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Abstract

VSEM is an open library for visual se-
mantics.  Starting from a collection of
tagged images, it is possible to auto-
matically construct an image-based rep-
resentation of concepts by using off-the-
shelf VSEM functionalities. VSEM is en-
tirely written in MATLAB and its object-
oriented design allows a large flexibility
and reusability. The software is accompa-
nied by a website with supporting docu-
mentation and examples.

1 Introduction

In the last years we have seen great progress in
the area of automated image analysis. Important
advances, such as the introduction of local features
for a robust description of the image content (see
Mikolajezyk et al. (2005) for a systematic review)
and the bag-of-visual-words method (BoVW)! for
a standard representation across multiple images
(Sivic and Zisserman, 2003), have contributed to
make image analysis ubiquitous, with applications
ranging from robotics to biology, from medicine to
photography.

In addition, the development of these key ideas
has been strongly accelerated by both the intro-
duction of very well defined challenges such as the
popular object recognition task Pascal Visual Ob-
ject Classes Challenge (Everingham et al., 2010),
which have been attracting also a wide commu-
nity of “outsiders" specialized in a variety of dis-
ciplines (e.g., machine learning, neural networks,
graphical models and natural language process-
ing), and by sharing effective, well documented

'Bag-of-visual-words model is a popular technique for
image classification inspired by the traditional bag-of-words
model in Information Retrieval. It represents an image with
a histogram of frequency of visual words. Visual words are
identified by clustering a large corpus of training features.
See Szeliski (2010) chapter 14 for more details.
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implementations of cutting edge image analysis
algorithms, such as OpenCV? and VLFeat.?

A comparable story can be told about automatic
text analysis. The last decades have seen a long
series of successes in the processing of large text
corpora in order to extract more or less structured
semantic knowledge. In particular, under the as-
sumption that meaning can be captured by patterns
of co-occurrences of words, distributional seman-
tic models such as Latent Semantic Analysis (Lan-
dauer and Dumais, 1997) or Topic Models (Blei
et al., 2003) have been shown to be very effective
both in general semantic tasks such as approximat-
ing human intuitions about meaning, as well as in
more application-driven tasks such as information
retrieval, word disambiguation and query expan-
sion (Turney and Pantel, 2010). And also in the
case of automated text analysis, a wide range of
method implementations are at the disposal of the
scientific community.*

Nowadays, given the parallel success of the two
disciplines, there is growing interest in making
the visual and textual channels interact for mutual
benefit. If we look at the image analysis commu-
nity, we discover that a surprisingly well estab-
lished tradition of studies that exploit both chan-
nels of information have already been established.
For example, there is a relatively extended amount
of literature about enhancing the performance on
visual tasks such as object recognition or image re-
trieval by replacing a purely image-based pipeline
with hybrid methods augmented with textual in-
formation (Barnard et al., 2003; Farhadi et al.,
2009; Berg et al., 2010; Farhadi et al., 2010;
Kulkarni et al., 2011).

Unfortunately, the situation within automatic

http://opencv.org/

*http://www.vlfeat.org/

*See for example the annotated list of corpus-based
computational linguistics resources at http://www-nlp.
stanford.edu/links/statnlp.html.



text analysis is not so rosy. Despite the huge po-
tential that automatically induced visual features
could represent as a new source of perceptually
grounded semantic knowledge,> image-enhanced
models of semantics developed so far (Feng and
Lapata, 2010; Bruni et al., 2011; Leong and Mi-
halcea, 2011; Bergsma and Goebel, 2011; Bruni et
al., 2012a; Bruni et al., 2012b) have only scratched
this great potential and are still considered as
proof-of-concept studies only.

One possible reason of this delay with respect to
the image analysis community might be ascribed
to the high entry barriers that NLP researchers
adopting image analysis methods have to face. Al-
though many of the image analysis toolkits are
open source and well documented, they mainly ad-
dress users within the same community and there-
fore their use is not as intuitive for others. The
final goal of libraries such VLFeat and OpenCV
is the representation and classification of images.
Therefore, they naturally lack of a series of com-
plementary functionalities that are necessary to
bring the visual representation to the level of se-
mantic concepts.

For these reasons, we present here VSEM,
a novel toolkit which makes the extraction of
image-based representations of concepts an easy
task. VSEM is equipped with state-of-the-art al-
gorithms, from low-level feature detection and de-
scription up to the BoVW representation of im-
ages, together with a set of new routines necessary
to move from an image-wise to a concept-wise
representation of the image content. In a nutshell,
VSEM extracts visual information in an analogous
way to how it is done for automatic text analysis.
Thanks to BoVW, the image content is indeed dis-
cretized and visual units somehow comparable to
words in text are produced (the visual words). In
this way, from a corpus of images annotated with
a set of concepts, it is possible to derive semantic
vectors of co-occurrence counts of concepts and

SMany studies have showed how semantic models derived
from standard text corpora capture encyclopedic, functional
and discourse-related properties of word meanings, but miss
their concrete aspects (Andrews et al., 2009; Baroni et al.,
2010; Baroni and Lenci, 2008; Riordan and Jones, 2011).
For example, we might gather from text the information that
bananas are tropical and edible, but not that they are yellow
(because it is highly unlikely that an author feels the need
to write down into words that “bananas are yellow"). The
same studies show how, when humans are asked to describe
concepts, the features they produce are instead mainly of a
perceptual nature (bananas are yellow, tigers have stripes, and
SO on).

visual words. The obtained semantic vectors can
be then utilized for typical semantic tasks, such
as approximating the semantic relatedness of two
concepts by a similarity function over the visual
words representing them.

