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Abstract

We present a distributional semantic model
combining text- and image-based features. We
evaluate this multimodal semantic model on
simulating similarity judgments, concept clus-
tering and the BLESS benchmark. When inte-
grated with the same core text-based model,
image-based features are at least as good as
further text-based features, and they capture
different qualitative aspects of the tasks, sug-
gesting that the two sources of information are
complementary.

1 Introduction

Distributional semantic models use large text cor-
pora to derive estimates of semantic similarities be-
tween words. The basis of these procedures lies in
the hypothesis that semantically similar words tend
to appear in similar contexts (Miller and Charles,
1991; Wittgenstein, 1953). For example, the mean-
ing of spinach (primarily) becomes the result of sta-
tistical computations based on the association be-
tween spinach and words like plant, green, iron,
Popeye, muscles. Alongside their applications in
NLP areas such as information retrieval or word
sense disambiguation (Turney and Pantel, 2010), a
strong debate has arisen on whether distributional
semantic models are also reflecting human cogni-
tive processes (Griffiths et al., 2007; Baroni et al.,
2010). Many cognitive scientists have however ob-
served that these techniques relegate the process of
meaning extraction solely to linguistic regularities,
forgetting that humans can also rely on non-verbal

experience, and comprehension also involves the ac-
tivation of non-linguistic representations (Barsalou
et al., 2008; Glenberg, 1997; Zwaan, 2004). They
argue that, without grounding words to bodily ac-
tions and perceptions in the environment, we can
never get past defining a symbol by simply pointing
to covariation of amodal symbolic patterns (Harnad,
1990). Going back to our example, the meaning of
spinach should come (at least partially) from our ex-
perience with spinach, its colors, smell and the oc-
casions in which we tend to encounter it.

We can thus distinguish two different views of
how meaning emerges, one stating that it emerges
from association between linguistic units reflected
by statistical computations on large bodies of text,
the other stating that meaning is still the result of an
association process, but one that concerns the asso-
ciation between words and perceptual information.

In our work, we try to make these two appar-
ently mutually exclusive accounts communicate, to
construct a richer and more human-like notion of
meaning. In particular, we concentrate on percep-
tual information coming from images, and we cre-
ate a multimodal distributional semantic model ex-
tracted from texts and images, putting side by side
techniques from NLP and computer vision. In a nut-
shell, our technique is based on using a collection
of labeled pictures to build vectors recording the co-
occurrences of words with image-based features, ex-
actly as we would do with textual co-occurrences.
We then concatenate the image-based vector with
a standard text-based distributional vector, to ob-
tain our multimodal representation. The prelimi-
nary results reported in this paper indicate that en-



riching a text-based model with image-based fea-
tures is at least not damaging, with respect to en-
larging the purely textual component, and it leads to
qualitatively different results, indicating that the two
sources of information are not redundant.

The rest of the paper is structured as follows. Sec-
tion 2 reviews relevant work including distributional
semantic models, computer vision techniques suit-
able to our purpose and systems combining text and
image information, including the only work we are
aware of that attempts something similar to what we
try here. We introduce our multimodal distributional
semantic model in Section 3, and our experimental
setup and procedure in Section 4. Our experiments’
results are discussed in Section 5. Section 6 con-
cludes summarizing current achievements and dis-
cussing next directions.

2 Related Work

2.1 Text-based distributional semantic models

Traditional corpus-based models of semantic repre-
sentation base their analysis on textual input alone
(Turney and Pantel, 2010). Assuming the distribu-
tional hypothesis (Miller and Charles, 1991), they
represent semantic similarity between words as a
function of the degree of overlap among their lin-
guistic contexts. Similarity is computed in a seman-
tic space represented as a matrix, with words as rows
and contextual elements as columns/dimensions.
Thanks to the geometrical nature of the represen-
tation, words are compared using a distance met-
ric, such as the cosine of the angle between vectors
(Landauer and Dumais, 1997).

