. “Yellow” visual features cluster on horizontal lines, “green” 

ones along somewhat oblique curvy lines. Consequently, the first visual feature is 

discriminative of buildings (Figures 2a,b) and the second of animals (Figures 2c,d), but there 

are exceptions, such as the building in Figure 2e, which features both shapes, and 

consequently many instances of both visual features. As these examples illustrate, it is not 

possible to directly map visual features to any obvious high-level semantic denotation (e.g., 

object parts). However, image patches linked to the same visual feature capture basic but 

interpretable visual properties, such as simple shapes. 

 

Visual concept representations  

Following our previous work (Bruni et al., 2014), we derive a BoVF vector representation of a 

concept (e.g., a dog) by summing the (normalized) BoVF vectors of all images in our 

collection that are labeled with the target concept (e.g., all dog pictures). We then apply two 

transformations to the resulting aggregated count vector. First, raw counts are transformed 

into non-negative Pointwise Mutual Information (PMI) scores (Church and Hanks, 1990), 

assigning larger weights to visual dimensions that are more discriminative across concepts. 

Finally, we apply the Singular Value Decomposition technique (Manning et al., 2008) to the 

concept vectors, reducing them to 50 dimensions that generalize across the original BoVF 

features, with almost no loss of variance in the representation of the 51 concepts of interest, 

but a much more compact encoding of the relevant information. 

 

The resulting “average” concept vectors abstract away from more idiosyncratic features of 

specific images, and capture their commonalities, thus approximating a data-induced 

prototype representation of the visual aspects of a concept. Figure 3 illustrates how our 

aggregated vectors naturally encode prototypical representations. We present there, side by 

side, a specific picture whose vector is very near the average for the corresponding concept 

and a picture (still labeled with the relevant concept) that is quite far from the average vector 
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(note that both kinds of pictures were used to construct the aggregated concept vectors). 

Clearly, pictures near the concept vector depict instances that are more prototypical than 

those that are far from it. 

 

Image-based vectors were constructed with VSEM, an open library for visual semantics 

(Bruni et al., 2013; http://clic.cimec.unitn.it/vsem/). 
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Figure 2. Backprojection of visual features mainly associated to horizontal (yellow) and curvy/oblique (green) 

lines.  
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Figure 3. Example pictures whose BoVF representations are nearest to (left) viz. farthest from (right) the 

average vector representing the corresponding concept. 
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Computational text-based semantic models 
A long tradition of studies in computational linguistics and cognitive science has shown that it 

is possible to extract empirically effective representations of word meaning by using other 

words (or other linguistic units) that tend to naturally co-occur with a target term as semantic 

features a vector-based representation of its meaning (the resulting representations are often 

called distributional semantic models; see, e.g., Landauer and Dumais 1997, Lenci 2008, 

Lund and Burgess 1996, Turney and Pantel, 2010 and Clark, 2013). Again, the parameters of 

our linguistic vectors were picked without tuning, based on their effectiveness in our earlier 

work (Bruni et al., 2014).  

 
We record co-occurrences with collocates within a window of a fixed size of 2 to left and right 

of each target word. Co-occurrence statistics are gathered from the freely available ukWaC 

and Wackypedia corpora combined, containing about 3 billion words in total 

(http://wacky.sslmit.unibo.it/). As collocates, we select a subset of 30K words, composed by 

the top 20K most frequent nouns, 5K most frequent adjectives and 5K most frequent verbs. 

Similar to the image-based vectors, we reweight and reduce the dimensionality of text 

vectors. However, unlike the approximately normally distributed visual feature counts, word 

frequencies in word corpora are heavily skewed with a prevalence of very rare types (the so-

called “Zipfian” distribution). Since PMI is known to severely overestimate the importance of 

rare types, we correct non-negative PMI scores multiplying them by the corresponding raw 

co-occurrence counts (Manning and Schütze,1999, Evert, 2005). As with the visual vectors, 

we then apply Singular Value Decomposition down to 50 dimensions. 

 
Representational Similarity Analysis: general procedure and terminology 
RSA compares the way the same referents are organized in different representational spaces 

(such as activation patterns in different areas of the brain and feature-based computational 

representations). We might expect a snake to occupy a similar position to a belt in visual 

space, but be far separated in linguistic semantic space, and RSA follows this intuition by 

systematically comparing paired item similarities. In the resulting common pairwise similarity 

space, we anticipate that visual similarity structuring (image-based models and visual brain 
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areas) would be differentiable from linguistic structuring (text-based models and linguistic 

brain areas). In other words, that the matrix of paired similarities derived from a brain region 

of interest (ROI) that is visually specialized should correlate more with the matching matrix 

derived from image-based models (Im) than text-based models (Tx), and vice-versa.  

 

The abstraction to similarity space allows multiple participants' brain data to be easily 

combined in an average similarity matrix, thus capturing group-level commonalities (and side 

stepping some problems surrounding imprecisions in spatial normalization of cross-participant 

data to the same anatomical space - in our case all participants were normalized to MNI 

space). This is beneficial if there are group-level commonalities in representational similarity 

(as opposed to individual representational schemes), in which case averaging across 

participants will bring out these regularities and cancel out noise in individual participants’ 

data. It is also relevant that our computational semantic models are at group level, built from 

photographs taken by many people and text written by many authors. Although individual-

level computational models are a theoretical possibility (e.g., built from an individual’s 

documents and photography), their creation was infeasible for the current study.  