Importantly, the part of VSEM concerning im-
age analysis is based on VLFeat functionalities,
offering enhanced VSEM image analysis pipeline
makes use of VLFeat functionalities (Vedaldi and
Fulkerson, 2010). This guarantees that the image
analysis underpinnings of the library be well main-
tained and state-of-the-art.

The rest of the paper is organized as follows. In
Section 2 we introduce the procedure to obtain an
image-based representation of a concept. Section
3 describes the VSEM structure. Section 4 shows
how to install and run VSEM through an example
that uses the Pascal VOC data set. Section 5 con-
cludes summarizing the material and discussing
further directions.

2 Background

As shown by Feng and Lapata (2010), Bruni et
al. (2011) and Leong and Mihalcea (2011), it is
possible to construct an image-based representa-
tion of a set of target concepts by starting from a
collection of images depicting those concepts, en-
coding the image contents into low-level features
(e.g., SIFT) and scaling up to a higher level rep-
resentation, based on the well-established BoVW
method to represent images. In addition, as shown
by Bruni et al. (2012b), better representations can
be extracted if the object depicting the concept is
first localized in the image.

More in detail, the pipeline encapsulating the
whole process mentioned above takes as input a
collection of images together with their associated
tags and optionally object location annotations. Its
output is a set of concept representation vectors
for individual tags. The following steps are in-
volved: (i) extraction of local image features, (ii)
visual vocabulary construction, (iii) encoding the
local features in a BoVW histogram, (iv) including
spatial information with spatial binning, (v) aggre-
gation of visual words on a per-concept basis in
order to obtain the co-occurrence counts for each
concept and (vi) transforming the counts into asso-
ciation scores and/or reducing the dimensionality
of the data. A brief description of the individual
steps follows.
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Figure 1: An example of a visual vocabulary cre-
ation pipeline. From a set of images, a larger set
of features are extracted and clustered, forming the
visual vocabulary.

Local features Local features are designed to
find local image structures in a repeatable fash-
ion and to represent them in robust ways that are
invariant to typical image transformations, such
as translation, rotation, scaling, and affine defor-
mation. Local features constitute the basis of
approaches developed to automatically recognize
specific objects (Grauman and Leibe, 2011). The
most popular local feature extraction method is the
Scale Invariant Feature Transform (SIFT), intro-
duced by Lowe (2004). VSEM uses the VLFeat
implementation of SIFT.

Visual vocabulary To obtain a BoVW repre-
sentation of the image content, a large set of lo-
cal features extracted from a large corpus of im-
ages are clustered. In this way the local fea-
ture space is divided into informative regions (vi-
sual words) and the collection of the obtained vi-
sual words is called visual vocabulary. k-means
is the most commonly used clustering algorithm
(Grauman and Leibe, 2011). In the special case
of Fisher encoding (see below), the clustering of
the features is performed with a Gaussian mixture
model (GMM), see Perronnin et al. (2010). Fig-
ure 1 exemplifies a visual vocabulary construction
pipeline. VSEM contains both the k-means and
the GMM implementations.

Encoding The encoding step maps the local fea-
tures extracted from an image to the correspond-
ing visual words of the previously created vocab-
ulary. The most common encoding strategy is
called hard quantization, which assigns each fea-
ture to the nearest visual word’s centroid (in Eu-
clidean distance). Recently, more effective encod-
ing methods have been introduced, among which
the Fisher encoding (Perronnin et al., 2010) has
been shown to outperform all the others (Chatfield
et al., 2011). VSEM uses both the hard quantiza-
tion and the Fisher encoding.

Spatial binning A consolidated way of intro-
ducing spatial information in BoVW is the use of
spatial histograms (Lazebnik et al., 2006). The
main idea is to divide the image into several (spa-
tial) regions, compute the encoding for each region
and stack the resulting histograms. This technique
is referred to as spatial binning and it is imple-
mented in VSEM. Figure 2 exemplifies the BoVW
pipeline for a single image, involving local fea-
tures extraction, encoding and spatial binning.
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Figure 2: An example of a BoVW representation
pipeline for an image. Figure inspired by Chatfield
et al. (2011). Each feature extracted from the tar-
get image is assigned to the corresponding visual
word(s). Then, spatial binning is performed.

