Automatic Personality and Interaction Style Recognition from Facebook Profile Pictures

Fabio Celli
University of Trento
via sommarive 5
Trento, Italy
fabio.celli@unitn.it

Elia Bruni
University of Bozen-Bolzano
Dominikanerplatz 3
Bozen-Bolzano, Italy
elia.bruni@unibz.it

Bruno Lepri
FBK
via sommarive 18
Trento, Italy
lepri@fbk.eu

ABSTRACT
In this paper, we address the issue of personality and interaction style recognition from profile pictures in Facebook. We recruited volunteers among Facebook users and collected a dataset of profile pictures, labeled with gold standard self-assessed personality and interaction style labels. Then, we exploited a bag-of-visual-words technique to extract features from pictures. Finally, different machine learning approaches were used to test the effectiveness of these features in predicting personality and interaction style traits. Our good results show that this task is very promising, because profile pictures convey a lot of information about a user and are directly connected to impression formation and identity management.

Categories and Subject Descriptors
5.5 [Emotional and Social Signals in Multimedia]: Novel methods for the classification and representation of interactive social and/or emotional signals

General Terms
Facebook profiling personality pictures algorithms

Keywords
personality recognition, Facebook, data mining, machine learning, feature extraction

1. INTRODUCTION
People spend a considerable amount of effort in order to form and to manage impressions, especially in the initial stage of social interactions [10]. Nowadays, this fundamental process has been modified by the usage of new communication technologies. Social networking technologies, such as Facebook, offer new ways for self-presentations. Several studies reported that Facebook users engage in actively creating, maintaining and modifying an image of selves by adjusting their profiles, including descriptions and pictures, joining groups and displaying their likes and dislikes [12]. Hence, the Facebook profile page can be considered as a mediated representation of the Facebook user. Although users may be tempted to enhance their self-presentations, friends who are both offline and online keep Facebook users’ self-presentations in check. Indeed, misrepresentation on profile pages can have serious offline consequences. Therefore, the online profile usually reflect the offline profile, although slightly enhanced [33]. Moreover, social psychology research has also highlighted that personality plays an important role in the way people manage the images they convey in self-presentations [17]. For this reason, some recent studies reported that users can make accurate personality impressions from the information displayed in social network user profiles [33], and have investigated the specific features from user profiles and photos that are more useful to create personality impressions [8]. For example, the results obtained by Hall et al. [13] indicate that observers could accurately estimate extraversion, agreeableness and conscientiousness of unknown profile owners. Interestingly, profile pictures were useful for estimating extraversion and agreeableness. Again, Utz [31] associated user extraversion with photo expressiveness. Finally, Van der Heide et al. [32] have shown that in the context of Facebook, photos may have more impact on judgments of extraversion than textual self-disclosures. Based on these previous findings, we propose to automatically predict personality traits and interaction styles from Facebook profile images. Regarding personality, we resort to the big five model [7], a multifactorial approach which owes its name to the five traits it takes as constitutive of people’s personality: extraversion, emotional stability/neuroticism, agreeableness, conscientiousness, and openness to experience. Moreover, we also target the prediction of people’s interaction traits. To this end, we exploited the interpersonal circumplex, a model for organizing and assessing interpersonal traits [19]. Specifically, the interpersonal circumplex is defined by two orthogonal axes, a vertical axis of dominance or agency and a horizontal axis of affect or warmth. The main contributions of the paper are as follows: 1) We collect a dataset of profile images from 100 Facebook users and we annotate them with gold standard self-assessed personality and interaction style labels; 2) we exploit a bag-of-visual-word representation of images in order to extract relevant visual features; 3) we propose and validate a supervised learning approach, based on Support Vector Machines and logistic regression, to the automatic recognition of personality and interaction style traits from visual features extracted from profile pictures. The rest of the paper is structured as follows: Section 2 describes the relevant previous work on personality recognition, with a particular focus on personality recognition from social media data; Section 3 describes the data collected and used for our experiments; while the definition of the research task and the detailed information on the methodology (feature extraction, feature selection and classification) is provided in Section 4. In Section 5 we present the results and in Section 6 we draw our conclusions.
2. RELATED WORK