2.2 Bag of visual words

In NLP, “bag of words” (BoW) is a dictionary-based
method in which a document is represented as a
“bag” (i.e., order is not considered), which contains
words from the dictionary. In computer vision, “bag
of visual words” (BoVW) is a similar idea for image
representation (Sivic and Zisserman, 2003; Csurka
et al., 2004; Nister and Stewenius, 2006; Bosch et
al., 2007; Yang et al., 2007).

Here, an image is treated as a document, and fea-
tures from a dictionary of visual elements extracted
from the image are considered as the “words” repre-
senting the image. The following pipeline is typ-

ically adopted in order to group the local interest
points into types (visual words) within and across
images, so that then an image can be represented
by the number of occurrences of each visual word
type in it, analogously to BoW. From every image
of a data set, keypoints are automatically detected
and represented as vectors of various descriptors.
Keypoint vectors are then projected into a common
space and grouped into a number of clusters. Each
cluster is treated as a discrete visual word (this tech-
nique is generally known as vector quantization).
With its keypoints mapped onto visual words, each
image can then be represented as a BoVW feature
vector according to the count of each visual word. In
this way, we move from representing the image by
a varying number of high-dimensional keypoint de-
scriptor vectors to a representation in terms of a sin-
gle sparse vector of fixed dimensionality across all
images. What kind of image content a visual word
captures exactly depends on a number of factors, in-
cluding the descriptors used to identify and represent
local interest points, the quantization algorithm and
the number of target visual words selected. In gen-
eral, local interest points assigned to the same visual
word tend to be patches with similar low-level ap-
pearance; but these common types of local patterns
need not be correlated with object-level parts present
in the images. Figure 1 illustrates the procedure to
form bags of visual words. Importantly for our pur-
poses, the BoVW representation, despite its unre-
lated origin in computer vision, is entirely analogous
to the BoW representation, making the integration of
text- and image-based features very straightforward.

2.3 Integrating textual and perceptual
information

Louwerse (2011), contributing to the debate on sym-
bol grounding in cognitive science, theorizes the in-
terdependency account, which suggests a conver-
gence of symbolic theories (such as distributional
semantics) and perceptual theories of meaning, but
lacks of a concrete way to harvest perceptual infor-
mation computationally. Andrews et al. (2009) com-
plement text-based models with experiential infor-
mation, by combining corpus-based statistics with
speaker-generated feature norms as a proxy of per-
ceptual experience. However, the latter are an un-
satisfactory proxy, since they are still verbally pro-



Figure 1: Illustration of bag of visual words procedure: (a) detect and represent local interest points as descriptor
vectors (b) quantize vectors (c) histogram computation to form BoVW vector for the image

duced descriptions, and they are expensive to collect
from subjects via elicitation techniques.

Taking inspiration from methods originally used
in text processing, algorithms for image labeling,
search and retrieval have been built upon the connec-
tion between text and visual features. Such models
learn the statistical models which characterize the
joint statistical distribution of observed visual fea-
tures and verbal image tags (Hofmann, 2001; Hare
et al., 2008). This line of research is pursuing the re-
verse of what we are interested in: using text to im-
prove the semantic description of images, whereas
we want to exploit images to improve our approxi-
mation to word meaning.

Feng and Lapata are the first trying to integrate
authentic visual information in a text-based distribu-
tional model (Feng and Lapata, 2010). Using a col-
lection of BBC news with pictures as corpus, they
train a Topic model where text and visual words are
represented in terms of the same shared latent di-
mensions (topics). In this framework, word meaning
is modeled as a probability distribution over a set of
latent multimodal topics and the similarity between
two words can be estimated by measuring the topics
they have in common. A better correlation with se-
mantic intuitions is obtainable when visual modality
is taken into account, in comparison to estimating
the topic structure from text only.

Although Feng and Lapata’s work is very promis-
ing and the main inspiration for our own, their
method requires the extraction of a single distribu-
tional model from the same mixed-media corpus.
This has two important drawbacks: First, the tex-
tual model must be extracted from the same corpus

images are taken from, and the text context extrac-
tion methods must be compatible with the overall
multimodal approach. Thus, image features can-
not be added to a state-of-the-art text-based distri-
butional model – e.g., a model computed on the
whole Wikipedia or larger corpora using syntactic
dependency information – to assess whether visual
information is helping even when purely textual fea-
tures are already very good. Second, by training a
joint model with latent dimensions that mix textual
and visual information, it becomes hard to assess,
quantitatively and qualitatively, the separate effect
of image-based features on the overall performance.
In order to overcome these issues, we propose a
somewhat simpler approach, in which the text- and
image-based models are independently constructed
from different sources, and then concatenated.

