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There is plenty of text out there
and we have the tools to process it
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There are also plenty of (labeled!) images out there!
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And increasingly accurate tools to process them
. . . enabling sophisticated applications such as image stitching
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And increasingly accurate tools to process them
ImageNet Large Scale Visual Recognition Challenge

2012 winner performed 1K-object classification with 16% 5-guess error 9



Why should WE care?

• Besides all the new applications we can pursue by bringing together
language and vision. . .

• image analysis might help us to deal with the very concrete problem
of lack of grounding of linguistic symbols
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Lack of grounding

To summarize, the semantic similarity structure of the MCSM representations is
governed by different types of features depending on the semantic class. For example,
animals are characterized by behaviors (<flies>) and taxonomic features (<is_animal>),

Fig. 2. Multidimensional scaling solution for an example 5-cluster solution from MCSM (top panel) and
COALS (bottom panel) for nouns from McRae et al. (2005). Peaks are labeled with cluster numbers and the
three most descriptive features for each cluster.

20 B. Riordan, M. N. Jones ⁄Topics in Cognitive Science (2010)

Riordan and Jones, TopiCS 2011, Fig. 2 11



Lack of grounding

A sheep. . .

• According to the subject descriptions in the McRae et al.’s 2005
norms: is white, has wool, has 4 legs, bahs, . . .

• According to the text-generated descriptions of Baroni et al. 2010:
needs a shepherd, might suffer of scrapie, grazes, in a farm, . . .

• Kelly et al. 2010, using large corpora, weak supervision,
lexico-syntactic patterns, achieve max 24% precision, 48% recall at
guessing McRae-subject-generated properties
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Lack of grounding
The psychedelic world of corpus-determined color

• clover is blue
• coffee is green
• crows are white
• flour is black
• fog is green
• gold is purple
• mud is red
• the sky is green
• violins are blue

Bruni et al. ACL 2012 13



Lack of grounding

demand
suggestion

request

suggest
command

plead

ask
advise

invite

plea

demand

share

sales

debt

profits

shareholders

business

quarter

businesses
companies

market

profit

recession

investment

net

growth

assets

banks

exchange

value

eat

drink

vomit

taste

swallow

retch

teeth

lick

tongue

fill

eat

cereals

fibre

foods
vitamins

eating

fat

liver

meat
diet

vitamin

food

fruits

oils

citrus

eaten

meals

healthy

dairy fats

sing

ear

chime

screech

speak

tell

talk

whisper

hear

listen

sing

music

piano

pop

band
album

recording

songs

records
singer

guitar

hits

dance

song

tour

blues

bands

musical

bass

rock

Figure 4. The neighborhood cliques of demand, eat, and sing in the experiential (shown on the left) and
distributional models. These graphs illustrate how semantic representations derived from experiential data are
systematically distinct from those derived from distributional data. The experiential model emphasizes more
grounded, sensory-motor senses of words, while the distributional model emphasizes more abstract, encyclo-
pedic senses.

476 ANDREWS, VIGLIOCCO, AND VINSON

Andrews et al., Psych. Review 2009, Fig. 4 14



The image analysis pipeline

  

 low-level feature detection 
and description

histogram representation
mapping low-level features 

to visual words
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The PASCAL VOC dataset
• Around 10,000 images, with around 25,000 target objects

– Objects from 20 categories (person, car, bicycle, cow, table...)
– Objects are annotated with labeled bounding boxes

Lecture 17 -  !
!
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Fei-Fei Li!

Object'Detec/on''
–'the'PASCAL'Challenge'

•  ~10,000'images,'with'~25,000'target'objects.'''
–  Objects'from'20'categories'(person,'car,'bicycle,'cow,'
table...).'

–  Objects'are'annotated'with'labeled'bounding'boxes.'
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Slide credit: Pedro Felzenswalb
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ImageNet at a glance

Slide credit: Fei-Fei Li 19



ImageNet at a glance

ImageNet at a glancein'a'glance''
15K'categories;'11+million'images;'~800im/categ;'free'to'public'at'www.imageBnet.org'

•  Animals'
•  Birds'
•  Fish'
•  Mammal'
•  Invertebrate'

•  Scenes'
•  Indoor'
•  Geological'

formaQons'
•  Sport'acQviQes'
•  Materials'and'fabric'
•  InstrumentaQon'

•  Tools'
•  Appliances'
•  …'

•  Plants'
•  …'

Slide credit: Fei-Fei Li
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Slide credit: Fei-Fei Li
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ImageNet is a knowledge database
• Taxonomy on top of WordNet

''''''''''''''''''''is'a'knowledge'ontology'

•  Taxonomy''
•  Partonomy'
•  The'“social'
network”'of'visual'
concepts'
– Hidden'knowledge'
and'structure'
among'visual'
concepts'

– Prior'knowledge'
– Context'

Slide credit: Fei-Fei Li
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ImageNet is large scale

LabelMe'

85'classes'of'object:'>500'im/class'
211'classes'of'object:'>100'im/class'

6570'classes'of'object:'>500'im/class'
9836'classes'of'object:'>100'im/class'

Russell'et'al.'2005;''
staQsQcs'obtained'in'2009'

'''''''''''''''''''''''is'large'scale'

Deng'et'al.'2009'
staQsQcs'obtained'in'2009'

Slide credit: Fei-Fei Li
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The ESP Game dataset

• Invented by Luis von Ahn (2003)

• 100K labeled images

• Labeled through a game:

– two people are partnered together
– both see the same image and have to agree on an appropriate word

label
– a word entered by both participants becomes a label for the image

• http://www.cs.cmu.edu/~biglou/resources/

23
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ESP Game 

(von Ahn and Dabbish, 2004)  Slide credit: Luis von Ahn
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ESP Game 

Grass 
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Sheep 

Sheep's 

Sheep Sheep +10 

Slide credit: Luis von Ahn
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ESP Game 

New image tag: Sheep 
Slide credit: Luis von Ahn
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LabelMe

Labelme.csail.mit.edu

B. Russell, A. Torralba, K. Murphy, W.T. Freeman. IJCV ‘08

Went online July 1st, 2005 (290,000+ object annotations
Slide credit: Antonio Torralba 28



Polygon quality
LabelMe: Polygon quality

Slide credit: Antonio Torralba
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Not all data is reliableLabelMe: Not all data is reliable

Most common labels:

test

adksdsa

woiieiie

…

Slide credit: Antonio Torralba
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Online hooligansLabelMe: Online  hooligans

Slide credit: Antonio Torralba
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More on annotated image datasets

• L. von Ahn and L. Dabbish. 2004. Labeling Images with a Computer
Game. Proceedings of CHI.

• B.C. Russell, A. Torralba, K.P. Murphy and W.T. Freeman. 2008.
LabelMe: A Database and Web-Based Tool for Image Annotation.
IJCV.

• J. Deng, W. Dong, R. Socher, L.J. Li and L. Fei Fei. 2009. Imagenet:
A large-scale hierarchical image database. Proceedings of CVPR.

• M. Everingham, L. van Gool, C.K.I. Williams, J. Winn and
A. Zisserman. 2010. The PASCAL Visual Object Classes (VOC)
Challenge. IJCV.
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Local features: challenges4 CHAPTER 1. INTRODUCTION

occlusion scale

clutterdeformation illumination

viewpoint object pose

Figure 1.3: Images containing instances of the same object category can appear dramatically

different; recognition methods must therefore be robust to a variety of challenging nuisance

parameters.

Aside from these issues relating to robustness, today’s recognition algorithms also
face notable challenges in computational complexity and scalability. The fact that about
half of the cerebral cortex in primates is devoted to processing visual information gives
some indication of the computational load one can expect to invest for this complex
task (Felleman & van Essen 1991). Highly efficient algorithms are necessary to accom-
modate rich high-dimensional image representations, to search large image databases, or
to extend recognition to thousands of category types. In addition, scalability concerns
also arise when designing a recognition system’s training data: while unambiguously
labeled image examples tend to be most informative, they are also most expensive to
obtain. Thus, methods today must consider the trade-offs between the extent of costly
manual supervision an algorithm requires versus the advantages given to the learning
process.

Slide credit: Grauman and Leibe
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Local detectors

9/7/2012

2

Today

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

],,[ )1()1(
11 dxx � x

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )2()2(
12 dxx � x

Kristen Grauman

• Goals: Repeatable detection, precise localization, interesting content

Slide credit: Kristen Grauman
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Corners as distinctive interest points

Lecture 11 -Fei-Fei Li

Corners�as�Distinctive�Interest�Points
• Design�criteria

– We�should�easily�recognize�the�point�by�looking�through�a�
small�window�(locality)

– Shifting�the�window�in�any direction should�give�a�large�
change in�intensity�(good�localization)

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in all 
directions S
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9ͲFebͲ1123
Slide credit: Alyosha Efros
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Harris Detector: Responses

Lecture 11 -Fei-Fei Li

Harris�Detector�– Responses�[Harris88]

Effect: A very precise 
corner detector.
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Harris�Detector�– Responses�[Harris88]
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From keypoints to regions
4.1 Points and patches 217

Figure 4.10 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005) c� 2005 IEEE. The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajczyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998b),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the DoG) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

H =

"
Dxx Dxy

Dxy Dyy

#
, (4.12)

and then rejecting keypoints for which

Tr(H)2

Det(H)
> 10. (4.13)

Slide credit: Rick Szeliski
41



From keypoints (Harris) to regions (DoG)

  Slide credit: Bastian Leibe
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Recent advances
Dense feature extraction [Nowak et al. 2006]
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Local descriptors
• We know how to detect points
• Next question: How to describe them?

Local features: main components

• Detection: Identify
the interest points
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SIFT descriptor [Lowe 1999]
• Scale Invariant Feature Ttransform
• Descriptor computation:

– Divide regions into 4x4 cells
– Compute histogram of gradient orientations (8 reference angles) for all

pixels inside each sub-patch - Gradient = directional change in the
intensity or color in an image

– Resulting descriptor: 4x4x8 = 128 dimensions
24 CHAPTER 3. LOCAL FEATURES: DETECTION AND DESCRIPTION

Image gradients Keypoint descriptor

Figure 3.8: Visualization of the SIFT descriptor computation. For each (orientation-

normalized) scale invariant region, image gradients are sampled in a regular grid and are then

entered into a larger 4× 4 grid of local gradient orientation histograms (for visibility reasons,

only a 2× 2 grid is shown here). IMAGE SOURCE: DAVID LOWE.

