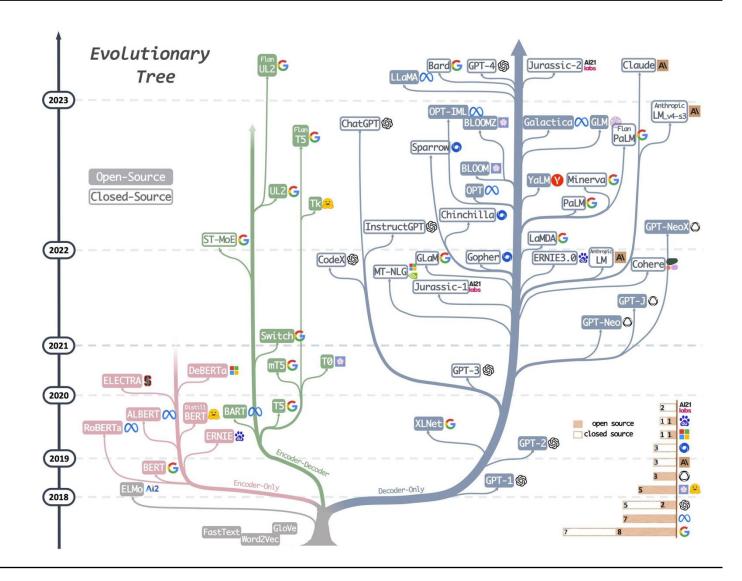


BROKEN TELEPHONE

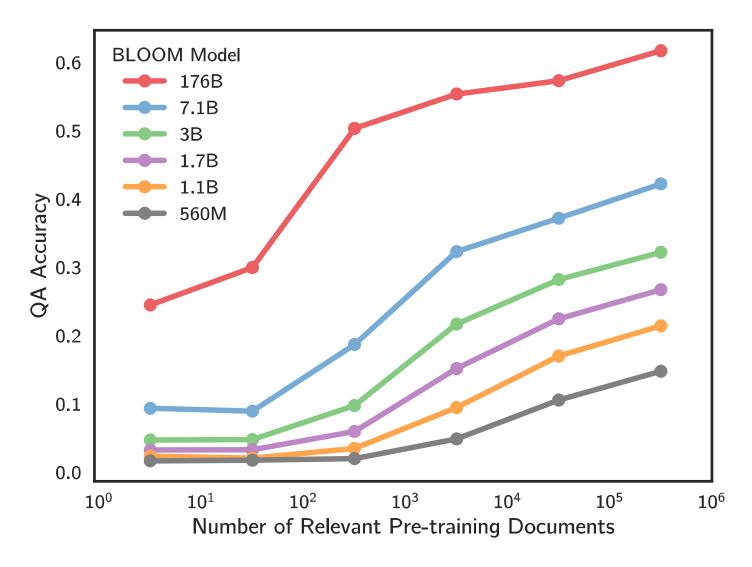
Evangelos Kanoulas

University of Amsterdam

INFORMATION ACCESS IN THE ERA OF LLMS



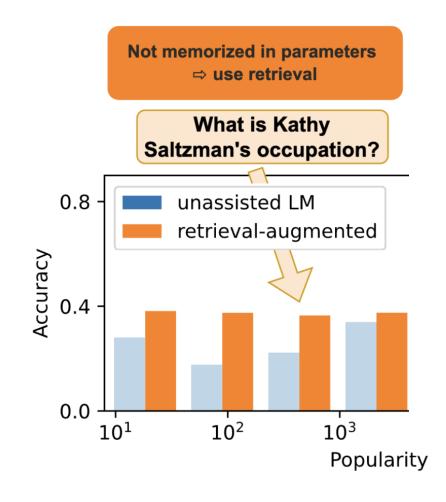
WHAT LLMS DO NOT KNOW



Kandpal, Nikhil, et al. "Large language models struggle to learn long-tail knowledge." International Conference on Machine Learning. PMLR, 2023.

RETRIEVAL AUGMENTATION

Retrieval augmentation helps when the LLM has not seen enough ...

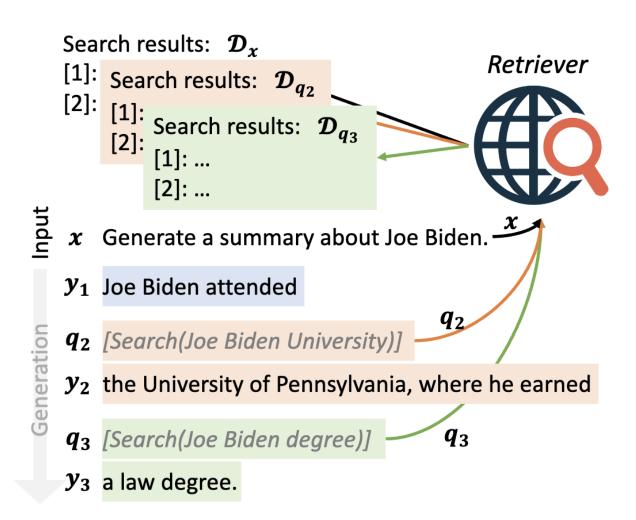


Mallen, Alex, et al. "When not to trust language models: Investigating effectiveness of parametric and non-parametric memories." In ACL 2023.