 

We conduct hypotheses tests at both group-level (on mean similarity matrices) and individual-

level (where hypotheses are first tested on individual’s similarity matrices and then in a 

second-level analysis a one sample t-test is used to test whether the resultant set of 

individual-level test statistics differs from zero). Whilst group-level analyses are more likely to 

detect a pattern in the data (because the effects of noise are reduced), as a reviewer pointed 

out, we are still treating participants as fixed, rather than random effects, meaning that the 

inferences we draw might not generalize to other individuals from the population. We leave a 

more complex mixed-effects analysis to further work. We summarize results of both group 

and individual hypothesis tests in the main article and list all results in detail in Supplementary 

Materials. The more succinctly reportable group-level results covers all experimental and 

exploratory ROIs in both hemispheres (as defined in the next section). Individual-level results, 

which lead to the same conclusions, are provided for the key experimental regions (because 

results are lengthier to report, tabulation in detail is in Supplementary Materials 6). 
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Specifically, for each computational model or ROI, the representational similarity structure 

(denoted by ss) was estimated by taking Pearson's correlation coefficient between all 1275 

unique word pair combinations, given by the lower/upper off diagonal triangle of the 51*51 

symmetric paired similarity matrix (e.g., Imss is the list of 1275 image-based paired 

similarities). Group-level similarity structures for each ROI were obtained by taking item-wise 

mean similarities. 

 

The similarity structure of models and ROIs was compared using Spearman’s correlation 

(n=1275). Statistical significance was evaluated using a permutation test as described in 

Kriegeskorte et al. (2008a): The word labels of one of the two pairwise similarities matrices 

under comparison were randomly shuffled, rows and columns reordered accordingly, and the 

resulting similarity structure correlated with the other. This process was repeated 10,000 

times and the p-value taken as the proportion of times the permuted correlation coefficient 

was greater than or equal to the observed correlation coefficient.  

 

We repeated analyses at class-level (with classes defined by the original data set) following 

the reasoning that averaging representations within classes should let more general patterns 

emerge in the inherently noisy fMRI data. As the class man-made objects is in essence a 

superordinate category, that could reasonably subsume other test classes such as tool and 

kitchen utensils, it was left out of the class-level analyses. In the class-level RSA, there were 

10 classes and 45 unique class pairs (RSA results including the left-out class are documented 

in Supplementary Materials Figure S2 and Table S2 and do not change interpretation). To 

create a group class-level similarity structure for each ROI, the item-wise mean similarity 

structure was taken across participants (45 mean similarities for 10 classes). 

 

Hypotheses of visual/linguistic semantic representational dominance in different brain 
regions 
Hypotheses predicting whether image- vs. text-based similarity structure would correlate more 

with specific ROIs were predominantly inspired by recent multivariate fMRI analyses of object 

representation, in particular those using RSA.  
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Visual dominance 

Object/shape mental imagery can be discriminated in the ventral temporal cortex and lateral 

occipital areas and decoding of imagery is possible using classifiers trained on perceptual 

data (Stokes et a., 2009; Reddy et al. 2010, Stokes et al. 2011, Lee et al. 2012). This, on top 

of a number of multivariate analyses demonstrating object classification in the ventral-

temporal stream when participants were cued by images (Haxby et al. 2001, Connolly et al. 

2012, Fairhall and Caramazza, 2013), and Leeds et al.s’ (2013) RSA correlating fMRI 

activation in the ventral-temporal-cortex cued by photographs corresponding to the words we 

analyze and SIFT-based models of the image stimuli lead to the hypothesis that image-based 

models would show significantly greater correlation with ventral temporal and lateral occipital 

areas.  

 

Linguistic dominance 

Our starting point for predicting linguistically dominant ROIs was Fairhall and Caramazza 

(2013) and Devereux et al. (2013), who used RSA to compare fMRI representations of five/six 

object categories, elicited by both pictures and words to semantic models, as both stimulus 

modalities should cue linguistic representations.  Fairhall and Caramazza (2013) found that 

the left posterior-mid/inferior-temporal gyrus and posterior-cingulate/precuneus both support 

cross-modal classification and reflect the category structure of models derived from WordNet. 

Echoing this, Devereux et al (2013) found semantic category structure elicited by both text 

and pictures in the left middle temporal gyrus and left posterior cingulate/precuneus, and in 

addition in the right posterior cingulate/precuneus, inferior parietal lobe, left inferior frontal 

gyrus (in particular pars triangularis), left/right precentral gyrus and right superior frontal 

regions. Only representations in the intra-parietal-sulcus maintained a semantic category 

structure that did not change in response to text or image presentation, however pictures 

could elicit different or more specific linguistic-semantic representations than words, see also 

our Discussion, and Glaser (1992) for extensive coverage of behavioral experiments 

comparing picture/word stimuli in cognitive tasks. 
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As reading text may evoke visual simulations, viewing images may evoke linguistic 

representations, and image and text-based semantics may correlate (e.g., in 

context/situation), decoding brain activity elicited by different stimulus modalities across 

modalities is no guarantee of a strictly cross/amodal brain representation. However as the 

above regions were distinct from the regions we hypothesized to be visually dominant we 

provisionally considered them as candidates for linguistic knowledge representation.  

 

We next referenced these regions to a recent review of semantic memory (Binder et al. 

2009/2011). The left mid-temporal gyrus and left posterior inferior parietal lobe have an 

established role in entity and event knowledge representation, whilst the left inferior frontal 

gyrus is implicated in knowledge evaluation/selection/retrieval and as such we might expect to 

detect specific aspects of semantic representation filtering/filtered from a general knowledge 

base stored elsewhere. We assigned all three regions hypotheses of text dominance.  The 

posterior cingulate/precuneus is comparatively less well understood, with a possible role in 

episodic memory retrieval, irrespective of the memory’s imagery content (Krause et al. 1999) 

and with stronger ties to encoding scene familiarity (real vs fictitious) as opposed to scene 

reconstruction (Hassabis et al. 2008). As both Fairhall and Caramazza (2013) and Devereux 

et al. (2013) detected semantic category structure here (possibly related to context/situation), 

we also assigned the posterior cingulate/precuneus a hypothesis of text dominance.  The role 

of the superior medial frontal cortex is somewhat obscure (possibly translating affective states 

to a coordinated plan for knowledge retrieval) and therefore we analyzed it without a 

prediction.  