3 Proposed method

Figure 2 presents a diagram of our overall sys-
tem. The main idea is to construct text-based and
image-based co-occurrence models separately and
then combine them. We first describe our proce-
dure to build both text-based and image-based mod-
els. However, we stress the latter since it is the
more novel part of the procedure. Then, we describe
our simple combination technique to integrate both
models and create a multimodal distributional se-
mantic space. Our implementation of the proposed
method is open-source1.

1https://github.com/s2m
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Figure 2: Overview of our system architecture

3.1 Text-based distributional model

Instead of proposing yet another model, we pick one
that is publicly available off-the-shelf and has been
shown to be at the state of the art on a number of
benchmarks. The picked model (DM)2 is encoded
in a matrix in which each target word is represented
by a row vector of weights representing its associa-
tion with collocates in a corpus. See Section 4.1 for
details about the text-based model.

3.2 Image-based distributional model

We assume image data where each image is associ-
ated with word labels (somehow related to the im-
age) that we call tags.

The primary approach to form the image-based
vector space is to use the BoVW method to rep-
resent images. Having represented each image in
our data set in terms of the frequency of occurrence
of each visual word in it, we construct the image-
based distributional vector of each tag as follows.
Each tag (textual word) is associated to the list of
images which are tagged with it; we then sum visual
word occurrences across that list of images to ob-
tain the co-occurrence counts associated with each
tag. For uniformity with the treatment of textual
co-occurrences (see Section 4.1), the raw counts are
transformed into Local Mutual Information scores
computed between each tag and visual word. Lo-
cal Mutual Information is an association measure
that closely approximates the commonly used Log-
Likelihood Ratio while being simpler to compute
(Evert, 2005).

In this way, we obtain an image-based distribu-

2http://clic.cimec.unitn.it/dm

tional semantic model, that is, a matrix where each
row corresponds to a tag vector, summarizing the
distributional history of the tag in the image collec-
tion in terms of its association with the visual words.

3.3 Integrating distributional models

We assemble the two distributional vectors to con-
struct the multimodal semantic space. Given a word
that is present both in the text-based model and
(as a tag) in the image-based model, we separately
normalize the two vectors representing the word to
length 1 (so that the text and image components will
have equal weight), and we concatenate them to ob-
tain the multimodal distributional semantic vector
representing the word. The matrix of concatenated
text- and image-based vectors is our multimodal dis-
tributional semantic model. We leave it to future
work to consider more sophisticated combination
techniques (preliminary experiments on differential
weighting of the text and image components did not
lead to promising results).

4 Experimental setup

4.1 The DM text-based model

DM has been shown to be near or at the state of
the art in a great variety of semantic tasks, ranging
from modeling similarity judgments to concept cat-
egorization, predicting selectional preferences, rela-
tion classification and more.

The DM model is described in detail by Baroni
and Lenci (2010), where it is referred to as TypeDM.
In brief, the model is trained on a large corpus
of about 2.8 billion tokens that include Web docu-
ments, the Wikipedia and the BNC. DM is a struc-
tured model, where the collocates are labeled with
the link that connect them to the target words. The
links are determined by a mixture of dependency
parse information and lexico-syntactic patterns, re-
sulting in distributional features (the dimensions of
the semantic space) such as subject kill, with gun or
as sharp as. The score of a target word with a fea-
ture is not based on the absolute number of times
they co-occur in the corpus, but on the variety of
different surface realizations of the feature the word
co-occurs with. For example, for the word fat and
the feature of animal, the raw score is 9 because fat
co-occurs with 9 different forms of the feature (a



fat of the animal, the fat of the animal, fats of an-
imal. . . ). Refer to Baroni and Lenci (2010) for how
the surface realizations of a feature are determined.
Raw scores are then transformed into Local Mutual
Information values.