Harris-Laplacian and Hessian-Laplacian detectors. Finally, we can further generalize
those detectors to affine covariant region extraction, resulting in the Harris-Affine and
Hessian-Affine detectors. The affine covariant region detectors are complemented by the
MSER detector, which is based on maximally stable segmentation regions. All of those
detectors have been used in practical applications. Detailed experimental comparisons
can be found in (Mikolajczyk & Schmid 2004, Tuytelaars & Mikolajczyk 2007).

3.3 LOCAL DESCRIPTORS

Once a set of interest regions has been extracted from an image, their content needs
to be encoded in a descriptor that is suitable for discriminative matching. The most
popular choice for this step is the SIFT descriptor (Lowe 2004), which we present in
detail in the following.

3.3.1 THE SIFT DESCRIPTOR
The Scale Invariant Feature Transform (SIFT) was originally introduced by Lowe as
combination of a DoG interest region detector and a corresponding feature descriptor
(Lowe 1999, 2004). However, both components have since then also been used in isola-
tion. In particular, a series of studies has confirmed that the SIFT descriptor is suitable
for combination with all of the above-mentioned region detectors and that it achieves
generally good performance (Mikolajczyk & Schmid 2005).

Slide credit: David Lowe 46



SIFT descriptor - rotation invariance
• Estimation of the dominant direction

– Extract gradient orientation
– Histogram over gradient orientation
– Peak in this histogram

• Rotate patch in dominant direction

SIFT descriptor - rotation invarianceLocal descriptors - rotation invariance 

•  Estimation of the dominant orientation 

–  extract gradient orientation 

–  histogram over gradient orientation 

–  peak in this histogram 

•  Rotate patch in dominant direction 

0 2 π 

Slide credit: Cordelia Schmid
49
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Many more descriptors than just SIFT

• SIFT[Lowe ’99]
– Color SIFT [Sande et al. 2010]
– Normalizing SIFT with square root transformation [Arandjelovic et

Zisserman 2012]

• Textons [Leung and Malik ’01]

• HoG [Dalal and Triggs ’05]

• SURF [Bay et al. ’08]

• DAISY [Tolaetal. ’08, Windleretal ’09]

• Bag of (e.g., LAB) colors [Farhadi et al. ’09]

48



More on low-level features

• C. Harris and M. Stephens. 1988. A combined corner and edge
detector. Proceedings of Alvey Vision Conference.

• D. Lowe. 2004. Distinctive image features from scale-invariant
keypoints. IJCV.

• K. Mikolajczyk and C. Schmid. 2005. A performance evaluation of
local descriptors. PAMI.

• E. Nowak,F. Jurie and B. Triggs. 2006. Sampling strategies for
bag-of-features image classification. Proceedings of ECCV.

• K.E.A. van de Sande, T. Gevers and C.G.M. Snoek. 2010.
Evaluating color descriptors for object and scene recognition. PAMI.

• R. Arandjelovic and A. Zisserman. 2012. Three things everyone
should know to improve object retrieval. Proceedings of CVPR.
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BoVW: Feature extraction
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BoVW: Image representation
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Classic Bags-of-visual-words representation
Recent advances

5 Example applications in computer vision

6 Going multimodal: Visual features in NLP
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Spatial pyramid representation [Lazebnik et al. 2006]

     Locally orderless 

representation at 

several levels of 

spatial resolution 

level 0 

Spatial pyramid representation 

Slide credit: Svetlana Lazebnik
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Spatial pyramid representationSpatial pyramid representation 

level 0 level 1 
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Slide credit: Svetlana Lazebnik
58



Spatial pyramid representationSpatial pyramid representation 

level 0 level 1 level 2 
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Slide credit: Svetlana Lazebnik
58



Fisher encoding [Perronnin et al. 2010]

• BoVW is only about counting the number of local descriptors
assigned to each region

• Why not including other statistics?

Motivation 

BOV is only about counting the number of local descriptors assigned to 
each Voronoi region 
 
Why not including other statistics?  

Page 6          

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf 

Slide credit: Kristen Grauman
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Fisher encoding

• BoVW is is only about counting the number of local descriptors
assigned to each region

• Mean of local descriptors

Motivation 

BOV is only about counting the number of local descriptors assigned to 
each Voronoi region 
 
Why not including other statistics? For instance: 

• mean of local descriptors 

Page 7  

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf 

Slide credit: Kristen Grauman
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Fisher encoding

• BoVW is is only about counting the number of local descriptors
assigned to each region

• Variance of local descriptors

Motivation 

BOV is only about counting the number of local descriptors assigned to 

each Voronoi region 

 

Why not including other statistics? For instance: 

• mean of local descriptors 

• (co)variance of local descriptors 

Page 8  

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf 

Slide credit: Kristen Grauman
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More on bag-of-visual-words

• J. Sivic and A. Zisserman 2003. Video Google: A text retrieval
approach to object matching in videos. Proceedings of ICCV.

• G. Csurka, C. Dance, L. Fan, J. Willamowski and C. Bray. 2004.
Visual categorization with bags of keypoints. Proceedings of ECCV.

• S. Lazebnik, C. Schmid and J. Ponce. 2006. Beyond bags of
features: Spatial pyramid matching for recognizing natural scene
categories. Proceedings of CVPR.

• F. Perronnin, J. Sanchez and T. Mensink. 2010. Improving the fisher
kernel for large-scale image classification. Proceedings of ECCV.
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Outline of the tutorial

1 Why image analysis?

2 Annotated image datasets

3 Extraction of low-level features from images

4 Visual words for higher-level image representation

5 Example applications in computer vision

6 Going multimodal: Visual features in NLP
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4 Visual words for higher-level image representation

5 Example applications in computer vision
Emotion analysis
Object recognition
Visual attributes

6 Going multimodal: Visual features in NLP
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Emotion analysis: Images evoke emotions
Images Evoke Emotions

Slide credit: Yanulevskaya et al. 2012
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Emotion analysis: The dataset

1 74

183 negative paintings 317 positive paintings 

Slide credit: Yanulevskaya et al. 2012
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Emotion analysis: The method
Proposed methodology

LAB 
Visual Words

SIFT 
Visual Words

Dictionary

Tex t ure &
Shape

Feat ure 
Det ec t ion

Colours

Art Works

LAB  descriptor SIFT descriptor

Dictionary

… …

Slide credit: Yanulevskaya et al. 2012
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Emotion analysis: Results

• Task: Divide the dataset into train and test and use a classifier
(SVM) to distinguish between positive and negative paintings

Proposed methodology

Results

Accuracy:   
0.63 Random
0.76  LAB v isual  w ords 
0.73  SIFT v isual  w ords

0.78 LAB + SIFT

Slide credit: Yanulevskaya et al. 2012
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More on emotion analysis

• J. Machajdik and A. Hanbury. 2010. Affective image classification
using features inspired by psychology and art theory. Proceedings of
ACMM.

• V. Yanulevskaya, J. Uijlings, E. Bruni, E. Zamboni, F. Bacci,
D. Melcher and N. Sebe. 2012. In the Eye of the Beholder:
Employing Statistical Analysis and Eye Tracking for Analyzing
Abstract Paintings. Proceedings of ACMM.
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Emotion analysis
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Visual attributes

6 Going multimodal: Visual features in NLP
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Object recognition

• Image classification: assigning a class label to the image
•  Image classification: assigning a class label to the image 

Tasks 

Car: present 

Cow: present 

Bike: not present 

Horse: not present 

… 

•  Object localization: define the location and the category 

Car Cow 
Location 

Category 

Category recognition 

• Object localization: define the location and the category

•  Image classification: assigning a class label to the image 

Tasks 

Car: present 

Cow: present 

Bike: not present 

Horse: not present 

… 

•  Object localization: define the location and the category 

Car Cow 
Location 

Category 

Category recognition 

Slide credit: Cordelia Schmid
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Object recognition: Typical pipeline

Slide credit: Chatfield et al. 2011
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Pascal VOC 2012: Statistics

Dataset statistics

� Same size as VOC2011

� Minimum ~600 training objects per category
� ~2,000 cars, 1,500 dogs, 8,500 people
� Approximately equal distribution across 

training and test datasets

Training Testing

Images 11,540 10,994

Objects 27,450 27,078

• 20 categories

• Minimally, around 600 training objects per category

• Around 2,000 cars, 1,500 dogs and 8,500 people

• Approximately equal distribution across training and test datasets

Slide credit: Andrew Zisserman
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Pascal VOC 2012: Submitted systems

• 7 systems, 5 groups

• Methods
– Features: Dense SIFT, HoG, colour
– Encodings: spatial pyramid, BoVW, Fisher vector
– Classifier: SVM
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Pascal VOC 2012: Results

Average precision by class
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Aeroplanes vs. bottles
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Pascal VOC 2012: Results

Median average precision by method
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More on object recognition

• J. Yang, J.G. Jiang, A. Hauptmann and C.W. Ngo. 2007. Evaluating
bag-of-visual-words representations in scene classification. MIR.

• Results of the Pascal VOC Challenge 2012: http://pascallin.
ecs.soton.ac.uk/challenges/VOC/voc2012/index.html
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1 Why image analysis?