 

Equivalent image/text correlation 

Strong evidence that object representations in the inferior temporal gyrus interface visual and 

linguistic semantic knowledge is provided by Kriegeskorte et al. (2008b) and Carlson et al. 

(2013). The first analysis successfully correlated human fMRI data elicited by 92 color 

photographs of faces and bodies of animals and humans, and of natural and artificial objects 

to primate brain data. The second analysis demonstrated that the similarity structure of the 

same data correlates with text-based semantic models similar to those we use. We therefore 
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predicted that both image- and text-based models would correlate with the left-inferior-

temporal gyrus. 

 

Exploratory analysis 

Some ROIs were analyzed because of their posited roles in processing semantic knowledge 

(Binder et al. 2009, 2011), but without a dominance hypothesis, either because of their 

association with other modalities and/or their connection to our models is marginal. These 

were the precentral and supramarginal gyrii (motor/action), superior temporal and Heschl’s 

gyrii (audition) and the dorsomedial frontal cortex. 

 
Voxel selection in experimental ROIs 
ROIs were partitioned using Tzourio-Mazoyer et al.s’ (2002) automatic anatomical labeling 

(AAL) scheme. Individual AAL regions were combined as below (see also Figure 4) into a 

total of eleven left hemispheric (L) and right hemispheric (R) sets. Hypotheses were defined 

to apply primarily to the left hemisphere, in line with the common observation of (right 

handers’) left hemispheric dominance in semantic tasks (e.g., Binder et al. 2009) and mental 

imagery (e.g., Ishai et al. 2000), and Just et al.s’ (2010) observation of left dominant activation 

on our data set. The hypotheses were reflected to the right hemisphere expecting weaker 

correlations.  

 

As there was no strong a priori reason to predefine the number of voxels to analyze we 

repeated analysis within each ROI on the {50,100,200 and 400} most stable voxels: 

Pearson’s correlation of each voxel’s activity between matched words in all scanning session 

pairs (15 unique session pairs giving 15 correlation coefficients of 51 words) was computed 

and the mean coefficient used as stability measure (as per Mitchell et al. 2008). Experimental 

hypotheses were the same irrespective of number of voxels. If there were not 400 voxels in 

the ROI, the entire ROI was analyzed (number of voxels per ROI per participant are in Table 

S9). 

AAL templates were as follows (defined for left hemisphere here, but combinations repeated 
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for right).  Image dominance: (Figure 4-Blue): LMOG={Occipital_Mid_L}, LVTC={Fusiform_L 

& ParaHippocampal_L}. Text dominance (Figure 4-Yellow): LMTG=Temporal_Mid_L; 

LPIP={Angular_L, Parietal_Inf_L};  LIFG {Frontal_Inf_Tri_L, Frontal_Inf_Oper_L}; 

LPCP={Precuneus_L, Cingulum_Post_L}; Equivalent image/text correlation (Figure 4-Green): 

LITG=Temporal_Inf_L; Exploratory analysis: (Figure 4-Red):  LPG=Precentral_L; LSMG 

={Supramarginal_L}; LSTG={Heschl_L, Temporal_Sup_L}; LDMFC={Frontal_Sup_Medial_L, 

Frontal_Sup_L}. 
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Results 
Hypothesis-driven analysis: Image-based models detect embodied representations in visual 

areas 

As set out in the introduction, to positively identify a visually embodied representation, the 

image-based model should show both a significantly stronger correlation than the text-based 

model in visual regions and weaker correlation in hypothesized non-visual regions (even if 

both models correlate with the same region, which is not unexpected given that the stimuli 

were not picked to contrast visual and linguistic similarity, and that visual/linguistic referents 

may occur in similar contexts). As Imss and Txss were significantly correlated (word-level, 

ρ=.39, p<.001, n=1275, class-level ρ=.42, p<.001, n=45), we employed Steiger’s (1980) test 

of difference between dependent correlations using the T2 statistic.  

 

The hypotheses were tested at both word and class levels. Pooling results for each lateralized 

anatomical ROI there were 8 tests of image/text modality preference (word/class-level 

*{50,100,200,400} voxels). If neither computational model significantly correlated with the 

ROI, the difference test was declared void (9/96 tests). The number of hypotheses supported 

in non-void tests at group level was as follows (all group-level tests and a word length control 

analysis is documented in Supplementary Materials 1 Figures S1/S2 and Tables S1-S3): 

LMOG (8/8), RMOG (5/8), LVTC (8/8), RVTC (3/8), LMTG (7/7), RMTG (4/4), LIFG (6/8), 

RIFG (7/7), LPIP (5/8), RPIP (6/6), LPCP (1/7) & RPCP (3/8). Correction for false discovery 

rate (q=.05), conducted separately at word-level and class-level, leads to the following 

amendments RVTC (0/8), LIFG (5/8), LPIP (4/8), LPCP (1/7). Zero tests were contradicted. 

Significant correlations between LITG and both models were present in all but two tests and 

there were no significant differences in correlation strength between models (as anticipated). 

RITG however was found only to correlate with the text-based model at class-level in two 

tests, where the correlation was significantly greater than with the image-based model.   

 

Of the exploratory ROIs tested, only LSMG showed a significant word-level correlation (with 

both Imss and Txss). At class-level, we found significant correlations of all exploratory ROIs 

with Txss. Significant differences in the strength of correlations between Imss and Txss were 
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observed, especially in the right hemisphere where correlations with Imss were around zero. 