The DM semantic space is a matrix with 30K
rows (target words) represented in a space of more
than 700M dimensions. Since our visual dimension
extraction algorithms are maximally producing 32K
dimensions (see Section 4.2 below), we make the
impact of text features on the combined model di-
rectly comparable to the one of visual features by
selecting only the top n DM dimensions (with n

varying as explained below). The top dimensions
are picked based on their cumulative Local Mutual
Information mass. We show in the experiments be-
low that trimming DM in this way does not have a
negative impact on its performance, so that we are
justified in claiming that we are adding visual in-
formation to a state-of-the-art text-based semantic
space.

4.2 Visual Information Extraction

For our experiments, we use the ESP-Game data
set.3 It contains 50K images, labeled through the
famous “game with a purpose” developed by Louis
von Ahn (von Ahn and Dabbish, 2004). The tags
of images in the data set form a vocabulary of 11K
distinct word types. Image labels contain 6.686 tags
on average (2.357 s.d.). The ESP-Game corpus is
an interesting data set from our point of view since,
on the one hand, it is rather large and we know that
the tags it contains are related to the images. On
the other hand, it is not the product of experts la-
belling representative images, but of a noisy anno-
tation process of often poor-quality or uninteresting
images (e.g., logos) randomly downloaded from the
Web. Thus, analogously to the characteristics of a
textual corpus, our algorithms must be able to ex-
ploit large-scale statistical information, while being
robust to noise.

Following what has become an increasingly stan-
dard procedure in computer vision, we use the Dif-
ference of Gaussian (DoG) detector to automatically
detect keypoints from images and consequently map
them to visual words (Lowe, 1999; Lowe, 2004). We

3http://www.espgame.org

use the Scale-Invariant Feature Transform (SIFT) to
depict the keypoints in terms of a 128-dimensional
real-valued descriptor vector. Color version SIFT
descriptors are extracted on a regular grid with five
pixels spacing, at four multiple scales (10, 15, 20,
25 pixel radii), zeroing the low contrast ones. We
chose SIFT for its invariance to image scale, ori-
entation, noise, distortion and partial invariance to
illumination changes. To map the descriptors to vi-
sual words, we cluster the keypoints in their 128-
dimensional space using the K-means clustering al-
gorithm, and encode each keypoint by the index of
the cluster (visual word) to which it belongs. We
varied the number of visual words between 250 and
2000 in steps of 250. We then computed a one-level
4x4 pyramid of spatial histograms (Grauman and
Darrell, 2005), consequently increasing the features
dimensions 16 times, for a number that varies be-
tween 4K and 32K, in steps of 4K. From the point of
view of our distributional semantic model construc-
tion, the important point to keep in mind is that stan-
dard parameter choices such as the ones we adopted
lead to distributional vectors with 4K, 8K, . . . , 32K
dimensions, where a higher number of features cor-
responds, roughly, to a more granular analysis of an
image. We used the VLFeat implementation for the
entire pipeline (Vedaldi and Fulkerson, 2008). See
the references in Section 2.2 above for technical de-
tails.

4.3 Model integration

We remarked above that the visual word extraction
procedure naturally leads to 8 kinds of image-based
vectors of dimensionalities from 4K to 32K in steps
of 4K. To balance text and image information, we
use DM vectors made of top n features ranging from
4K to 32K in the same 4K steps. By combining,
we obtain 64 combined models (4K text and 4K im-
age dimensions, 4K text and 8K image dimensions,
etc.). Since in the experiments on WordSim (Section
5.1 below) we observe best performance with 32K
text-based features, we report here only experiments
with (at least) 32K dimensions. Similar patterns to
the ones we report are observed when adding image-
based dimensions to text-based vectors of different
dimensionalities.

For a thoroughly fair comparison, if we add n vi-
sual features to the text-based model and we notice



an improvement, we must ask whether the same im-
provement could also be obtained by adding more
text-based features. To control for this possibility,
we also consider a set of purely text-based mod-
els that have the same number of dimensions of the
combined models, that is, the top 32K DM features
plus 8K, . . . , 32K further DM features (the next top
features in the cumulative Local Mutual Information
score ranking). In the experiments below, we refer to
the purely textual model as text (always 32K dimen-
sions), to the purely image-based model as image, to
the combined models as combined, and to the con-
trol in which further text dimensions are added for
comparability with combined as text+.