2 Annotated image datasets

3 Extraction of low-level features from images

4 Visual words for higher-level image representation

5 Example applications in computer vision
Emotion analysis
Object recognition
Visual attributes

6 Going multimodal: Visual features in NLP
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Visual attributes

A. Farhadi, I. Endres, D. Hoiem and D. Forsyth.
2009. Describing objects by their attributes.
Proceedings of CVPR.
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Object-centric classification
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Attribute-centric classification
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The many uses of attributes

Describing Objects by their Attributes

Ali Farhadi, Ian Endres, Derek Hoiem, David Forsyth
Computer Science Department

University of Illinois at Urbana-Champaign
{afarhad2,iendres2,dhoiem,daf}@uiuc.edu

Abstract

We propose to shift the goal of recognition from naming
to describing. Doing so allows us not only to name famil-
iar objects, but also: to report unusual aspects of a famil-
iar object (“spotty dog”, not just “dog”); to say something
about unfamiliar objects (“hairy and four-legged”, not just
“unknown”); and to learn how to recognize new objects
with few or no visual examples. Rather than focusing on
identity assignment, we make inferring attributes the core
problem of recognition. These attributes can be semantic
(“spotty”) or discriminative (“dogs have it but sheep do
not”). Learning attributes presents a major new challenge:
generalization across object categories, not just across in-
stances within a category. In this paper, we also introduce
a novel feature selection method for learning attributes that
generalize well across categories. We support our claims
by thorough evaluation that provides insights into the limi-
tations of the standard recognition paradigm of naming and
demonstrates the new abilities provided by our attribute-
based framework.

1. Introduction
We want to develop computer vision algorithms that go

beyond naming and infer the properties or attributes of ob-
jects. The capacity to infer attributes allows us to describe,
compare, and more easily categorize objects. Importantly,
when faced with a new kind of object, we can still say some-
thing about it (e.g., “furry with four legs”) even though we
cannot identify it. We can also say what is unusual about a
particular object (e.g, “dog with spots”) and learn to recog-
nize objects from description alone.

In this paper, we show that our attribute-centric approach
to object recognition allows us to do a better job in the tra-
ditional naming task and provides many new abilities. We
focus on learning object attributes, which can be seman-
tic or not. Semantic attributes describe parts (“has nose”),
shape (“cylindrical”), and materials (“furry”). They can be
learned from annotations and allow us to describe objects
and to identify them based on textual descriptions. But
they are not always sufficient for differentiating between
object categories. For instance, it is difficult to describe
the difference between cats and dogs, even though there are

Figure 1: Our attribute based approach allows us not only to effectively
recognize object categories, but also to describe unknown object cate-
gories, report atypical attributes of known classes, and even learn models
of new object categories from pure textual description.

many visual dissimilarities. Therefore, we also learn non-
semantic attributes that correspond to splits in the visual
feature space. These can be learned by defining auxiliary
tasks, such as to differentiate between cars and motorbikes
using texture.

When learning the attributes, we want to be able to gen-
eralize to new types of objects. Generalizing both within
categories and across categories is extremely challenging,
and we believe that studying this problem will lead to
new insights that are broadly applicable in computer vi-
sion. Training attribute classifiers in the traditional way (use
all features to classify whether an object has an attribute)
leads to poor generalization for some attributes across cat-
egories. This is because irrelevant features (such as color
when learning shape) are often correlated with attributes for
some sets of objects but not others. Instead, we propose to
first select features that can predict attributes within an ob-
ject class and use only those to train the attribute classifier.

1

Farhadi et al., CVPR 2009, Fig. 1 83



Data sets
http://vision.cs.uiuc.edu/attributes/

a-Pascal Pascal VOC 2008 data set, 20 categories (people, dog,
bus, horse. . . ), 150-to-1K images per category (5K for
people), used for training and testing

a-Yahoo 12 categories similar to those in a-Pascal but different
(statue, wolf, carriage, centaur. . . ), used for testing

84
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Base features

• BoVW spatial pyramid histograms from bounding boxes using:
– HoG descriptors (good for parts)
– Canny Edges (Canny, 1986; good for shapes)
– Textons (good for materials)
– LAB color features (good for materials)

• 9751-dimensional vectors (mostly HoG features)
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Attributes

• 64 AmazonTurk-annotated “semantic” attributes:

Shapes: is 2D boxy, is 3D boxy, is cylindrical. . .
Parts: has head, has leg, has window. . .

Materials: is furry, has glass, is shiny. . .

• 1K automatically selected “discriminative” attributes
– Selected to maximize discrimination between random subsets of

classes or attributes
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Learning

• Base feature selection by picking features that are best at
within-category attribute learning

– If you learn has wheels from cars, motorbikes, buses vs. horses, cats,
bottles, you might learn metallic instead!

• Object classifiers trained on base features (standard approach) or
on vectors of automatically assigned attributes

• Various learning algorithms used: linear SVMs, regularized logistic
regression, nearest neighbour classification

• See the paper for details and more experiments
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Identifying “new” objects
Farhadi et al., CVPR 2009, Fig. 9

Figure 8: This figure shows localization of atypical attributes for given
classes. Not only do we report unexpected attributes, but we also can
sometimes localize atypical attributes in images. For example, we don’t
expect to see “skin” in a motorbike, but when we do, we can localize the
skin reasonably well. Red colored points correspond to selected features.
This figure should be viewed in color.

Table 1: This table compares our accuracies in traditional naming task
with two simple baselines. Since the Pascal08 dataset is heavily biased
toward “people” category, we report both overall and mean per class accu-
racies. Mean per class accuracies appear in the parentheses. This table also
compares using attributes trained on selected features with those trained on
whole features. Columns marked as “All Attr.” refer to the cases when clas-
sifiers use both predicted semantic and non-semantic attributes as features.
Note that the attribute based representation does not help significantly in
the traditional naming task but it offers new capabilities,Figure 9.

ture that has people and “metal.”

6.2. Naming

Naming familiar objects: So far there is little evi-
dence that our attribute based framework helps the tradi-
tional naming task. However, this framework allows us
to learn new categories from very few visual examples or
even with pure textual description. We compare our per-
formance in naming task with two baselines, linear SVM
and logistic regression applied to base features to directly
recognize objects. We use the Pascal training set as our
train/val set and use the Pascal validation set as our test set.
Table 1 shows details of this experiment. A one vs. all lin-
ear SVM can recognize objects with the overall accuracy of
59.4% using our predicted attributes as features, comparing
to the accuracy of 58.5% of base features. Because we as-
sume that bounding boxes are provided, we can not directly
compare our results with other methods in the literature. It
is also worth noting differences between class confusions
using our attribute based features and standard recognition
methods. The biggest increase in confusions using our at-
tribute based representation is between “chair” and “sofa”.
The biggest decrease is between “bike” and “people”. The
shifts in the confusions may be due to our encoding of se-
mantics.

Figure 9: Accuracy vs. number of training examples per category. We can
learn categories with considerably fewer examples. Using 4 examples per
class with 1NN classifier, which is our only choice for so few examples, we
can predict as well as with 20 examples per class using base features. If we
use almost 200 examples per category (purple circles) on original features
we are as good as using 40 examples (green circles) using our attributes.
Note that the semantic attributes are not designed to maximize discrimi-
nation. Discriminative attributes provide similar performance when used
with or without semantic attributes. Semantic attributes help us to achieve
enhanced visual capabilities without any loss in discrimination. Another
interesting point about our attribute base description is that we can recog-
nize objects from pure textual description and NO visual examples. As de-
picted above, recognizing objects from textual description (red arrows) is
as good as having almost 100 visual examples in semantic attribute space,
8 visual examples in base features and 3 in semantic and discriminative
attribute space. Red arrows indicate the accuracy of learning new classes
by textual description using whole and selected features.

Learning to Identify New Objects: The first test is
to examine standard object recognition in new categories.
We use predicted attributes as features and one-vs-all lin-
ear SVM as classifier. If we recognize classes in a-Yahoo
set using attribute classifiers trained on a-Pascal, we get an
overall accuracy of 69.8%. If we train attributes on a-Yahoo
as well, we get an overall accuracy of 74.7%, comparing to
72.7% using base features.

We can also recognize new classes with notably fewer
training examples than classifiers trained on base features
(Figure 9). We choose a 1NN classifier for this task, mainly
because we need to learn from very few examples per cate-
gory. As plotted in this figure we can learn new categories
using under 20% of the examples required by base features.
This means that the overall accuracy of training on almost
40 images per category (green circles) using our attributes is
equal to that of training on almost 200 images per category
(purple circles) on base features.

Learning New Categories from Textual Description:
A novel aspect of our approach is to learn new categories
from pure textual descriptions. For example, we can learn
new categories by describing new classes to our algorithm
as this new class is “furry”, “four legged”, “has snout”,and
“has head”. The object description is specified by a list of
positive attributes, providing a binary attribute vector. We
classify a test image by finding the nearest description to its
predicted attributes. Figure 9 shows that by learning new
categories from textual description we could get an accu-
racy of 32.5%, which is equal to having almost 100 visual
examples in semantic attribute space, 8 visual examples in
base feature space, and 3 examples in semantic and discrim-

Attribute classifiers trained on a-Pascal, predicted attributes used as
features to train a-Yahoo object classifier (1NN) 88



Reporting missing attributes
68.2% accuracy

Figure 4: Attribute prediction for across category protocols. On the left
is Leave-one-class-out case for Pascal and on the right is attribute predic-
tion for Yahoo set. Only attributes relevant to these tasks are displayed.
Classes are different during training and testing, thus we have across cat-
egory generalization issues. Some attributes on the left, like “engine”,
“snout”, and “furry”, generalize well, some do not. Feature selection helps
considerably for those attributes, like “taillight”, “cloth”, and “rein” that
have problem generalizing across classes. Similar to leave one class out
case, learning attributes on Pascal08 train set and testing them on Yahoo
set involves across category generalization, right plot. We can, in fact, pre-
dict attributes for new classes fairly reliably. Some attributes, like “wing”,
“door”, “headlight”, and “taillight”, do not generalize well. Feature se-
lection improves generalization on those attributes. Toward the high end
of this curve, where good classifiers sit, feature selection improves predic-
tion of attribute with generalization issues and produce similar results for
attributes without generalization issues. For better visualization purposes
we sorted the plots based on selected features’ area under ROC curve val-
ues.

benefits of our novel feature selection method compared to
using whole features.

6.1. Describing Objects
Assigning attributes: There are two main protocols for

attribute prediction: “within category” predictions, where
train and test instances are drawn from the same set of
classes, and “across category” predictions where train and
test instances are drawn from different sets of classes. We
do across category experiments using a leave-one-class-out
approach, or a new set of classes on a new dataset. We train
attributes in a-Pascal and test them in a-Yahoo. We measure
our performance in attribute predictions by the area under
the ROC curve, mainly because it is invariant to class pri-
ors. We can predict attributes for the within category proto-
col with the area under the curve of 0.834 (Figure 3).