 
Representative RSA results comparing Imss and Txss correlations with ROIs at class-level 

(200 voxels) are in Figure 4. To support that these results are representative we verified that 

the overall result pattern were consistent across hemispheres and when tested with different 

numbers of stable voxels. Specifically, lists of correlation coefficients of Imss and Txss with 

each LROIss were stacked (n=22), the same stacking repeated for the right hemisphere, and 

the two resulting hemispheric lists were compared using Spearman's rank correlation at each 

test scale ({50,100,200,400}voxels). The correlations are uniformly high (word-level 

ρ={.71,.84,.82,.77}, all p≤.001; class-level, ρ={.65,.75,.81,.77} all p≤.002). As anticipated, 

correlations were significantly greater in the left hemisphere, where the difference between 

the above data sets was tested using Wilcoxon signed rank tests: At word-level 

W={15,8,21,38} all p≤.004. At class-level W={51,52,39,42} all p≤.015. Finally and not 

surprisingly word and class-level results at each scale were strongly related, as tested by 

correlating all word-level correlations pooled across hemispheres with all pooled class-level 

results, giving ρ ={.82,.79,.82,.82}, all p≤.001, n=44. 

 

The number of hypotheses supported in individual-level tests that focused on the key left-

hemispheric experimental ROIs were LMOG (6/8), LVTC (5/8), LMTG (3/8), LIFG (8/8), LPIP 

(5,8), LPCP (1/8). There were no tests declared void and no contradictions. Tests that were 

not passed for LMOG, LVTC and LPIP were all at class-level. This is likely attributable to 

lower analytic power with fewer classes and less data (as the class man-made objects was 

excluded from the class-level analysis). All individual-level results are comprehensively 

documented in Supplementary Materials 6, Tables S10-S15. 

 

As a further check, we ran a second set of analyses explicitly testing the sensitivity of ROIs to 

both models, to check for cases where one model has stronger correlation than the other but 

the weaker model still significantly explains variance in that ROI. We regressed ROIss on one 

model’s similarity structure and tested whether the residuals correlated with that of the other 

model. This was then repeated exchanging the models. Prior to regression, correlation 
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coefficients in all similarity structures were hyperbolic-arc-tangent transformed according to 

Fisher’s r to z transformation. These secondary analyses were run on the key left hemispheric 

ROIs that had been assigned modal dominance hypotheses, which were translated as 

follows. For an ROI hypothesized to be visually dominant the residuals following regression 

on the text-based model were predicted to positively correlate with the image-based model. 

When regression is on the image-based model, no positive correlation between the resultant 

residuals and the text-based model was predicted. Image and text-based models were 

switched accordingly for ROIs hypothesized to be linguistically dominant. 

 

These analyses yielded similar results, with the comparative number of predictions supported 

being LMOG (16/16), LVTC (15/16), LMTG (14/14), LIFG (16/16), LPIP (13/16), LPCP 

(16/16), (there are double the number of tests comparative to the previous analysis, because 

rather than directly comparing image and text-correlations, we test first for visual sensitivity 

once text-based semantic effects are regressed out, and second for linguistic sensitivity once 

image-based effects are regressed out). In LVTC, at class-level, there was a single instance 

of significant correlation with the text-based model following removal of the image-based-

model’s regression line, and for LPIP one instance of this, and two of the counter-case of 

significant correlation with the image-based model after removal of the text trend at word-

level. Detailed results are in Supplementary Materials 1 (Tables S3 and S4). Individual-level 

tests returned a similar outcome with the number of supported predictions being: LMOG 

(15/16), LVTC (14/16), LMTG (16/16), LIFG (16/16), LPIP (14/16), LPCP (13/16). Full 

documentation is in Supplementary Materials 6 (Tables S16-S19). 

 

In summary hypothesis tests of the relative correlation strengths between Imss and Txss and 

different ROIs favorably matched expectation. ROIs predicted to show visual dominance 

(L/RMOG, L/RVTC) did so in the vast majority of tests, and L/RMTG, L/RPIP and L/RIFG 

showed text-dominance also in line with prediction. We consider this as strong evidence that 

visually embodied object representations are activated as people read and contemplate 

object words, without visual object stimulation. L/RPCP were difficult to interpret (detailed 

results are in Supplementary Materials 1 Figures S1/S2 and Tables S1/S2) and we 
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provisionally consider these ROIs to be weakly defined as regards our hypotheses.  
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Figure 4. Representative RSA results. (Top) Hypotheses predicting the representational preference of different 

brain regions to image/text-based models, color-coded and linked to brain regions. Primary experimental 

hypotheses (associated with image/text dominance) are blue/yellow. Green denotes hypothesized equivalence 

and red an exploratory analysis. (Bottom) Results for the class-level 200voxel test (for all results see 

Supplementary Materials and Figures S1/S2 and Tables S1/S2). Similarity structures (triangular pixelated plots) 

are displayed for all models and ROIs. The table reports Spearman’s correlations between each similarity 

structure pair and associated p-values (permutation test). Statistical significance of hypotheses tests are in 

middle row, ** p< .01, * p<.05. Blue/yellow ticks indicate confirmation of the associated hypothesis (e.g., blue-tick 

correlation in upper row is greater than in lower). Void indicates that neither image/text-based model correlated 

significantly with the ROI. 
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Distribution of local image/text-based correlations throughout the brain 

Searchlight RSA (Kriegeskorte et al. 2006; Connolly et al., 2012; Fairhall et al., 2013; 

Devereux et al., 2013; Leeds et al. 2013) were run to visualize the spread and relationship 

between localized image/text correlations throughout the brain.  Searchlight was run at word 

and class-level. For space reasons, and as results are similar, class-level results are in 

Supplementary Materials 2. Firstly the set of all grey matter voxels in the brain that were 

common to all participants was identified by intersecting the MNI normalized grey matter 

voxel masks across participants. A contiguous voxel ‘sphere’ with a radius of 9 mm 

(mean±std voxels: 56.5±12.7) was iteratively centered on each voxel of the common MNI 

mask of all grey-matter voxels. At each sphere location, neural similarity structures (SROIss) 

were created individually for each participant in exactly the same way as the previous ROI 

analysis, but based only on voxels in the searchlight sphere. In order to capitalize on group 

level regularities, each SROIss was averaged across all participants at each location. The 

mean SROIss at each location was then correlated with Imss and Txss using Spearman’s ρ.  