4.4 Evaluation benchmarks

We conduct our most extensive evaluation on the
WordSim353 data set (Finkelstein et al., 2002),
a widely used benchmark constructed by asking
16 subjects to rate a set of word pairs on a 10-
point similarity scale and averaging the ratings (dol-
lar/buck receive a high 9.22 average rating, profes-
sor/cucumber a low 0.31). We cover 260 Word-
Sim (mostly noun/noun) pairs. We evaluate models
in terms of the Spearman correlation of the cosines
they produce for the WordSim pairs with the average
human ratings for the same pairs (here and below,
we do not report comparisons with the state of the
art in the literature, because we have reduced cov-
erage of the data sets, making the comparison not
meaningful).

To verify if the conclusions reached on WordSim
extend to different semantic tasks, we use two con-
cept categorization benchmarks, where the goal is
to cluster a set of (nominal) concepts into broader
categories. The Almuhareb-Poesio (AP) concept set
(Almuhareb, 2006), in the version we cover, con-
tains 230 concepts to be clustered into 21 classes
such as vehicle (airplane, car. . . ), time (aeon, fu-
ture. . . ) or social unit (brigade, nation). The Battig
set (Baroni et al., 2010), in the version we cover,
contains 72 concepts to be clustered into 10 classes.
Unlike AP, Battig only contains concrete basic-level
concepts belonging to categories such as bird (ea-
gle, owl. . . ), kitchenware (bowl, spoon. . . ) or veg-
etable (broccoli, potato. . . ). For both sets, follow-
ing the original proponents and others, we clus-
ter the words based on their pairwise cosines in

the semantic space defined by a model using the
CLUTO toolkit (Karypis, 2003). We use CLUTO’s
built-in repeated bisections with global optimiza-
tion method, accepting all of CLUTO’s default val-
ues. Cluster quality is evaluated by percentage pu-
rity (Zhao and Karypis, 2003). If ni

r is the num-
ber of items from the i-th true (gold standard) class
that were assigned to the r-th cluster, n is the total
number of items and k the number of clusters, then:
Purity = 1

n

∑k
r=1 max

i
(ni

r). In the best case (per-

fect clusters), purity is 100% and as cluster quality
deteriorates, purity approaches 0.

Finally, we use the Baroni-Lenci Evaluation of
Semantic Similarity (BLESS) data set made avail-
able by the GEMS 2011 organizers.4 In the ver-
sion we cover, the data set contains 174 concrete
nominal concepts, each paired with a set of words
that instantiate the following 6 relations: hyper-
nymy (spear/weapon), coordination (tiger/coyote),
meronymy (castle/hall), typical attribute (an ad-
jective: grapefruit/tart) and typical event (a verb:
cat/hiss). Concepts are moreover matched with 3
sets of randomly picked unrelated words (nouns, ad-
jectives and verbs). For each true and random rela-
tion, the data set contains at least one word per con-
cept, typically more. Following the GEMS guide-
lines, we apply a model to BLESS as follows. Given
the similarity scores provided by the model for a
concept with all associated words within a relation,
we pick the term with the highest score. We then z-
standardize the 8 scores we obtain for each concept
(one per relation), and we produce a boxplot summa-
rizing the distribution of z scores per relation across
the concepts (i.e., each box of the plot summarizes
the distribution of the 174 scores picked for each re-
lation, standardized as we just described). Boxplots
are produced accepting the default boxplotting op-
tion of the R statistical package5 (boxes extend from
first to third quartile, median is horizontal line inside
the box).