Pioneering work addressing automatic recognition of personality was done, among others, by Mairesse et al. [21], who investigated systematically the usefulness of different sets of acoustic and textual features, extracted from self-reports and observed data. They reported that the best prediction performance, using text as feature, is on openness to experience. In more recent years, the interest in personality recognition has grown and several studies have started exploring the wealth of behavioral data made available by cameras, microphones [26, 2, 24, 18, 1], wearable sensors [25, 15], and mobile phones [30, 6, 9]. Again, researchers have also focused on personality prediction from small corpora of social network data, like Twitter and Facebook, exploiting either linguistic features in status updates, social features such as friends count, and daily activity [11, 27, 5]. Our paper also uses data from a social network; however it adopts a novel approach using visual features extracted from Facebook profile pictures in order to classify subjects’ traits. Interestingly, two recent works addressed the automatic recognition of Big Five traits from self-presentation videos registered in a lab setting [2] and from Youtube conversational vlogs [3]. However, they used different data compared with ones proposed in the current paper. Another novelty introduced in our paper is the classification of interaction style traits and as defined by the interpersonal circumplex [23]. To the best of our knowledge, no previous works in computational domain have targeted the task of interaction style characterization of Big Five traits from self-presentation videos registered in a lab setting [2] and from Youtube conversational vlogs [3]. How- ever, they used different data compared with ones proposed in the current paper. Another novelty introduced in our paper is the classification of interaction style traits and as defined by the interpersonal circumplex [23]. To the best of our knowledge, no previous works in computational domain have targeted the task of interaction style classification from pictures using the interpersonal circumplex.

3. DATA COLLECTION

As we mentioned in section 1, in our study we resorted to the big five factor model, a very popular and widely used model for personality assessments [7], and to the interpersonal circumplex, a model for the assessment of interpersonal behavior that has been used in psychology and psychopathology to identify interpersonal problems and interpersonal values [14, 19]. While the big five factor model measures the individual tendencies, the interpersonal circumplex measures the attitude towards others. The big five factor model defines personality along 5 bipolar scales that can be turned into binary classes: extroversion (sociable vs shy); emotional stability (secure vs neurotic); agreeableness (friendly vs ugly); conscientiousness (organized vs careless); openness to experience (insightful vs unimaginative). The interpersonal circumplex instead defines two orthogonal axes, dominance and affect, as represented in figure 1. We recruited 112 volunteers among Facebook users, most of them among friends and friends-of-friends, in order to have a better control over the data. Using Facebook graph APIs, we collected a dataset of their profile images. Then, we asked to the participants to fill two surveys about individual traits, in order to have current the wealth of behavioral data made available by cameras, microphones [26, 2, 24, 18, 1], wearable sensors [25, 15], and mobile phones [30, 6, 9]. Again, researchers have also focused on personality prediction from small corpora of social network data, like Twitter and Facebook, exploiting either linguistic features in status updates, social features such as friends count, and daily activity [11, 27, 5]. Our paper also uses data from a social network; however it adopts a novel approach using visual features extracted from Facebook profile pictures in order to classify subjects’ traits. Interestingly, two recent works addressed the automatic recognition of Big Five traits from self-presentation videos registered in a lab setting [2] and from Youtube conversational vlogs [3]. However, they used different data compared with ones proposed in the current paper. Another novelty introduced in our paper is the classification of interaction style traits and as defined by the interpersonal circumplex [23]. To the best of our knowledge, no previous works in computational domain have targeted the task of interaction style classification from pictures using the interpersonal circumplex.

Figure 1: big 5 and interpersonal circumplex

Figure 2: SIFT features on a profile image

4. METHODOLOGY

The goal of the paper is to automatically recognize personality traits and interaction styles from Facebook profile images. In the following subsections we will describe the feature extraction and the classification tasks.