A permutation test was used to compute the p-value of the correlation coefficient at each 

sphere location. Following Leeds et al. (2013), word labels were permuted 500 times. The 

mean and variance of the correlation between the resultant shuffled similarity structures and 

the actual brain SROIss were used to transform correlation coefficients to z-scores. A one-

tailed p-value was then obtained using p=1–erf(z) where erf is the cumulative density function 

of a standard normal distribution. Similarity maps of Imss and Txss were thresholded by false 

discovery rate (q < .1) (Genovese and Nichols, 2002). Significant ρ’s (p<.01 from FDR) were 

plotted in MNI space. 

Figure 5 displays word-level searchlight results, correlation clusters are in Table 2 and 3 for 

the image and text-based models respectively (class-level results are in Figure S3, Tables S6 

and S7). Cyan/Orange indicates localized regions significantly correlated with Imss/Txss 

respectively. Brown indicates overlap in significant correlations. Significant correlations with 

Imss only were largely located in the bilateral occipital cortex, the precuneus and in ventral 

regions of the temporal cortex (with slight left hemispheric bias) in line with the general visual 

dominance previously confirmed in L/RMOG and L/RVTC. Significant correlations with Imss 
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were also detected within LIFG (particularly pars opercularis) and LSMG. The previous 

hypothesis testing analysis confirmed LIFG as linguistically-dominant despite significant 

correlation with Imss. LIFG might be selectively filtering aspects of broader semantic 

representations and intermittently processing visual and non-visual information: in this case, 

the image-correlated representations observed are unlikely to be directly related to visual 

processing.  

Significant correlations with Imss were more widespread than Txss. One interpretation is that 

visual simulations have more widespread activity traces than linguistic representations (which 

would be consistent with Glaser, 1992, who observed that pictures produce stronger priming 

effects than words). However the result is also on face value at odds with the hypothesis-

driven ROI analyses (where more ROIs showed linguistic dominance). The difference is 

attributable to the two analyses operating at different spatial scales (the searchlight looking at 

all voxels within a small sphere comparative to the ROI analyses which selects stable voxels 

from a larger volume). As we don’t know what spatial scale(s) visual simulations and linguistic 

cognition operate upon, and how visual/linguistic modalities interact, we remain agnostic on 

the interpretation of this result. 

Significant correlations with Txss were observed in similar/neighboring regions to Imss and 

infrequently detected in the right hemisphere, consistent with the standard finding of left 

hemispheric dominance in language tasks. Isolated correlations were observed in LPIP 

(including the angular gyrus), L/RVTC, L/RPCP, with smaller patches in LIFG and 

LITG/LMTG. The spread was consistent with the hypothesis testing analysis (and the 

comparative sparseness is a byproduct of the focal nature of searchlight analysis as identified 

above). 

Areas of overlap between Imss and Txss correlation, suggestive of a transition between visual 

aspects of object representations and higher-level linguistic semantics, were found in LITG 

(consistent with our expectation of high-level visual object representations in this region), 

LPIP, L/RPCP, portions of L/RVTC and within LIFG. Close inspection of the searchlight 

volume reveals that the multimodal overlap in LVTC is on the boundaries of the perirhinal 
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cortex where Bruffaerts et al.s’ (2013) observed that semantic similarity reflects fine-grained 

within-object-category semantic similarity between words, and more generally this network of 

areas is strikingly compatible with theories considering semantic memory to incorporate a 

selection of information convergence zones (e.g., angular/supramarginal gyri and sections of 

inferior/middle temporal and fusiform gyri) and high-level modulatory areas such as left 

inferior frontal regions (Binder et al. 2009,2011; Mahon and Caramazza, 2009; Martin, 2007). 
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Figure 5. Word-level searchlight RSA. Cyan/orange indicates significant image/text-based correlation. Brown 

indicates image/text overlap. Top row slices (MNI coordinates): z=-14, 9, 17, 43; mid row: y=-79, -56, -37, -33, 7, 

30; bottom row: x=-50, -33, -23. See Figure S3 for class-level results. 
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Table 2. Image-based model word-level searchlight: Breakdown of AAL regions in significantly correlated 
searchlight clusters (sampled at 1mm3) and MNI coordinates of peak correlations per ROI (AAL regions 
identified as per Just et al. 2010). 
 
Cluster Vol (mm3) ROI x y z 
Bilateral Occipital/Temporal/Parietal 11246 Occipital_Mid_L -37 -80 23 