4http://sites.google.com/site/geometricalmodels/shared-
evaluation

5http://www.r-project.org/



5 Results

5.1 WordSim

The WordSim results for our models across dimen-
sionalities as well as for the full DM are summarized
in Figure 3.
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Figure 3: Performance of distributional models on Word-
Sim

The purely image-based model is having the
worst performance in all settings, although even the
lowest image-based Spearman score (0.29) is signif-
icantly above chance (p. < 0.05), suggesting that
the model does capture some semantic information.
Contrarily, adding image-based dimensions to a tex-
tual model (combined) consistently reaches the best
performance, also better – for all choices of dimen-
sionality – than adding an equal number of text fea-
tures (text+) or using the full DM matrix. Inter-
estingly, the same overall result pattern is observed
if we limit evaluation to the WordSim subsets that
Agirre et al. (2009) have identified as semantically
similar (e.g., synonyms or coordinate terms) and se-
mantically related (e.g., meronyms or topically re-
lated concepts).

Based on the results reported in Figure 3, fur-
ther analyses will focus on the combined model with
+20K image-based features, since performance of
combined does not seem to be greatly affected by the
dimensionality parameter, and performance around
this value looks quite stable (it is better only at the
boundary +4K value, and with +28K, where, how-
ever, there is a dip for the image model). The text+

performance is not essentially affected by the di-
mensionality parameter, and we pick the +20K ver-
sion for maximum comparability with combined.

The difference between combined and text+, al-
though consistent, is not statistically significant
according to a two-tailed paired permutation test
(Moore and McCabe, 2005) conducted on the re-
sults for the +20K versions of the models. Still, very
interesting qualitative differences emerge. Table 1
reports those WordSim pairs (among the ones with
above-median human-judged similarity) that have
the highest and lowest combined-to-text+ cosine ra-
tios, i.e., pairs that are correctly treated as similar by
combined but not by text+, and vice versa. Strik-
ingly, the pairs characterizing the image-feature-
enriched combined are all made of concrete, highly
imageable concepts, whereas the text+ pairs refer to
very abstract notions. We thus see here the first ev-
idence of the complementary nature of visual and
textual information.

combined text+
tennis/racket physics/proton
planet/sun championship/tournament
closet/clothes profit/loss
king/rook registration/arrangement
cell/phone mile/kilometer

Table 1: WordSim pairs with highest (first column) and
lowest (second column) combined-to-text+ cosine ratios

5.2 Concept categorization
Table 2 reports percentage purities in the AP and
Battig clustering tasks for full DM and the represen-
tative models discussed above.

model AP Battig
DM 81 96
text 79 83

text+ 80 86
image 25 36

combined 78 96

Table 2: Percentage AP and Battig purities of distribu-
tional models

Once more, we see that the image model alone
is not at the level of the text models, although both
its AP and Battig purities are significantly above



chance (p < 0.05 based on simulated distributions
for random cluster assignment). Thus, even alone,
image-based vectors do capture aspects of meaning.
For AP, adding image features does not improve per-
formance, although it does not significantly worsen
it either (a two-tailed paired permutation test con-
firms that the difference between text+ and com-
bined is far from significance). For Battig, adding
visual features improves on the purely text-based
models based on a comparable number of features
(although the difference between text+ and com-
bined is not significant), reaching the same perfor-
mance obtained with the full DM model (that in
these categorization tests is slightly above that of the
trimmed models). Intriguingly, the Battig test is en-
tirely composed of concrete concepts, so the differ-
ence in performance for combined might be related
to its preference for concrete things we already ob-
served for WordSim.

5.3 BLESS

The BLESS distributions of text-based models (in-
cluding combined) are very similar, so we use here
the full DM model as representative of the text-based
set – its histogram is compared to the one of the
purely image-based model in Figure 4.

We see that purely text-based DM cosines capture
a reasonable scale of taxonomic similarity among
nominal neighbours (coordinates then hypernyms
then meronyms then random nouns), whereas verbs
and adjectives are uniformly very distant, whether
they are related or not. This is not surprising be-
cause the DM links mostly reflect syntactic patterns,
that will be disjoint across parts of speech (e.g., a
feature like subject kill will only apply to nouns,
save for parsing errors). Looking at the image-
only model, we first observe that it can capture dif-
ferences between related attributes/events and ran-
dom adjectives/verbs (according to a Tukey HSD
test for all pairwise comparisons, these differences
are highly significant, whereas DM only signifi-
cantly distinguishes attributes from random verbs).
In this respect, image is arguably the “best” model
on BLESS. However, perhaps more interestingly,
the image model also shows a bias for nouns, cap-
turing the same taxonomic hierarchy found for DM.
This suggests that image analysis is providing a de-
composition of concepts into attributes shared by

similar entities, that capture ontological similarity
beyond mere syntagmatic co-occurrence in an im-
age description.