Figure 4 shows that we can predict attributes fairly re-
liably for across category protocols. The plot on the left
shows the leave-one-class-out case on a-Pascal and the plot
on the right shows the same curve for a-Yahoo set.

Figure 5 depicts 12 typical images from a-Yahoo set with
a subset of positively predicted attributes. These attribute
classifiers are learned on a-Pascal train set and tested on a-
Yahoo images. Attributes written in red, with red crosses,
are wrong predictions.

Unusual attributes: People tend to make statements
about unexpected aspects of known objects ([11], p101).
An advantage of an attribute based representation is we
can easily reproduce this behavior. The ground truth at-
tributes specify which attributes are typical for each class.
If a reliable attribute classifier predicts one of these typi-
cal attributes is absent, we report that it is not visible in
the image. Figure 6 shows some of these typical attributes
which are not visible in the image. For example, it is worth
reporting when we do not see the “wing” an aeroplane is
expected to have. To qualitatively evaluate this task we re-

Figure 5: This figure shows randomly selected positively predicted at-
tributes for 12 typical images from 12 categories in Yahoo set. Attribute
classifiers are learned on Pascal train set and tested on Yahoo set. We ran-
domly select 5 predicted attributes from the list of 64 attributes available in
the dataset. Bounding boxes around the objects are provided by the dataset
and we are only looking inside the bounding boxes to predict attributes.
Wrong predictions are written in red and marked with red crosses.

Figure 6: Reporting the absence of typical attributes. For example, we
expect to see “Wing”in an aeroplane. It is worth reporting if we see a
picture of an aeroplane for which the wing is not visible or a picture of a
bird for which the tail is not visible.

Figure 7: Reporting the presence of atypical attributes. For example, we
don’t expect to observe “skin” on a dining table. Notice that, if we have
access to information about object semantics, observing “leaf” in an image
of a bird might eventually yield “The bird is in a tree”. Sometimes our
attribute classifiers are confused by some misleading visual similarities,
like predicting “Horn” from the visually similar handle bar of a road bike.

ported 752 expected attributes over the whole dataset which
are not visible in the images. 68.2% of these reports are
correct when compared to our manual labeling of those re-
ports (Figure 6). On the other hand, if a reliable attribute
classifier predicts an attribute which is not expected to be
in the predicted class, we can report that, too (Figure 7).
For example, birds don’t have a “leaf”, and if we see one
we should report it. To quantitatively evaluate this predic-
tion we evaluate 951 of those predictions by hand; 47.3%
are correct. There are two important consequences. First,
because birds never have leaves, we may be able to exploit
knowledge of object semantics to reason that, in this case,
the bird is in a tree. Second, because we can localize fea-
tures used to predict attributes, we can show what caused
the unexpected attribute to be predicted (Figure 8). For ex-
ample, we can sometimes tell where the “metal” is in a pic-

Farhadi et al., CVPR 2009, Fig. 6 89



Reporting atypical attributes
47.3% accuracy

Figure 4: Attribute prediction for across category protocols. On the left
is Leave-one-class-out case for Pascal and on the right is attribute predic-
tion for Yahoo set. Only attributes relevant to these tasks are displayed.
Classes are different during training and testing, thus we have across cat-
egory generalization issues. Some attributes on the left, like “engine”,
“snout”, and “furry”, generalize well, some do not. Feature selection helps
considerably for those attributes, like “taillight”, “cloth”, and “rein” that
have problem generalizing across classes. Similar to leave one class out
case, learning attributes on Pascal08 train set and testing them on Yahoo
set involves across category generalization, right plot. We can, in fact, pre-
dict attributes for new classes fairly reliably. Some attributes, like “wing”,
“door”, “headlight”, and “taillight”, do not generalize well. Feature se-
lection improves generalization on those attributes. Toward the high end
of this curve, where good classifiers sit, feature selection improves predic-
tion of attribute with generalization issues and produce similar results for
attributes without generalization issues. For better visualization purposes
we sorted the plots based on selected features’ area under ROC curve val-
ues.

benefits of our novel feature selection method compared to
using whole features.

6.1. Describing Objects
Assigning attributes: There are two main protocols for

attribute prediction: “within category” predictions, where
train and test instances are drawn from the same set of
classes, and “across category” predictions where train and
test instances are drawn from different sets of classes. We
do across category experiments using a leave-one-class-out
approach, or a new set of classes on a new dataset. We train
attributes in a-Pascal and test them in a-Yahoo. We measure
our performance in attribute predictions by the area under
the ROC curve, mainly because it is invariant to class pri-
ors. We can predict attributes for the within category proto-
col with the area under the curve of 0.834 (Figure 3).

Figure 4 shows that we can predict attributes fairly re-
liably for across category protocols. The plot on the left
shows the leave-one-class-out case on a-Pascal and the plot
on the right shows the same curve for a-Yahoo set.

Figure 5 depicts 12 typical images from a-Yahoo set with
a subset of positively predicted attributes. These attribute
classifiers are learned on a-Pascal train set and tested on a-
Yahoo images. Attributes written in red, with red crosses,
are wrong predictions.

Unusual attributes: People tend to make statements
about unexpected aspects of known objects ([11], p101).
An advantage of an attribute based representation is we
can easily reproduce this behavior. The ground truth at-
tributes specify which attributes are typical for each class.
If a reliable attribute classifier predicts one of these typi-
cal attributes is absent, we report that it is not visible in
the image. Figure 6 shows some of these typical attributes
which are not visible in the image. For example, it is worth
reporting when we do not see the “wing” an aeroplane is
expected to have. To qualitatively evaluate this task we re-

Figure 5: This figure shows randomly selected positively predicted at-
tributes for 12 typical images from 12 categories in Yahoo set. Attribute
classifiers are learned on Pascal train set and tested on Yahoo set. We ran-
domly select 5 predicted attributes from the list of 64 attributes available in
the dataset. Bounding boxes around the objects are provided by the dataset
and we are only looking inside the bounding boxes to predict attributes.
Wrong predictions are written in red and marked with red crosses.

Figure 6: Reporting the absence of typical attributes. For example, we
expect to see “Wing”in an aeroplane. It is worth reporting if we see a
picture of an aeroplane for which the wing is not visible or a picture of a
bird for which the tail is not visible.

Figure 7: Reporting the presence of atypical attributes. For example, we
don’t expect to observe “skin” on a dining table. Notice that, if we have
access to information about object semantics, observing “leaf” in an image
of a bird might eventually yield “The bird is in a tree”. Sometimes our
attribute classifiers are confused by some misleading visual similarities,
like predicting “Horn” from the visually similar handle bar of a road bike.

ported 752 expected attributes over the whole dataset which
are not visible in the images. 68.2% of these reports are
correct when compared to our manual labeling of those re-
ports (Figure 6). On the other hand, if a reliable attribute
classifier predicts an attribute which is not expected to be
in the predicted class, we can report that, too (Figure 7).
For example, birds don’t have a “leaf”, and if we see one
we should report it. To quantitatively evaluate this predic-
tion we evaluate 951 of those predictions by hand; 47.3%
are correct. There are two important consequences. First,
because birds never have leaves, we may be able to exploit
knowledge of object semantics to reason that, in this case,
the bird is in a tree. Second, because we can localize fea-
tures used to predict attributes, we can show what caused
the unexpected attribute to be predicted (Figure 8). For ex-
ample, we can sometimes tell where the “metal” is in a pic-

Farhadi et al., CVPR 2009, Fig. 7 90



More on attributes

• C.H. Lampert, H. Nickisch and S. Harmeling. 2009. Learning to
detect unseen object classes by between-class attribute transfer.
Proceedings of CVPR.

• A. Farhadi, I. Endres and D. Hoiem. 2010. Attribute-centric
recognition for cross-category generalization. Proceedings of CVPR.

• T.L. Berg, A.C. Berg and J. Shih. 2010. Automatic attribute discovery
and characterization from noisy Web data. Proceedings of ECCV.

• D. Parikh and K. Grauman. 2011. Relative attributes. Proceedings of
ICCV. Best paper award.

• Tutorial on attributes at CVPR, June 2013:
http://filebox.ece.vt.edu/~parikh/attributes/

• C. Silberer, V. Ferrari and M. Lapata. Models of semantic
representation with visual attributes. ACL 2013!
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Outline of the tutorial

1 Why image analysis?

2 Annotated image datasets

3 Extraction of low-level features from images

4 Visual words for higher-level image representation

5 Example applications in computer vision

6 Going multimodal: Visual features in NLP
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1 Why image analysis?

2 Annotated image datasets

3 Extraction of low-level features from images

4 Visual words for higher-level image representation

5 Example applications in computer vision

6 Going multimodal: Visual features in NLP
Generating image descriptions
Multimodal distributional semantics
Visual selectional preference
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Generating image descriptions

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi,
A. Berg and T. Berg. 2011. Baby Talk:
Understanding and generating simple image
descriptions. Proceedings of CVPR
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We need image description generation
(not just retrieval)

Baby Talk: Understanding and Generating Image Descriptions

Girish Kulkarni Visruth Premraj Sagnik Dhar Siming Li
Yejin Choi Alexander C Berg Tamara L Berg

Stony Brook University
Stony Brook University, NY 11794, USA

{tlberg}@cs.stonybrook.edu

Abstract

We posit that visually descriptive language offers com-
puter vision researchers both information about the world,
and information about how people describe the world. The
potential benefit from this source is made more significant
due to the enormous amount of language data easily avail-
able today. We present a system to automatically gener-
ate natural language descriptions from images that exploits
both statistics gleaned from parsing large quantities of text
data and recognition algorithms from computer vision. The
system is very effective at producing relevant sentences for
images. It also generates descriptions that are notably more
true to the specific image content than previous work.

1. Introduction
People communicate using language, whether spoken,

written, or typed. A significant amount of this language
describes the world around us, especially the visual world
in an environment or depicted in images or video. Such vi-
sually descriptive language is potentially a rich source of
1) information about the world, especially the visual world,
and 2) training data for how people construct natural lan-
guage to describe imagery. This paper exploits both of these
lines of attack to build an effective system for automatically
generating natural language – sentences – from images.