  
Calcarine_L -16 -62 11 

  
Lingual_L -20 -53 -5 

  
Occipital_Sup_L -20 -66 23 

  
Occipital_Inf_L -54 -67 -11 

  
Cuneus_L -15 -61 22 

  
Precuneus_L -12 -54 16 

  
Parietal_Sup_L -22 -68 44 

  
Parietal_Inf_L -33 -79 42 

  
Angular_L -46 -76 30 

  
Temporal_Inf_L -46 -52 -16 

  
Fusiform_L -31 -44 -18 

  
Temporal_Mid_L -43 -72 16 

  
ParaHippocampal_L -26 -37 -10 

  
Cerebelum_6_L -31 -45 -29 

  
Cerebelum_4_5_L -22 -41 -25 

  
Cerebelum_Crus1_L -45 -44 -31 

  
Occipital_Mid_R 37 -71 28 

  
Calcarine_R 17 -58 11 

  
Lingual_R 14 -56 4 

  
Cuneus_R 15 -60 23 

  
Precuneus_R 12 -54 18 

  
Angular_R 40 -66 22 

  
Temporal_Mid_R 46 -72 21 

  
Cerebelum_4_5_R 10 -55 -4 

      Left Inferior Parietal 2098 SupraMarginal_L -53 -30 31 

  
Postcentral_L -52 -23 29 

  
Parietal_Inf_L -50 -28 39 

  
Temporal_Sup_L -58 -30 20 

      Left Inferior Frontal 569 Frontal_Inf_Oper_L -53 8 11 

  
Rolandic_Oper_L -47 3 11 

  
Frontal_Inf_Tri_L -58 22 14 

  
Precentral_L -48 6 14 

      Right Ventral Temporal 1684 Fusiform_R 32 -38 -19 
  Cerebelum_4_5_R 25 -38 -26 
  Cerebelum_6_R 33 -40 -29 
  ParaHippocampal_R 28 -36 -13 
  Lingual_R 29 -44 -8 
  Temporal_Inf_R 44 -42 -20 
      
Right Postcentral 83 Postcentral_R 26 -38 46 

  
SupraMarginal_R 28 -40 44 
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Table 3. Text-based model word-level searchlight: Breakdown of AAL regions in significantly correlated 

searchlight clusters (sampled at 1mm3) and MNI coordinates of peak correlations per ROI (AAL regions 

identified as per Just et al., 2010). 

 

Cluster Vol (mm3) ROI x y z 
Bilateral Occipital/Parietal/Temporal 838 Precuneus_L -17 -53 14 

  
Calcarine_L -18 -59 13 

  
Cuneus_L -17 -55 22 

  
Lingual_L -8 -67 6 

  
Precuneus_R 16 -56 16 

  
Calcarine_R 12 -58 18 

  
Cuneus_R 12 -58 20 

  
Lingual_R 11 -61 7 

      Left Occipital/Parietal 252 Occipital_Mid_L -43 -80 27 

  
Angular_L -44 -78 30 

      Left Inferior Parietal  388 SupraMarginal_L -50 -27 30 

  
Parietal_Inf_L -48 -31 36 

  
Postcentral_L -53 -24 29 

      Left Posterior Parietal  113 Parietal_Inf_L -30 -55 40 

  
Angular_L -35 -55 36 

  
Parietal_Sup_L -32 -60 44 

      Left Ventral Temporal 1200 Fusiform_L -32 -39 -19 

  
Cerebelum_4_5_L -29 -42 -24 

  
Cerebelum_6_L -31 -44 -24 

  
ParaHippocampal_L -30 -39 -11 

  
Temporal_Inf_L -36 -37 -15 

      Left Lateral Temporal 236 Temporal_Inf_L -59 -56 -16 

  
Temporal_Mid_L -50 -60 -4 

      Right Ventral Temporal 321 Fusiform_R 31 -33 -18 

  
ParaHippocampal_R 29 -29 -18 

  
Cerebelum_4_5_R 28 -35 -24 

      Left Inferior Frontal 78 Frontal_Inf_Oper_L -50 10 16 

  
Precentral_L -50 6 14 

  
Frontal_Inf_Tri_L -48 12 24 

  
Frontal_Inf_Tri_L -48 12 24 
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Decoding visual/linguistic brain representations using image and text-based models  

If we can decode unlabeled embodied brain representations based only on information from 

the image-based models, we have evidence that the underlying embodied simulation 

synthesizes distinguishable visual patterns. If this is the case, we should also be able to utilize 

the complementary information in image/text-based models to decode different ROIs in 

parallel. 

 

We exploit correspondences between model- and brain-activation-defined similarity spaces in 

order to guess the stimulus concept classes, without the need for manually labeled training 

data. Specifically, we adapt the algorithm proposed by Raizada and Connolly (2012) for 

cross-participant decoding to model-based decoding as follows. We are given the matrix of 

between-class pairwise similarities produced by a model. For the brain data, we have access 

to mean activation vectors for each class, but not to the corresponding class labels. If the 

model is accurately capturing the same similarity structure as represented in the brain, we 

can look for the class label assignments that would make the brain similarity matrix as similar 

to the model-based matrix as possible. As a toy example, suppose that in model space we 

measure sim(mammal,insect)=.70, sim(mammal,tool)=.30, sim(insect,tool)=.10. We are given 

3 unlabeled vectors of pooled brain activation data with similarities sim(x,y)=.83, sim(x,z)=.29, 

sim(y,z)=.11. Then, it is most reasonable to assume that x corresponds to mammal trials, y to 

insects and z to tools, since this assignment maximizes second-order similarity between 

model and brain similarities. More precisely, we exhaustively evaluate all the possible label 

permutations of the rows and columns of the brain similarity matrix, and pick the one leading 

to the largest Pearson correlation of the pairwise similarity scores with those in the model-

based matrix (in ongoing work we are targeting word-level classification, which, with 51! 

possible label permutations necessitates approximate methods to search for the best 

solution). 

 

We use Imss to decode class labels in LVTC (which showed greatest correlation to Imss in the 

ROI analysis). We repeated decoding on {50,100,200,400} voxels. Chance accuracy was 

1/10, and equating conventional statistical thresholds to the number of classes correctly 
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decoded (the same threshold applies using either Binomial or permutation testing as per 

Raizada and Connolly, 2012) gave [3/10 p<.05], [4/10 p<.01], [5/10 p<.001], [6/10 p<.0001]. 