To support this latter claim, we counted the av-
erage number of times that the related terms picked
by the image model directly co-occur with the target
concepts in an ESP-Game label. It turns out that this
count is higher for both attributes (10.6) and hyper-
nyms (7.5) than for coordinates (6.5). So, the higher
similarity of coordinates in the image model demon-
strates that its features do generalize across images,
allowing us to capture “attributional” or “paradig-
matic” similarity in visual space. More in general,
we find that, among all the related terms picked by
the image model that have an above-average cosine
with the target concept, almost half (41%) never co-
occur with the concept in the image set, again sup-
porting the claim that, by our featural analysis, we
are capturing visual properties of similar concepts
beyond their co-occurrence as descriptions of the
same image.

A final interesting point pertains to the specific in-
stances of each (non-random) relation picked by the
textual and visual models: of 870 related term pairs
in total, almost half (418) differ between DM and
image, suggesting that the boxplots in Figure 4 hide
larger differences in what the models are doing. The
randomly picked examples of mismatches in top at-
tributes from Table 3 clearly illustrate the qualitative
difference between the models, and, once more, the
tendency of image-based representations to favour
(not surprisingly!) highly visual properties such as
colours and shapes, vs. the well-known tendency of
text-based models to extract systemic or functional
characteristics such as powerful or elegant (Baroni
et al., 2010). By combining the two sources of infor-
mation, we should be able to develop distributional
models that come with more well-rounded charac-
terizations of the concepts they describe.

6 Conclusion

We proposed a simple method to augment a state-
of-the-art text-based distributional semantic model
with information extracted from image analysis.
The method is based on the standard bag-of-visual-
words representation of images in computer vision.
The image-based distributional profile of a word is
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Figure 4: Distribution of z-normalized cosines of words instantiating various relations across BLESS concepts.

concept DM image concept DM image
ant small black potato edible red
axe powerful old rifle short black
cathedral ancient dark scooter cheap white
cottage little old shirt fancy black
dresser new square sparrow wild brown
fighter fast old squirrel fluffy brown
fork dangerous shiny sweater elegant old
goose white old truck new heavy
jet fast old villa new cosy
pistol dangerous black whale large gray

Table 3: Randomly selected cases where nearest at-
tributes picked by DM and image differ.

encoded in a vector of co-occurrences with “visual
words”, that we concatenate with a text-based co-
occurrence vector. A cautious interpretation of our
results is that adding image-based features is at least
not damaging, when compared to adding further
text-based features, and possibly beneficial. Impor-
tantly, in all experiments we find that image-based
features lead to interesting qualitative differences in
performance: Models including image-based infor-
mation are more oriented towards capturing similar-
ities between concrete concepts, and focus on their
more imageable properties, whereas the text-based
features are more geared towards abstract concepts
and properties. Coming back to the discussion of
symbol grounding at the beginning of the paper, we

consider this (very!) preliminary evidence for an in-
tegrated view of semantics where the more concrete
aspects of meaning derive from perceptual experi-
ence, whereas verbal associations mostly account
for abstraction.

In future work, we plan first of all to improve per-
formance, by focusing on visual word extraction and
on how the text- and image-based vectors are com-
bined (possibly using supervision to optimize both
feature extraction and integration with respect to se-
mantic tasks). However, the most exciting direction
we intend to follow next will concern evaluation,
and in particular devising new benchmarks that ad-
dress the special properties of image-enhanced mod-
els directly. For example, Baroni and Lenci (2008)
observe that text-based distributional models are se-
riously lacking when it comes to characterize phys-
ical properties of concepts such as their colors or
parts. These are exactly the aspects of conceptual
knowledge where image-based information should
help most, and we will devise new test sets that will
focus specifically on verifying this hypothesis.
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