It is subtle, but several factors distinguish the task of tak-
ing images as input and generating sentences from tasks
in many current computer vision efforts on object and
scene recognition. As examples, when forming descrip-
tive language, people go beyond specifying what objects
are present in an image – this is true even for very low
resolution images [23] and for very brief exposure to im-
ages [11]. In both these settings, and in language in gen-
eral, people include specific information describing not
only scenes, but specific objects, their relative locations,
and modifiers adding additional information about objects.

Figure 1. Our system automatically generates the following de-
scriptive text for this example image: “This picture shows one
person, one grass, one chair, and one potted plant. The person is
near the green grass, and in the chair. The green grass is by the
chair, and near the potted plant.”

Mining the absolutely enormous amounts of visually de-
scriptive text available in special library collections and on
the web in general, make it possible to discover statistical
models for what modifiers people use to describe objects,
and what prepositional phrases are used to describe rela-
tionships between objects. These can be used to select and
train computer vision algorithms to recognize constructs in
images. The output of the computer vision processing can
be “smoothed” using language statistics and then combined
with language models in a natural language generation pro-
cess.

Natural language generation constitutes one of the fun-
damental research problems in natural language process-
ing (NLP) and is core to a wide range of NLP applica-
tions such as machine translation, summarization, dialogue
systems, and machine-assisted revision. Despite substan-
tial advancement within the last decade, natural language
generation still remains an open research problem. Most
previous work in NLP on automatically generating captions
or descriptions for images is based on retrieval and sum-
marization. For instance, [1] relies on GPS meta data to
access relevant text documents and [13] assume relevant
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The BabyTalk pipeline
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Figure 2. System flow for an example image: 1) object and stuff detectors find candidate objects, 2) each candidate region is processed by
a set of attribute classifiers, 3) each pair of candidate regions is processed by prepositional relationship functions, 4) A CRF is constructed
that incorporates the unary image potentials computed by 1-3, and higher order text based potentials computed from large document
corpora, 5) A labeling of the graph is predicted, 6) Sentences are generated based on the labeling.

documents are provided. The process of generation then
becomes one of combining or summarizing relevant docu-
ments, in some cases driven by keywords estimated from
the image content [13]. From the computer vision perspec-
tive these techniques might be analogous to first recognizing
the scene shown in an image, and then retrieving a sentence
based on the scene type. It is very unlikely that a retrieved
sentence would be as descriptive of a particular image as the
generated sentence in Fig. 1.

This paper pushes to make a tight connection between
the particular image content and the sentence generation
process. This is accomplished by detecting objects, mod-
ifiers (adjectives), and spatial relationships (prepositions),
in an image, smoothing these detections with respect to a
statistical prior obtained from descriptive text, and then us-
ing the smoothed results as constraints for sentence gen-
eration. Sentence generation is performed either using a
n-gram language model [3, 22] or a simple template based
approach [27, 4]. Overall, our approach can handle the po-
tentially huge number of scenes that can be constructed by
composing even a relatively small number of instances of
several classes of objects in a variety of spatial relation-
ships. Even for quite small numbers for each factor, the
total number of such layouts is not possible to sample com-
pletely, and any set of images would have some particular
bias. In order to avoid evaluating such a bias, we purpose-
fully avoid whole image features or scene/context recogni-
tion in our evaluation – although noting explicitly that it
would be straightforward to include a scene node and ap-
propriate potential functions in the model presented.

2. Related Work
Early work on connecting words and pictures for the pur-

pose of automatic annotation and auto illustration focused

on associating individual words with image regions [2, 8].
In continuations of that work, and other work on image
parsing and object detection, the spatial relationships be-
tween labeled parts – either detections or regions – of im-
ages was used to improve labeling accuracy, but the spa-
tial relationships themselves were not considered outputs in
their own right [24, 7, 16, 21, 15]. Estimates of spatial re-
lationships between objects form an important part of the
output of the computer vision aspect of our approach and
are used to drive sentence generation.

There is a great deal of ongoing research on estimating
attributes for use in computer vision [18, 9, 19, 14] that
maps well to our process of estimating modifiers for objects
in images. We use low level features from Farhadi et al. [9]
for modifier estimation. Our work combines priors for vi-
sually descriptive language with estimates of the modifiers
based on image regions around object detections.

There is some recent work very close in spirit to our own.
Yao et al. [26] look at the problem of generating text with a
comprehensive system built on various hierarchical knowl-
edge ontologies and using a human in the loop for hierar-
chical image parsing (except in specialized circumstances).
In contrast, our work automatically mines knowledge about
textual representation, and parses images fully automati-
cally – without a human operator – and with a much sim-
pler approach overall. Despite the simplicity of our frame-
work it is still a step toward more complex description gen-
eration compared to Farhadi et al.’s (also fully automatic)
method based on parsing images into a meaning representa-
tion “triple” describing 1 object, 1 action, and 1 scene [10].
In their work, they use a single triple estimated for an im-
age to retrieve sentences from a collection written to de-
scribe similar images. In contrast our work detects multiple
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Generating a labeled graph describing image contents
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Figure 3. CRF for an example image with 2 object detections and
1 stuff detection. Left shows original CRF with trinary potentials.
Right shows CRF reduced to pairwise potentials by introducing z
variables with domains covering all possible triples of the original
3-clique.

objects, modifiers, and their spatial relationships, and gen-
erates sentences to fit these constituent parts, as opposed to
retrieving sentences whole.

3. Method Overview
An overview of our system is presented in figure 2. For

an input image: 1) Detectors are used to detect things (e.g.
bird, bus, car, person, etc.) and stuff (e.g. grass, trees, wa-
ter, road, etc.). We will refer to these as objects, and stuff,
or collectively as objects. 2) each candidate object (ei-
ther thing or stuff) region is processed by a set of attribute
classifiers, 3) each pair of candidate regions is processed
by prepositional relationship functions, 4) A CRF is con-
structed that incorporates the unary image potentials com-
puted by 1-3, with higher order text based potentials com-
puted from large text corpora, 5) A labeling of the graph
is predicted, and 6) Sentences are generated based on the
labeling.

The rest of the paper describes the Conditional Random
Field used to predict a labeling for an input image (Sec. 4),
then the image based potentials (Sec. 5.1), and higher or-
der text based potentials (Sec. 5.2). Sentence generation is
covered in (Sec. 6) and evaluation in (Sec. 7).

4. CRF Labeling
We use a conditional random field (CRF) to predict the

best labeling for an image (e.g. fig 3). Nodes of the CRF
correspond to several kinds of image content: a) Objects -
things or stuff, b) attributes which modify the appearance
of an object, and c) prepositions which refer to spatial rela-
tionships between pairs of objects.

For a query image, we run a large set of (thing) object de-
tectors across the image and collect the set of high scoring
detections. We merge detections that are highly overlapping
(greater than 0.3 intersection/union) into groups and create
an object node for each group. In this way we avoid pre-
dicting two different object labels for the same region of
an image which can occur when two different object detec-
tors fire on the same object. We also run our stuff detectors

across the image and create nodes for stuff categories with
high scoring detections. Note that this means that the num-
ber of nodes in a graph constructed for an image depends on
the number of object and stuff detections that fired in that
image (something we have to correct for during parameter
learning). For each object and stuff node we classify the ap-
pearance using a set of trained attribute classifiers and create
a modifier node. Finally, we create a preposition node for
each pair of object and stuff detections. This node predicts
the probability of a set of prepositional relationships based
on the spatial relationship between two object regions.

The domain (of possible labels) for each node is node
dependent. For an object (or stuff) node the domain cor-
responds to the set of object (or stuff) detectors that fired
at that region in the image. For the attribute nodes the do-
main corresponds to a set of appearance attributes that can
modify the visual characteristics of an object (e.g. green or
furry). For the preposition nodes the domain corresponds
to a set of prepositional relations (e.g. on, under, near) that
can occur between two objects.

We will minimize an energy function over labelings, L,
of an image, I ,

E(L; I, T ) = −
�

i∈objs

Fi −
2

N − 1

�

ij∈objPairs

Gij , (1)

where T is a text prior, and N is the number of objects
so 2/(N − 1) normalizes – for variable number of node
graphs – the contribution from object pair terms so that they
contribute equally with the single object terms to the energy
function. Here:

Fi = α0β0ψ(obji; objDet) + α0β1ψ(attri; attrCl) (2)
+α1γ0ψ(attri, obji; textPr) (3)

Gij = α0β2ψ(prepij ; prepFuns) (4)
+α1γ1ψ(obji, prepij , objj ; textPr) (5)

The three unary potential functions are computed from im-
age based models and refer to: the detector scores for ob-
ject(s) proposed by our trained object and stuff detectors
(ψ(obji; objDets)), the attribute classification scores for
an object (or stuff) region as predicted by our trained at-
tribute classifiers (ψ(attri; attrCl)), and the prepositional
relationship score computed between pairs of detection re-
gions (ψ(prepij ; prepFuns)). Descriptions of the particu-
lar detectors, classifiers and functions used are provided in
Sec. 5.1.

The pairwise (ψ(modi, obji; textPr)) and trinary
(ψ(obji, prepij , objj ; textPr)) potential functions model
the pairwise scores between object and attribute node labels,
and the trinary scores for an object-preposition-object triple
labeling respectively. These higher order potentials could
be learned from a large pool of labeled image data. How-
ever, for a reasonable number of objects, and prepositions
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• Images represented by graphs with nodes labeled with objects and
stuff, attributes of objects/stuff and prepositions connecting
objects/stuff

• Label assignment casted as Conditional Random Field energy
minimization problem with both image- and text-based features

• CRF and image-based feature parameters trained on 153 images
with (up-to-5) sentence descriptions from UIUC PASCAL data set
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Image-derived features

Object detectors Based on Felzenszwalb et al.’s deformable part
models, trained for 24 categories on PASCAL 2010 and
ImageNet data

Stuff detectors Based on Farhadi et al.’s basic features, SVM
trained to recognize sky, road, building, tree, water and
grass on ImageNet

Attribute classifiers SVM trained on Flickr, Google, ImageNet and
Farhadi et al.’s images with attribute labels, 21
attributes (blue, furry, wooden, shiny. . . )

Preposition functions Hand-coded heuristics, e.g., near(a,b)

value is given by normalized minimum distance
between the regions of a and b
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Text-derived features

• Text features provide smoothing of image-based hypotheses about
objects, their attributes and preposition-expressed relations

• Co-occurrence counts for attribute-object|stuff and
object|stuff-preposition-object|stuff

• Linearly combined counts from parsed Flickr image description
corpus and Google
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Generation

• From graph labels to sentences
– E.g., from (white cloud) in (blue sky) to There is a white cloud in the

blue sky

• Two simple generation strategies
– N-gram language model used only to insert function words between

nouns, adjectives and prepositions in the graph labels
– Hand-coded templates

100



Language model decoding vs. templates
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Figure 5. Comparison of our two generation methods.