4.1 Feature Extraction

In order to extract features from profile images we exploited a Bag-of-Visual-Word (BoVW) representation of images, a popular technique for object recognition inspired by the traditional bag-of-words technique in NLP [29]. Bag-of-Words is a dictionary-based method to represent a document in terms of a cluster of words which are entries of the dictionary. BoVW transfers this idea to images, describing them as a collection of discrete regions called visual words. BoVW downplays word arrangement (i.e. the spatial information in the image) and describes the image as a histogram of the frequency of visual words. The set of visual words forms a visual vocabulary, which is constructed by clustering a large corpus of low-level features. The low-level features are handcrafted attributes designed to find local image structures in a repeatable fashion and to encode them in ways that are robust to image transformations such as translation, rotation and affine deformation. There is a large variety of low-level features to use in the BoVW pipeline. In our case, we use the Scale Invariant Feature Transform (SIFT), one of the most popular and effective feature extraction technique used for object recognition [20]. SIFT is invariant to several image transformations such as image scale, orientation, noise and it is also partially invariant to changes in illumination. A SIFT descriptor, as depicted in figure 2 is obtained by concatenating the contents of 4 × 4 sampling subregions which are explored around each pixel-wise step across the image. For each of the 16 samples, 8 gradient orientations are calculated to obtain a 128-dimensional feature vector. Our resulting BoVW feature vectors have 4096 dimensions which were subsequently reduced in dimensionality to about 90 dimensions by using Singular Value Decomposition [22]. To perform the entire visual pipeline we use VSEM, an open library for visual semantics [4]. VSEM contains a large variety of off-the-shelf low level features, but it does not allow to backtrack to feature types. Since this is a pilot experiment, we used the largest possible number of features, keeping the number of instances very limited
in order to run a manual qualitative analysis (see section 5) of the profile pictures. In the future we will repeat the experiment with a very large dataset.

4.2 Classification and Evaluation

First of all we ran a t-test to compare personality trait scores of our small set to the scores of a set of about 100000 Facebook users randomly sampled from myPersonality [16]. It resulted that the probability of having differences in scores due to chance in a small and large dataset is $p < 0.001$ for all traits. Details are reported in table 1. We could not run a t-test for dominance and affect since there are not such dimensions in myPersonality. We formulated the automatic recognition of personality traits and interaction styles from profile pictures as 7 binary classification tasks, one per each trait of personality and interaction style. To this purpose, we balanced the classes of each personality trait with a median split, turning scores into classes and reducing each task to a binary classification. We have few instances of unconscientious and unimaginative people, due to a bias in the participation of Facebook users. Because of the novelty of the task, we experimented with different classification algorithms: naive bayes (nb), support vectors (svm), decision trees (dt), logistic regression(lr), nearest neighbors (nn), rule learner (rip). We ran a 60% training and 40% test split evaluation (f1-s) and provide f1-scores. We computed two baselines for the classification tasks: the majority baseline (maj) and the averaged majority baseline (avg maj). The majority baseline is close to 0.5, because we balanced the two classes for each task. The averaged majoriy baseline is the average of the performance obtained classifying all the instances before in one class and then in the other. Both the baselines were computed using f1-score. We argue that averaged majority is the meaningful baseline for these classification tasks, given the bipolar nature of each personality and interaction style dimension.

![Figure 3: Examples of profile pictures per trait.](image)

<table>
<thead>
<tr>
<th>trait</th>
<th>t</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext.</td>
<td>11.4</td>
<td>99.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>stab.</td>
<td>-5.1</td>
<td>99.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>agree.</td>
<td>12.6</td>
<td>99.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>consc.</td>
<td>12.1</td>
<td>99.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>open.</td>
<td>8.2</td>
<td>99</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Table 1: Detailed results of t-test for the 5 personality traits.