Moreover, the input of spatial binning can be
further refined by introducing localization. Three
different types of localization are typically used:
global, object, and surrounding. Global extracts
visual information from the whole image and it is
also the default option when the localization in-
formation is missing. Object extracts visual infor-
mation from the object location only and the sur-
rounding extracts visual information from outside
the object location. Localization itself can either
be done by humans (or ground truth annotation)
but also by existing localization methods (Uijlings
et al., 2013).

For localization, VSEM uses annotated object
locations (in the format of bounding boxes) of the
target object.

Aggregation Since each concept is represented
by multiple images, an aggregation function for
pooling the visual word occurrences across images
has to be defined. As far as we know, the sum
function has been the only function utilized so far.
An example for the aggregation step is sketched in
figure 3. VSEM offers an implementation of the
sum function.
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Figure 3: An example of a concept representa-
tion pipeline for cat. First, several images depict-
ing a cat are represented as vectors of visual word
counts and, second, the vectors are aggregated into
one single concept vector.

Transformations Once the concept-
representing visual vectors are built, two types
of transformation can be performed over them to
refine their raw visual word counts: association
scores and dimensionality reduction. So far,
the vectors that we have obtained represent co-
occurrence counts of visual words with concepts.
The goal of association scores is to distinguish
interesting co-occurrences from those that are due
to chance. In order to do this, VSEM implements
two versions of mutual information (pointwise
and local), see Evert (2005).

On the other hand, dimensionality reduction
leads to matrices that are smaller and easier to
work with. Moreover, some techniques are able
to smooth the matrices and uncover latent dimen-
sions. Common dimensionality reduction methods
are singular value decomposition (Manning et al.,
2008), non-negative matrix factorization (Lee and
Seung, 2001) and neural networks (Hinton and
Salakhutdinov, 2006). VSEM implements the sin-
gular value decomposition method.

3 Framework design

VSEM offers a friendly implementation of the
pipeline described in Section 2. The framework is
organized into five parts, which correspond to an
equal number of MATLAB packages and it is writ-
ten in object-oriented programming to encourage
reusability. A description of the packages follows.

* datasets This package contains the code
that manages the image data sets. As an
example of how to write a wrapper for
a given data set, the Pascal VOC wrap-
per is implemented (PascalDataset). To
use a new image data set two solutions
are possible: either write a new class
which extends GenericbDataset or use di-
rectly PascalDataset after having rear-
ranged the new data as described in help

PascalDataset.

* vision This package contains the code for
extracting the bag-of-visual-words represen-
tation of images. In the majority of cases,
it can be used as a “black box” by the user.
Nevertheless, if the user wants to add new
functionalities such as new features or encod-
ings, this is possible by simply extending the
corresponding generic classes.

* concepts This is the package that deals with
the construction of the image-based represen-
tation of concepts. concepts it the most im-
portant package of VSEM. It applies the im-
age analysis methods to obtain the BoVW
representation of the image data and then
aggregates visual word counts concept-wise.
The transformations utilities are contained in
its helpers sub-package.

* benchmarks This package contains the code
for benchmarking. Currently there are two
benchmarks implemented: a semantic sim-
ilarity benchmark () and a semantic catego-
rization benchmark (). The two benchmark-
ing classes are CategorizationBenchmark
and similarityBenchmark. They both ex-
tend the abstract class GenericBenchmark.

* helpers This package contains supporting
functions and classes. There is a gen-
eral helpers with functionalities shared
across packages and several package specific
helpers.

4 Getting started

Installation VSEM can be easily installed by
running the file vsemsetup.m. Moreover, pascal-
DatasetSetup.m can be run to download and place
the popular dataset, integrating it in the current
pipeline.



Documentation All the MATLAB commands
of VSEM are self documented (e.g. help vsem)
and an HTML version of the MATLAB command
documentation is available from the VSEM web-
site.

The Pascal VOC demo The Pascal VOC demo
provides a comprehensive example of the work-
ings of VSEM. From the demo file pascalvobemo
.mmultiple configurations are accessible. Addi-
tional settings are available and documented for
each function, class or package in the toolbox (see
Documentation).

Running the demo file executes the following
lines of code and returns as output ConceptSpace,
which contains the visual concept representations
for the Pascal data set.

% Create a matlab structure with the

whole set of images in the Pascal

% dataset along with their annotation

dataset = datasets.VsemDataset (
configuration.imagesPath,’

annotationFolder’,configuration.
annotationPath) ;

o

% Initiate the class that handles

% the extraction of visual features.

featureExtractor = vision.features.
PhowFeaturekExtractor () ;

% Create the visual vocabulary
vocabulary = KmeansVocabulary.
trainVocabulary (dataset,

featureExtractor);

% Calculate semantic vectors
conceptSpace = conceptExtractor.
extractConcepts (dataset,

histogramExtractor);

% Compute pointwise mutual
% information
conceptSpace = conceptSpace.reweight ();

Conclude the demo, computing

the similarity of correlation

measures of the 190 possible

pair of concepts from the Pascal

dataset against a gold standard

correlationScore, p-value] =
similarityBenchmark.computeBenchmark
(conceptSpace, similarityExtractor);

o o° o o\

— o\

5 Conclusions
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