ψp(obji, prepij , obji; textPr) we collect ∼1.4 million
Flickr image descriptions by querying for pairs of object
terms. Sentences containing at least 2 object (or stuff)
categories and a prepositional ( ∼140k) are parsed using
the Stanford dependency parser. We then collect statis-
tics for the occurence of each prepositional dependency be-
tween object categories. For a prepositional dependency oc-
curence, object1 is automatically picked as either the sub-
ject or object part of the prepositional dependency based on
the voice (active or passive) of the sentence, while object2
is selected as the other. Counts include synonyms.

Google Potentials: Though we parse thousands of
descriptions, the counts for some objects can be too
sparse. Therefore, we also collect additional Google
Search based potentials: ψg(attri, obji; textPr) and
ψg(obji, prepij , objj ; textPr). These potentials are com-
puted from the number of search results approximated by
Google for an exact string match query on each of our
attribute-object pairs (e.g. “brown dog”) and preposition-
object-preposition triples (e.g. “dog on grass”).

Smoothed Potentials: Our final potentials are computed
as a smoothed combination of the parsing based potentials
with the Google potentials: αψp + (1 − α)ψg .

6. Generation
The output of our CRF is a predicted labeling of the im-

age. This labeling encodes three kinds of information: ob-
jects present in the image (nouns), visual attributes of those
objects (modifiers), and spatial relationships between ob-
jects (prepositions). Therefore, it is natural to extract this
meaning into a triple (or set of triples), e.g.:

<< white, cloud >, in, < blue, sky >>
Based on this triple, we want to generate a complete sen-

tence such as “There is a white cloud in the blue sky”.
We restrictions generation so that: the set of words in the

meaning representation is fixed and generation must make
use of all given content words; and, generation may insert
only gluing words (i.e., function words such as “there”, “is”,
“the”, etc). These restrictions could be lifted in future work.

6.1. Decoding using Language Models
A N -gram language model is a conditional probability

distribution P (xi|xi−N+1, ..., xi−1) of N -word sequences
(xi−N+1, ..., xi), such that the prediction of the next word
depends only on the previous N -1 words. That is, with
N -1’th order Markov assumption, P (xi|x1, ..., xi−1) =
P (xi|xi−N+1, ..., xi−1). Language models are shown to be
simple but effective for improving machine translation and
automatic grammar corrections.

In this work, we make use of language models to pre-
dict gluing words (i.e. function words) that put together
words in the meaning representation. As a simple exam-
ple, suppose we want to determine whether to insert a func-
tion word x between a pair of words α and β in the mean-
ing representation. Then, we need to compare the length-
normalized probability p̂(αxβ) with p̂(αβ), where p̂ takes
the n’th root of the probability p for n-word sequences, and
p(αxβ) = p(α)p(x|α)p(β|x) using bigram (2-gram) lan-
guage models. If considering more than two function words
between α and β, dynamic programming can be used to find
the optimal sequence of function words efficiently. Because
the ordering of words in each triple of the meaning repre-
sentation coincides with the typical ordering of words in
English, we retain the original ordering for simplicity. Note
that this approach composes a separate sentence for each
triple, independently from all other triples.

6.2. Templates with Linguistic Constraints
Decoding based on language models is a statistically

principled approach, however, two main limitations are: (1)
it is difficult to enforce grammatically correct sentences us-
ing language models alone (2) it is ignorant of discourse
structure (coherency among sentences), as each sentence
is generated independently. We address these limitations
by constructing templates with linguistically motivated con-
straints. This approach is based on the assumption that there
are a handful of salient syntactic patterns in descriptive lan-
guage that we can encode as templates.

7. Experimental Results & Conclusion
To construct the training corpus for language models,

we crawled Wikipedia pages that describe objects our sys-
tem can recognize. For evaluation, we use the UIUC PAS-
CAL sentence dataset2, which contains up to five human-
generated sentences that describe 1000 images. From this
set we evaluate results on 847 images3.

2http://vision.cs.uiuc.edu/pascal-sentences/
3153 were used to learn CRF and detection parameters.
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Quantitative performance
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Figure 6. Results of sentence generation using our method with template based sentence generation. These are “bad” results as judged by
human annotators.

Method w/o w/ synonym
Human 0.50 0.51
Language model-based generation 0.25 0.30
Template-based generation 0.15 0.18
Meaning representation (triples) 0.20 0.30

Table 1. Automatic Evaluation: BLEU score measured at 1

Automatic Evaluation: BLEU [20] is a widely used metric
for automatic evaluation of machine translation that mea-
sures the n-gram precision of machine generated sentences
with respect to human generated sentences. Because our
task can be viewed as machine translation from images
to text, BLEU may seem like a reasonable choice at first
glance. Upon a close look however, one can see that there
is inherently larger variability in generating sentences from
images than translating a sentence from one language to an-
other. For instance, from the image shown in Figure 1, our
system correctly recognizes objects such as “chair”, “green
grass”, “potted plant”, none of which is mentioned in the
human generated description available in the UIUC PAS-
CAL sentence dataset. As a result, BLEU will inevitably
penalize many correctly generated sentences. Nevertheless,
we report BLEU score as a standard evaluation method, and
quantify its shortcomings for future research.

The first column in Table 1 shows BLEU score when
measured with exact match for each word, and the second
shows BLEU when we give full credits for synonyms. For
context, we also compute the BLEU score between human-
generated sentences; we average the BLEU score between
each human-generated sentence to the set of others over all
images. Finally, we compute BLEU score of the CRF out-
puts with respect to the human-generated sentences.
Human Evaluation: Evaluation by BLEU score facilitates
efficient comparisons among different approaches, but does

Method Score
Quality of image parsing 2.85
Language model-based generation 2.77
Template-based generation 3.49

Table 2. Human Evaluation: possible scores are 4 (perfect without error),
3 (good with some errors), 2 (many errors), 1 (failure)

Method k=1 k=2 k=3 k=4+
Quality of image parsing 2.90 2.78 2.82 3.33
Language model-based 2.27 3.00 2.76 2.95
Template-based generation 3.83 3.50 3.43 3.61

Table 3. Human Evaluation: k refers to the number of objects detected
by CRF. Possible scores are 4 (perfect without error), 3 (good with some
errors), 2 (many errors), 1 (failure)

not measure vision output quality directly, and is oblivious
to correctness of grammar or discourse quality (coherency
across sentences). To directly quantify these aspects, we
perform human judgment on the entire test set. The results
are shown in Table 2 and 3, where the image parsing score
evaluates how well we describe image content (the triples
output by the CRF), and the other two scores evaluate the
overall sentence quality. Overall our template generation
method demonstrates a very high average human evaluation
score of 3.49 (max 4) for the quality of generated sentences.
We also do well at predicting image content (ave 2.85).

Note that human judgment of the generation quality
does not correlate with BLEU score. Per BLEU, it looks
as though language-model generation performs better than
template-based one, but human judgment reveals the op-
posite is true. The Pearson’s correlation coefficient be-
tween BLEU and human evaluationare is -0.17 and 0.05 for
language model and template-based methods respectively.
We also measure human annotation agreement on 160 in-
stances. The scores given by two evaluators were identical
on 61% of the instances, and close (difference ≤ 1) on 92%.
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Figure 6. Results of sentence generation using our method with template based sentence generation. These are “bad” results as judged by
human annotators.

Method w/o w/ synonym
Human 0.50 0.51
Language model-based generation 0.25 0.30
Template-based generation 0.15 0.18
Meaning representation (triples) 0.20 0.30

Table 1. Automatic Evaluation: BLEU score measured at 1

Automatic Evaluation: BLEU [20] is a widely used metric
for automatic evaluation of machine translation that mea-
sures the n-gram precision of machine generated sentences
with respect to human generated sentences. Because our
task can be viewed as machine translation from images
to text, BLEU may seem like a reasonable choice at first
glance. Upon a close look however, one can see that there
is inherently larger variability in generating sentences from
images than translating a sentence from one language to an-
other. For instance, from the image shown in Figure 1, our
system correctly recognizes objects such as “chair”, “green
grass”, “potted plant”, none of which is mentioned in the
human generated description available in the UIUC PAS-
CAL sentence dataset. As a result, BLEU will inevitably
penalize many correctly generated sentences. Nevertheless,
we report BLEU score as a standard evaluation method, and
quantify its shortcomings for future research.

The first column in Table 1 shows BLEU score when
measured with exact match for each word, and the second
shows BLEU when we give full credits for synonyms. For
context, we also compute the BLEU score between human-
generated sentences; we average the BLEU score between
each human-generated sentence to the set of others over all
images. Finally, we compute BLEU score of the CRF out-
puts with respect to the human-generated sentences.
Human Evaluation: Evaluation by BLEU score facilitates
efficient comparisons among different approaches, but does

Method Score
Quality of image parsing 2.85
Language model-based generation 2.77
Template-based generation 3.49

Table 2. Human Evaluation: possible scores are 4 (perfect without error),
3 (good with some errors), 2 (many errors), 1 (failure)

Method k=1 k=2 k=3 k=4+
Quality of image parsing 2.90 2.78 2.82 3.33
Language model-based 2.27 3.00 2.76 2.95
Template-based generation 3.83 3.50 3.43 3.61

Table 3. Human Evaluation: k refers to the number of objects detected
by CRF. Possible scores are 4 (perfect without error), 3 (good with some
errors), 2 (many errors), 1 (failure)

not measure vision output quality directly, and is oblivious
to correctness of grammar or discourse quality (coherency
across sentences). To directly quantify these aspects, we
perform human judgment on the entire test set. The results
are shown in Table 2 and 3, where the image parsing score
evaluates how well we describe image content (the triples
output by the CRF), and the other two scores evaluate the
overall sentence quality. Overall our template generation
method demonstrates a very high average human evaluation
score of 3.49 (max 4) for the quality of generated sentences.
We also do well at predicting image content (ave 2.85).