The number of classes accurately decoded at the four different voxel scales using Imss was 

{1,2,0,8} and using Txss was {0,0,0,2}. For the image-based model only, at 400 voxels, we 

could successfully decode eight of the ten classes. The instability in decoding at different 

scales for the image-based model is possibly due to an inadequate representation of all test 

classes in the 3 lower voxel scales. If visual simulations are naturally more stable for some 

words rather than others, then voxel selection would have biased towards covering the subset 

of most stable words. As the decoding algorithm relies on the inter-relationship between all 

classes this could seriously disrupt decoding accuracy. Given the local text-based correlation 

observed in the searchlight analysis of LVTC (Figure 5), it is almost certain that non-visual 

aspects of semantic information are incorporated in the decoded representation. However, as 

successful decoding here was only possible based on entirely visual information, and 

accomplished without training, it is reasonable to assume that the decoded semantic 

representations are anchored in visual perception. This confirms that internally induced 

embodied representations contain at least a class-level degree of visual detail for many 

classes.  

 

Nevertheless, the previous effect was brittle, being absent from 3 of 4 voxel scales. In line 

with our expectation that linguistic and visual model similarities would differentially correlate 

with brain similarities in different regions, we extend the previous procedure to operate by 

comparing different models with different brain ROIs in parallel. We now assume we have 

multiple brain region activation vectors for each class (but still don't know their class label). 

We then select the label assignment that maximizes the (weighted) sum of second-order 

similarity correlations with the relevant models across regions: That is, we search for a label 

assignment resulting in both high correlations with the text-based model for regions 

hypothesized to be mostly devoted to linguistic processing and high correlations with the 

imaged-based model in visual-processing regions. This “multimodal” decoding strategy thus 

capitalizes on targeting more diverse brain representations that are spread across greater 

brain areas, combining different sources of evidence for more robust decoding. 
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We determined which computational model to apply to each ROI based directly on our 

previous 6 modal-specificity hypotheses that linked image/text-based models to different 

ROIs. This was the first multimodal model configuration we tried. Each potential assignment 

of class labels to the brain data was scored using the mean weighted correlation in 

EQUATION 1, where r(x,y) denotes Pearson's correlation coefficients of x and y and ss’ 

denotes the brain-based similarity structure generated by the label assignment to be scored:  

 

SCORE=r(LMOGss’,Imss)/2 + r(LVTCss’,Imss)/2 + r(LMTGss’,Txss)/4 + r(LPIPss’,Txss)/4 + 

r(LPCPss’,Txss)/4 + r(LIFGss’,Txss)/4.        (Equation 1) 

 

The weights of ½ and ¼ were chosen without tuning to give Im and Tx equal importance.  

 

Decoding results at the four respective voxel scales were {7,7,7,8} (all p<.0001). It follows that 

if we had been given the brain data set blind, and attempted to match the unknown class 

labels to our known computational model class labels, we would have accurately recovered at 

least 7/10 classes. In the cases where accuracy was 7/10, errors were as follows: building-

part was matched to furniture, furniture to vehicle, and vehicle to building-part. In the 8/10 

case vehicle and furniture were confused. To verify that these results were specific to our 

hypothesized model/brain modality pairings, a set of control tests were run, firstly reversing 

Imss and Txss (so that Imss was matched with ROIs hypothesized to have stronger 

associations with Txss and vice versa) and secondly using either the image-based or text-

based model alone to decode all ROIs. Results are in Table 4. None of the control tests were 

significant. A selection of simpler tests decoding brain region pairs (e.g. LVTC and LMTG; 

LVTC) that mirror this trend are in Supplementary Materials 3 Table S8.  

 

Summarizing, we achieved high-accuracy decoding of brain representations in an object-

selective visual area using our image-based model. This decoding was not possible using the 

text-based model. We claim that this is evidence that rich visually-embodied object 

representations are induced by thought in lack of an overt visual stimulus.  Next, we showed 
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that we could make results more robust by exploiting multimodal models with a novel 

adaptation of the decoding algorithm. A decoding test directly encapsulating our original 

modal-specificity hypotheses had accuracy between 7/10 and 8/10 (consistent with our 

predictions of image and text-based model dominance in different brain regions). 
 

Table 4. Model-based decoding results and controls decoding with incongruent model/brain pairings and 

unimodal models. Scores are out of 10. The first 6 columns fit EQUATION 1, e.g., for the incongruent model on 

the second results row: SCORE=r(LMOGss’,Txss)/2 + r(LVTCss’,Txss)/2 + r(LMTGss’,Imss)/4 + 

r(LPIPss’,Imss)/4 + r(LPCPss’,Imss)/4 + r(LIFGss’,Imss)/4. Accuracies ≥3 (in bold) are significant (p<.05, 

Binomial test). Further tests with model/ROI pairs are in Table S8. 

LMOGss’ LVTCss’ LMTGss’ LIFGss’ LPIPss’ LPCPss’ 50vox 100vox 200vox 400vox 
Imss Imss Txss Txss Txss Txss 7 7 7 8 
Txss Txss Imss  Imss Imss Imss 0 0 0 0 
Imss Imss Imss Imss Imss Imss 0 0 1 1 
Txss Txss Txss Txss Txss Txss 0 0 0 0 

 

Discussion 
We tested whether fMRI activity patterns elicited by participants reading object names 

(without visual cues) incorporate embodied visual representations of the objects, and whether 

we could decode the object class from the representation. To test for visually embodied 

representations we used novel image-based models derived from object features in 

conjunction with text-based models to distinguish visual/non-visual aspects of the brain’s 

semantic representation. Different to all previous studies, our image-based models were not 

modeling a specific visual stimulus, but more generic imagery related to a concept.  