The results, reported in table 2, show that the information encoded in profile pictures can be successfully exploited for classification of personality and interaction style traits of users in Facebook. Nevertheless there are differences between traits: apart from openness and conscientiousness, that have few instances and require more experiments on a larger scale, agreeableness and extraversion achieve the best performances among personality traits, while dominance and affect achieve performances slightly above $f1=0.6$. Emotional stability is the most difficult trait to predict. This is consistent with the findings that extroversion and agreeableness are accurately estimated by human raters [13] and that extroversion is related to photo expressiveness [31]. More experiments are required to test the finding that observers could accurately estimate conscientiousness from pictures. Unfortunately, the Bag-of-Visual-Words method adopted for the extraction of features from images is not suitable for the interpretation of the pictures’ attributes. Nevertheless, we performed clustering on the classified data, using a simple k-means algorithm to automatically retrieve the more similar pictures that were correctly classified, and we checked their similarities manually. This revealed that extrovert and stable people tend to have pictures where they are smiling and they appear with other people. Introverts tend to appear alone, neurotics tend to have images without humans and close-up faces. Not agreeable persons tend to use profile pictures with few colors. Profile pictures of people that is not open to experience tend to have strong spots of light and sometimes darkened figures. Affective people tend to smile in profile pictures. Dominant people tend to have very bright, visible or attractive pictures. Conscientiousness seems to be predictable by eye gazing direction. We included some examples the pictures in the paper, anonymized with out-of-focus spots, see figure 3.

<table>
<thead>
<tr>
<th>task</th>
<th>alg</th>
<th>inst</th>
<th>maj</th>
<th>a-maj</th>
<th>f1-s</th>
<th>acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>ext.</td>
<td>nb</td>
<td>33</td>
<td>.51</td>
<td>.35</td>
<td>.615</td>
<td>61.3%</td>
</tr>
<tr>
<td>stab.</td>
<td>rip</td>
<td>57</td>
<td>.508</td>
<td>.343</td>
<td>.609</td>
<td>60.8%</td>
</tr>
<tr>
<td>agree.</td>
<td>svm</td>
<td>30</td>
<td>.5</td>
<td>.333</td>
<td>.667</td>
<td>66.6%</td>
</tr>
<tr>
<td>consc.</td>
<td>svm</td>
<td>9</td>
<td>.55</td>
<td>.397</td>
<td>.733</td>
<td>75%</td>
</tr>
<tr>
<td>open.</td>
<td>nn</td>
<td>11</td>
<td>.545</td>
<td>.385</td>
<td>.732</td>
<td>74.5%</td>
</tr>
<tr>
<td>dom.</td>
<td>lr</td>
<td>51</td>
<td>.509</td>
<td>.344</td>
<td>.615</td>
<td>65%</td>
</tr>
<tr>
<td>aff.</td>
<td>lr</td>
<td>21</td>
<td>.509</td>
<td>.344</td>
<td>.619</td>
<td>62.3%</td>
</tr>
</tbody>
</table>

Table 2: results of classification. alg=algorithm, inst=number of instances, maj=majority, a-maj=averaged majority, f1-s=f1-score with 60% training and 40% test split evaluation, acc=accuracy.

5. DISCUSSION

Results, reported in table 2, show that the information encoded in profile pictures can be successfully exploited for classification of personality and interaction style traits of users in Facebook. Nevertheless there are differences between traits: apart from openness and conscientiousness, that have few instances and require

6. CONCLUSION AND FUTURE WORK

In this paper, we successfully exploited a Bag-of-Visual-Words technique to automatically predict personality and interaction styles from profile pictures in Facebook. This is a new and promising task, because profile pictures convey a lot of information about a user and are directly connected to her/his identity. The good, although preliminary, results of the computational classification are in line with the previous findings in the literature about impression formation and personality and with alternative approaches to personality classification. In the future, we would like to test the proposed approach on a larger dataset of Facebook profile pictures.

7. REFERENCES