Note that human judgment of the generation quality
does not correlate with BLEU score. Per BLEU, it looks
as though language-model generation performs better than
template-based one, but human judgment reveals the op-
posite is true. The Pearson’s correlation coefficient be-
tween BLEU and human evaluationare is -0.17 and 0.05 for
language model and template-based methods respectively.
We also measure human annotation agreement on 160 in-
stances. The scores given by two evaluators were identical
on 61% of the instances, and close (difference ≤ 1) on 92%.
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Bad description examples 1
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Figure 6. Results of sentence generation using our method with template based sentence generation. These are “bad” results as judged by
human annotators.

Method w/o w/ synonym
Human 0.50 0.51
Language model-based generation 0.25 0.30
Template-based generation 0.15 0.18
Meaning representation (triples) 0.20 0.30

Table 1. Automatic Evaluation: BLEU score measured at 1

Automatic Evaluation: BLEU [20] is a widely used metric
for automatic evaluation of machine translation that mea-
sures the n-gram precision of machine generated sentences
with respect to human generated sentences. Because our
task can be viewed as machine translation from images
to text, BLEU may seem like a reasonable choice at first
glance. Upon a close look however, one can see that there
is inherently larger variability in generating sentences from
images than translating a sentence from one language to an-
other. For instance, from the image shown in Figure 1, our
system correctly recognizes objects such as “chair”, “green
grass”, “potted plant”, none of which is mentioned in the
human generated description available in the UIUC PAS-
CAL sentence dataset. As a result, BLEU will inevitably
penalize many correctly generated sentences. Nevertheless,
we report BLEU score as a standard evaluation method, and
quantify its shortcomings for future research.

The first column in Table 1 shows BLEU score when
measured with exact match for each word, and the second
shows BLEU when we give full credits for synonyms. For
context, we also compute the BLEU score between human-
generated sentences; we average the BLEU score between
each human-generated sentence to the set of others over all
images. Finally, we compute BLEU score of the CRF out-
puts with respect to the human-generated sentences.
Human Evaluation: Evaluation by BLEU score facilitates
efficient comparisons among different approaches, but does

Method Score
Quality of image parsing 2.85
Language model-based generation 2.77
Template-based generation 3.49

Table 2. Human Evaluation: possible scores are 4 (perfect without error),
3 (good with some errors), 2 (many errors), 1 (failure)

Method k=1 k=2 k=3 k=4+
Quality of image parsing 2.90 2.78 2.82 3.33
Language model-based 2.27 3.00 2.76 2.95
Template-based generation 3.83 3.50 3.43 3.61

Table 3. Human Evaluation: k refers to the number of objects detected
by CRF. Possible scores are 4 (perfect without error), 3 (good with some
errors), 2 (many errors), 1 (failure)

not measure vision output quality directly, and is oblivious
to correctness of grammar or discourse quality (coherency
across sentences). To directly quantify these aspects, we
perform human judgment on the entire test set. The results
are shown in Table 2 and 3, where the image parsing score
evaluates how well we describe image content (the triples
output by the CRF), and the other two scores evaluate the
overall sentence quality. Overall our template generation
method demonstrates a very high average human evaluation
score of 3.49 (max 4) for the quality of generated sentences.
We also do well at predicting image content (ave 2.85).

Note that human judgment of the generation quality
does not correlate with BLEU score. Per BLEU, it looks
as though language-model generation performs better than
template-based one, but human judgment reveals the op-
posite is true. The Pearson’s correlation coefficient be-
tween BLEU and human evaluationare is -0.17 and 0.05 for
language model and template-based methods respectively.
We also measure human annotation agreement on 160 in-
stances. The scores given by two evaluators were identical
on 61% of the instances, and close (difference ≤ 1) on 92%.
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Figure 6. Results of sentence generation using our method with template based sentence generation. These are “bad” results as judged by
human annotators.

Method w/o w/ synonym
Human 0.50 0.51
Language model-based generation 0.25 0.30
Template-based generation 0.15 0.18
Meaning representation (triples) 0.20 0.30

Table 1. Automatic Evaluation: BLEU score measured at 1

Automatic Evaluation: BLEU [20] is a widely used metric
for automatic evaluation of machine translation that mea-
sures the n-gram precision of machine generated sentences
with respect to human generated sentences. Because our
task can be viewed as machine translation from images
to text, BLEU may seem like a reasonable choice at first
glance. Upon a close look however, one can see that there
is inherently larger variability in generating sentences from
images than translating a sentence from one language to an-
other. For instance, from the image shown in Figure 1, our
system correctly recognizes objects such as “chair”, “green
grass”, “potted plant”, none of which is mentioned in the
human generated description available in the UIUC PAS-
CAL sentence dataset. As a result, BLEU will inevitably
penalize many correctly generated sentences. Nevertheless,
we report BLEU score as a standard evaluation method, and
quantify its shortcomings for future research.

The first column in Table 1 shows BLEU score when
measured with exact match for each word, and the second
shows BLEU when we give full credits for synonyms. For
context, we also compute the BLEU score between human-
generated sentences; we average the BLEU score between
each human-generated sentence to the set of others over all
images. Finally, we compute BLEU score of the CRF out-
puts with respect to the human-generated sentences.
Human Evaluation: Evaluation by BLEU score facilitates
efficient comparisons among different approaches, but does

Method Score
Quality of image parsing 2.85
Language model-based generation 2.77
Template-based generation 3.49

Table 2. Human Evaluation: possible scores are 4 (perfect without error),
3 (good with some errors), 2 (many errors), 1 (failure)

Method k=1 k=2 k=3 k=4+
Quality of image parsing 2.90 2.78 2.82 3.33
Language model-based 2.27 3.00 2.76 2.95
Template-based generation 3.83 3.50 3.43 3.61

Table 3. Human Evaluation: k refers to the number of objects detected
by CRF. Possible scores are 4 (perfect without error), 3 (good with some
errors), 2 (many errors), 1 (failure)

not measure vision output quality directly, and is oblivious
to correctness of grammar or discourse quality (coherency
across sentences). To directly quantify these aspects, we
perform human judgment on the entire test set. The results
are shown in Table 2 and 3, where the image parsing score
evaluates how well we describe image content (the triples
output by the CRF), and the other two scores evaluate the
overall sentence quality. Overall our template generation
method demonstrates a very high average human evaluation
score of 3.49 (max 4) for the quality of generated sentences.
We also do well at predicting image content (ave 2.85).

Note that human judgment of the generation quality
does not correlate with BLEU score. Per BLEU, it looks
as though language-model generation performs better than
template-based one, but human judgment reveals the op-
posite is true. The Pearson’s correlation coefficient be-
tween BLEU and human evaluationare is -0.17 and 0.05 for
language model and template-based methods respectively.
We also measure human annotation agreement on 160 in-
stances. The scores given by two evaluators were identical
on 61% of the instances, and close (difference ≤ 1) on 92%.
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More on image description generation/adaptation

• B. Yao, X. Yang, L. Lin, M. Lee and S.-C. Zhu. 2010. I2t: Image
parsing to text description. Proceedings of IEEE

• A. Farhadi, M. Hejrati, A. Sadeghi, P. Young, C. Rashtchian,
J. Hockenmaier and D. Forsyth. 2010. Every picture tells a story:
Generating sentences for images. Proceedings of ECCV

• M. Mitchell, J. Dodge, A. Goyal, K. Yamaguchi, K. Stratos, X. Han,
A. Mensch, A. Berg, T. Berg and H. Daume III. 2012. Midge:
Generating image descriptions from computer vision detections.
Proceedings of EACL

• R. Mason. 2013. Domain-independent captioning of domain-specific
images. Proceedings of NAACL Student Research Workshop

• Y. Feng and M. Lapata. 2013. Automatic caption generation for
news images. IEEE Trans. Pattern Anal. Mach. Intell. 35(4)
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1 Why image analysis?

2 Annotated image datasets

3 Extraction of low-level features from images

4 Visual words for higher-level image representation

5 Example applications in computer vision

6 Going multimodal: Visual features in NLP
Generating image descriptions
Multimodal distributional semantics
Visual selectional preference
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Multimodal distributional semantics
• Our work:

– E. Bruni, G.B. Tran and M. Baroni. 2011. Distributional semantics
from text and images. Proceedings of GEMS

– E. Bruni, G. Boleda, M. Baroni and N.K. Tran. 2012. Distributional
semantics in Technicolor. Proceedings of ACL

– E. Bruni, J. Uijlings, M. Baroni and N. Sebe. 2012. Distributional
semantics with eyes: Using image analysis to improve computational
representations of word meaning. Proceedings of ACM-MM

– E. Bruni, N.K. Tran and M. Baroni. Submitted. Multimodal
distributional semantics

• More:
– Y. Feng and M. Lapata. 2010. Visual information in semantic

representation. Proceedings of NAACL
– C.W. Leong and R. Mihalcea. 2011. Going beyond text: A hybrid

image-text approach for measuring word relatedness. Proceedings of
IJCNLP
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Distributional semantics
The geometry of meaning (e.g., Turney and Pantel, 2010)

shadow shine
moon 16 29
sun 15 45
dog 10 0

0 5 10 15 20

0
10

20
30

40
50

shadow

sh
in
e

dog (10,0)

sun (15,45)

moon (16,29)

109



Multimodal distributional semantics

  

planet night
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Distributional semantics from images
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Distributional semantics from images
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Distributional semantics from images
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Distributional semantics from images
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What is this good for?