 

Significantly greater correlation with image-based models was observed in visual object-

selective brain regions, and with text-based models in brain areas posited to be modality 

independent. We further demonstrated that the image-, but not the text-based models, could 

decode object classes from visual brain representations with high accuracy, and, when we 

applied our models in combination to decode different brain regions in parallel, we got 

consistently high decoding accuracies. Key points are: (1) This provides evidence that rich 

embodied visual representations of objects are induced as words are read and contemplated. 
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This mental imagery implicit in conceptual fMRI data contains more detailed visual categorical 

information than has previously been established (Pulvermüller, 2013) even in rehearsed 

visual imagery where fewer object categories have been successfully discriminated (Reddy et 

al. 2010, Lee et al. 2012) and is in line with the perceptual representations/mental simulations 

posited by Paivo (1971) Glaser (1992), Barsalou (2008,2009); (2) Visual semantic 

representations of objects are likely to be embodied in lower-level features than are amenable 

to linguistic representation in line with the depictive view of imagery (Kosslyn and Thompson, 

2003) and also Lee et al. (2012); (3) Computational visual models can decode internally 

induced embodied representations. (4) We bring support to hypotheses derived from recent 

literature of how brain regions differentially contribute to encode semantic information. 

 
What is the similarity between image-based models and brain representations? 

Similarity in sensory input – we sourced the image-based models from a diverse selection of 

snapshots of objects in natural scenes that might approximate participants’ ecological 

experience.  

 

Similarity in representational features – that words provide a viable basis set for linguistic 

semantic representations, as per the text-based models, is not difficult to argue. Conversely, 

our dictionary of visual featuress, which were abstract combinations of local image descriptors 

was estimated empirically from an image collection. As can be seen from the backprojection 

of visual features onto natural scenes in Figure 2, although visual features cluster on 

apparently similar local visual patterns, and there is evidence of systematic associations 

between them and classes of depicted objects, it is not straightforward to interpret what each 

visual feature represents. Obviously, it would be nice to have a neatly interpretable set of 

visual features, that could be easily defined in parameters such as shape, color and texture, 

similar to artificial stimuli used to probe visual object representations (e.g., Op de Beek et al. 

2008; Drucker and Aguirre, 2009). However, in hand with the suggestion that visually 

embodied representations may be grounded in lower level features than are amenable to 

linguistic description, it may not be easy to verbally define low-level embodied brain features. 

The computational tools used to build the image-based models draw upon an extensive 
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history of computer vision research attempting to devise algorithms that are robust enough to 

deal with real world object recognition applications. Similar task demands (e.g., template 

matching in attention and mental imagery in planning) were presumably fundamental to shape 

biological concept representations. We thus conjecture that robustness constraints may have 

streamlined similar computational properties in both biological and artificial models. 

 

Similarity in distributional representation (of features) – Demonstrating that neural object 

representations are spatially distributed was a founding step for multi-voxel pattern analyses 

(Haxby et al. 2001) and the principle of feature co-occurrence, used to derive computational 

semantic models, is akin to Hebbian learning. Assuming that neural associations are formed 

between combinations of nodes (neural populations receptive to shape 

fragments/shapes/words) that are frequently co-activated, then co-occurrence constitutes a 

valid approximation.  

 

The validity of these assertions is amenable to future experimental testing through 

systematically modifying the diversity of information in source data, visual feature extraction 

strategies and nature of distributed representation, and comparing the fit to brain data. 

 

Implications for the empirical study of embodied concept representations 

An ability to interpret latent visual structure in brain representations adds credibility to an 

experimental approach complementary to the current “tradition emphasizing stimulus driven 

brain activity” (Binder et al., 2011). Contrary to perceptual experiments that aim to identify 

brain activity that covaries with controlled change in physical stimulus properties, studies of 

semantic memory aim to explain brain patterns derived from past perceptual experience. 

Computational semantic models, as we have shown, can provide a route into the study of 

internally induced and modality-preferential brain representations that are difficult to interpret 

otherwise (for instance embodied representations arising from dreaming). Additionally in 

much the same way as ‘the book was better than the film’, we conjecture that verbal stimuli 

may provide the best default means to trigger rich semantic representations even in their 

visual aspects. It follows that presenting specific modal information (e.g., specific dog 
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pictures) in stimuli designed to probe general semantic representations may paradoxically 

limit valuable semantic content extracted from memory, by focusing the neural representation 

on the specific stimulus. 

 

Implications for computational models of conceptual knowledge 

(1) There is by now a long line of studies showing that computational models encoding 

statistical generalizations extracted from large bodies of text can simulate various aspects of 

human semantic memory (see, e.g., discussion and references in Lenci 2008). Given the 

concomitant success of embodied approaches to meaning, a natural question arises about 

the division of labor, in grounding conceptual knowledge, between linguistic statistics and 

situated knowledge (e.g., Barsalou et al. 2008, Louwerse 2008). As part of this debate, 

various authors have developed computational models that use subject-generated concept 

property descriptions as proxies to embodied experiential data (e.g., Andrews et al. 2009, 

Johns and Jones 2012). While these simulations provide good insights into how the two 

knowledge sources can be integrated, subject-generated word lists are a rather artificial (and 

ultimately linguistic!) surrogate of perceptual knowledge. Our multimodal decoding 

experiments also confirm that integrating perceptual (specifically, visual) and linguistic 

information provides more human-like semantic representations. However, we approximate 

perceptual information with a model that is genuinely not verbal, but induced from natural 

images, combined with a state-of-the-art linguistic model. We thus pave the way to more 

realistic simulations of how linguistic and perceptual evidence are integrated into human 

conceptual knowledge. 

(2) Brain data provides a useful test-bed for evaluating multimodal semantic models. The 

traditional approach to appraise semantic models compares human similarity judgments to 

models. As models incorporate additional modal information it becomes difficult to know how 

to configure norming questions appropriately. Even with only vision there are many ways to 

measure similarity (e.g. color/shape/texture). Beyond this, introspective judgments may 

overlook lower level features that our results suggest contribute to embodied representations. 

Comparing models to brain data circumvents many of these problems and there is obvious 

mutual benefit to fostering closer ties between biological and computational studies of 
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concept representation. 
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