Task 1 Predicting human semantic relatedness judgments

Task 2 Concept categorization, i.e. grouping words into
classes based on their semantic relatedness (car ISA
vehicle; banana ISA fruit)

Task 3 Find typical color of concrete objects (cardboard is
brown, tomato is red )

Task 4 Distinguish literal vs. non-literal usages of color
adjectives (blue uniform vs. blue note)
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Task 1: Semantic relatedness data sets

• Data
– WordSim353 dataset

• 353 word pairs (coverage: 252)
• 16 subjects rate each pair on a 10-point scale, ratings averaged
• dollar/buck: 9.22, professor/cucumber: 0.31

– MEN dataset (created by us)
• 3,000 word pairs, tags in image datasets
• crowdsourcing: subjects see two word pairs and pick the pair containing

most related words
• each word pair is rated 50 times, score = selected / 50
• cold/frost: 0.9, eat/hair: 0.1

• Method
– for each model, compute cosine between word vectors
– score: Spearman correlation against the human ratings
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Task 1: Semantic relatedness results
Bruni, N.K. Tran and Baroni (submitted)

Window 2 Window 20
Model MEN WS MEN WS
Text 0.73 0.70 0.68 0.70
Image 0.43 0.36 0.43 0.36
Fusion 0.78 0.72 0.76 0.75

Spearman correlation of the models on MEN and WordSim
(all coefficients significant with p < 0.001).
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Task 2: Concept categorization data sets

• Data
– Battig (for training)

• 77 concepts from 10 different classes
• bird (eagle, owl...) vegetable (broccoli, potato...)

– Almuhareb-Poesio (for testing)
• 231 concepts from 21 different classes
• vehicle (airplane, car...) time (aeon, future...)

• Method
– cluster the words based on their pairwise cosines in the semantic

space (using the CLUTO toolkit)

115



Task 2: Concept categorization results
Bruni, N.K. Tran and Baroni (submitted)

Window 2 Window 20
Text 0.73 0.65
Image 0.26 0.26
Fusion 0.74 0.69

Percentage purities of the models on Almuhareb-Poesio.
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Task 3: Find typical color of concrete objects

• Data and task
– spot typical color of 52 concrete objects: cardboard is brown, coal is

black, forest is green
– typical colors assigned by two judges by consensus

• Berlin and Kay (1969)’s basic color adjectives: black, blue, brown,
green, grey, orange, pink, purple, red, white , yellow

• Method
– rank color adjective vectors by similarity to the noun vectors
– good models will rank right color high
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Task 3: Find typical color of concrete objects
Bruni, Boleda, Baroni and N.K. Tran 2012

Model Score
TEXT30K 3 (11)

LAB128 1 (27)

SIFT40K 3 (15)

TEXT+LAB128 1 (27)

TEXT+SIFT40K 2 (17)

Median rank of correct color and # of top matches
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Task 3: Examples

word gold LAB SIFT TEXT
cauliflower white green yellow orange

cello brown brown black blue
deer brown green blue red
froth white brown black orange

gorilla black black red grey
grass green green green green
pig pink pink brown brown
sea blue blue blue grey

weed green green yellow purple
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Task 4: Literal vs. non-literal

• Data and task
– distinguish literal and non-literal usages of color adjectives: blue

uniform, blue shark, blue note
– 342 adjective-noun pairs, 227 literal, 115 non-literal, as decided by

two judges by consensus

• Method

– compute cosine between color adjective vector and noun vector
– prediction: higher similarity of color and noun vectors for literal uses
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Task 4: Literal vs. non-literal

Model Score
TEXT30K 0.53***
LAB128 0.25*
SIFT40K 0.57***
TEXT+LAB128 0.36***
TEXT+SIFT40K 0.73***

Average difference in normalized adj-noun cosines
in literal vs. non-literal conditions with t-test significance
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The illustrated distributional hypothesis
Current development

The meaning of a visually depicted concept is (can be approximated
by, derived from) the set of contexts in which it occurs in images
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The illustrated distributional hypothesis
Localization:

Area No Manual Automatic
Concept NA 0.39 0.36
Context NA 0.50 0.51
Concept+Context 0.47 0.54 0.54

  

context

concept
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1 Why image analysis?

2 Annotated image datasets

3 Extraction of low-level features from images

4 Visual words for higher-level image representation

5 Example applications in computer vision

6 Going multimodal: Visual features in NLP
Generating image descriptions
Multimodal distributional semantics
Visual selectional preference
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Visual selectional preference

S. Bergsma and R. Goebel. 2011. Using visual
information to predict lexical preference.
Proceedings of RANLP
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What would you rather eat?

• migas?

• zeolite?

• carillons?

• a ficus?

• a mamey?

• manioc?
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What would you rather eat?

Figure 1: Which out-of-vocabulary nouns are
plausible direct objects for the verb eat? Each row
corresponds to a noun: 1. migas, 2. zeolite, 3.
carillon, 4. ficus, 5. mamey and 6. manioc.

sponding classifier that scores noun arguments on
the basis of various textual features. We use this
discriminative framework to incorporate the visual
information as new, visual features.
Our experiments evaluate the ability of these

classifiers to correctly predict the selectional pref-
erences of a small set of verbs. We evaluate two
cases: 1) the case where the nouns are all as-
sumed to be out-of-vocabulary, and the classifiers
must make predictions without any corpus-based
co-occurrence information, and 2) the case where
we assume access to noun-verb co-occurrence in-
formation derived from web-scale N-gram data.
We show that visual features are useful for some

verbs, but not for others. For verbs taking abstract
arguments without definitive visual features, the
classifier can often learn to disregard the visual
data. On the other hand, for verbs taking physi-
cal arguments (such as food, animals, or people),
the classifier can make accurate predictions using
the nouns’ visual properties. In these cases, visual
information remains useful even after incorporat-
ing the web-scale statistics.

2 Visual Selectional Preference

Consider determining whether the nouns carillon,
migas and mamey are plausible arguments for the

verb eat. Existing systems are unlikely to have
such words in their training data, let alone infor-
mation about their edibility. However, after in-
specting a few images returned by a Google search
for these words (Figure 1), a human might rea-
sonably predict which words are edible. Humans
make this determination by observing both intrin-
sic visual properties (pits, skins, rounded shapes
and fruity colors) and extrinsic visual context (cir-
cular plates, bowls, and other food-related tools)
(Oliva and Torralba, 2007).
We propose using similar information to pre-

dict the plausibility of arbitrary verb-noun pairs.
That is, we aim to learn the distinguishing vi-
sual features of all nouns that are plausible argu-
ments for a given verb. This differs from work
that has aimed to recognize, annotate and retrieve
objects defined by a single phrase, such as tree or
wrist watch (Feng and Lapata, 2010a). These ap-
proaches learn from labeled images during train-
ing in order to assign words to unlabeled images
during testing. In contrast, we analyze labeled im-
ages (during training and testing) in order to deter-
mine their visual compatibility with a given predi-
cate. Our approach does not need labeled training
images for a specific noun in order to assess that
noun during testing; e.g. we can make a reason-
able prediction for the plausibility of eat mamey
even if we’ve never encountered mamey before.
We now specify how we automatically 1) down-

load a set of images for each noun, 2) extract vi-
sual features from each image, and 3) combine the
visual features from multiple images into plausi-
bility scores. Scripts, code and data are available
at: www.clsp.jhu.edu/∼sbergsma/ImageSP/.

2.1 Mining noun images from the web

To obtain a set of images for a particular noun ar-
gument, we submit the noun as a query to either
the Flickr photo-sharing website (www.flickr.
com), or Google’s image search (www.google.
com/imghp). In both cases, we download the
thumbnails on the results page directly rather than
downloading the source images. Flickr returns im-
ages by matching the query against user-provided
tags and accompanying text. Google retrieves im-
ages based on the image caption, file-name, and
surrounding text (Feng and Lapata, 2010a). Im-
ages obtained from Google are known to be com-
petitive with “hand prepared datasets” for training
object recognizers (Fergus et al., 2005).

400
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Discriminative selectional preference
Bergsma et al. 2008

• Train a classifier for each verb to predict which nouns are acceptable
objects:

yv = ~λv · ~Φv (n)

• Requires large corpus to extract features such as co-occurrence of
noun with other verbs

• For out-of-corpus-vocabulary nouns, use simple string-shape
features
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Enrich out-of-vocabulary noun representation
with visual features

!"#$%&$'%()*"+),-./,0"123#4.

.
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<.
• Images retrieved from Flickr or Google Image Search, 6 images per

noun

• Features: RGB-color and SIFT visual words (64- and 512-item color
and 100- and 1000-item SIFT vocabularies, concatenated and fed to
classifier)

Image from Shane Bergsma’s slides
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Task

• Seven verbs: eat, inform, hit, kill, park, hunt and shoot down

• Training examples range from 500 to 10,000 per-verb, test instances
from 50 to 1,000

– Positive examples have AQUAINT corpus PMI(v ,n) > 0, for negative
examples PMI(v ,n) < 0

• Baseline uses string features only
– When using (co-)occurrence counts from the Web, visual features do

not significantly improve over using textual data only!
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Accuracy across verbs
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The more images the better
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Both types of visual features help!"#$%&'()*%"+%,-*./0%1)/#.2)*%3)0(+.0%
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From Shane Bergsma’s slides
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Come to our system demonstration!
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SUPPLEMENTARY
MATERIALS
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Canny edgesCanny edge detector
!"#$#%&'(#)&$*

[K. Grauman]
54

Slide credit: Kristen Grauman
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Canny edgesCanny edge detector!"#$%"&'()*+,+#-()$*.,/).",-,")+"$#,."#$%"&'(
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Slide credit: Kristen Grauman
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Textons

• Texture is characterized by the repetition of basic elements or
Textons

Bag-of-features for image classification 

•  Origin: texture recognition 

•  Texture is characterized by the repetition of basic elements or 

textons 

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 

 Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 

Slide credit: Cordelia Schmid
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Textons
Texture recognition 

Universal texton dictionary 

histogram 

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 

Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 

Slide credit: Cordelia Schmid 140



Color

Slide credit: Dieter Fox
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LAB
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LAB

Emotion analysis: The method
Proposed methodology

LAB 
Visual Words

SIFT 
Visual Words

Dictionary

Tex t ure  &
Shape

Feat ure 
Det ec t ion

Colours

Art Works

LAB  descriptor SIFT descriptor

Dictionary

… …

Slide credit: Yanulevskaya et al. 2012
72

Slide credit: Victoria Yanuleskaya
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