Prof. dr. E. Kanoulas – University of Amsterdam $oldsymbol{4}$

RETRIEVAL AUGMENTATION

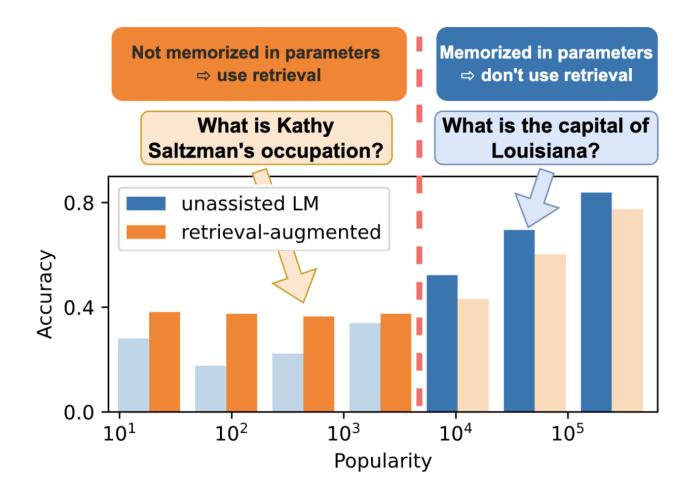
Retrieve when the LLM is not confident enough



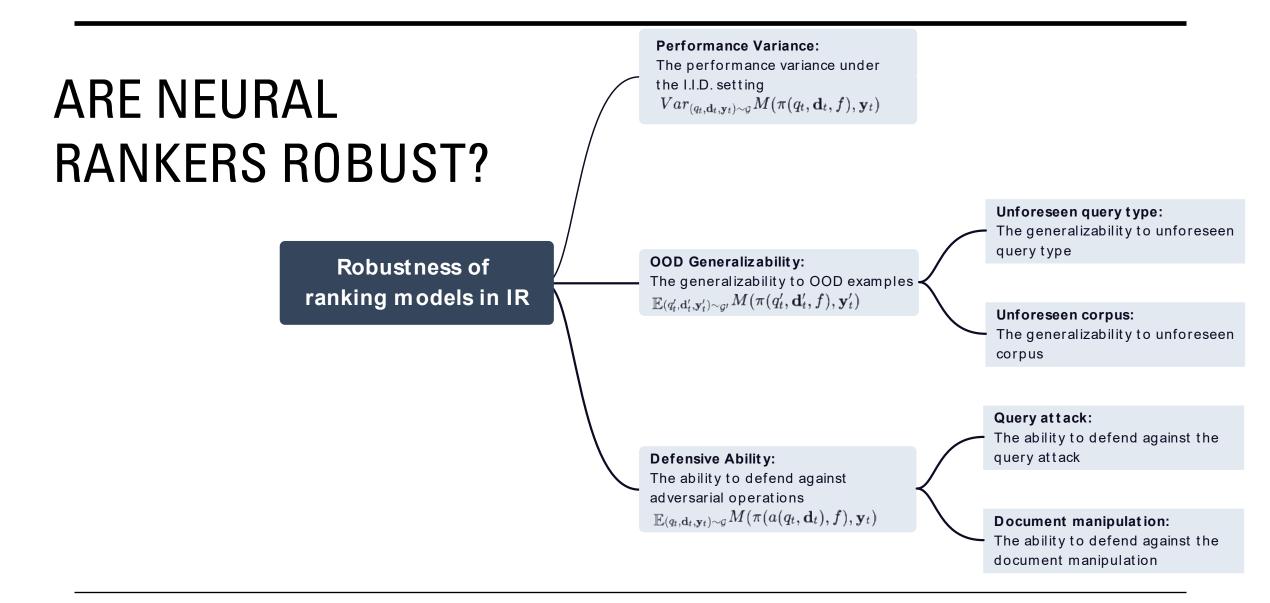
Jiang, Zhengbao, et al. "Active retrieval augmented generation." arXiv preprint arXiv:2305.06983 (2023).

RETRIEVAL AUGMENTATION

Retrieval augmentation helps when the LLM has not seen enough ... but if the LLM has seen enough it may even harm performance.

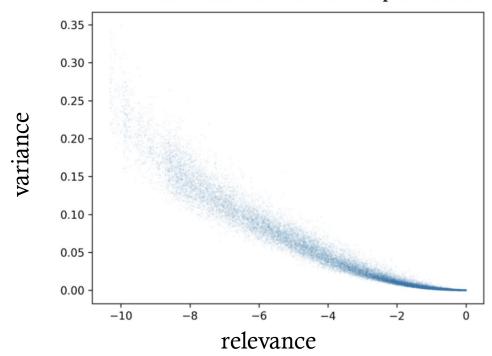


Mallen, Alex, et al. "When not to trust language models: Investigating effectiveness of parametric and non-parametric memories." In ACL 2023.

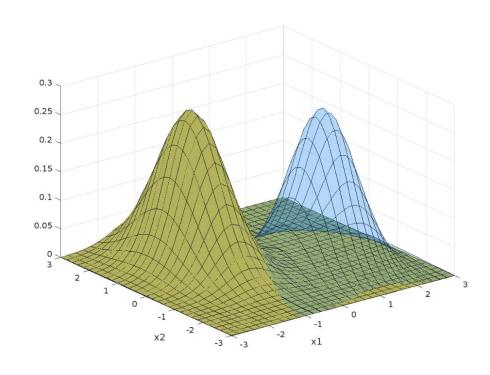


MODEL UNCERTAINTY

Bert L2 Mean Relevance to Variance per Document

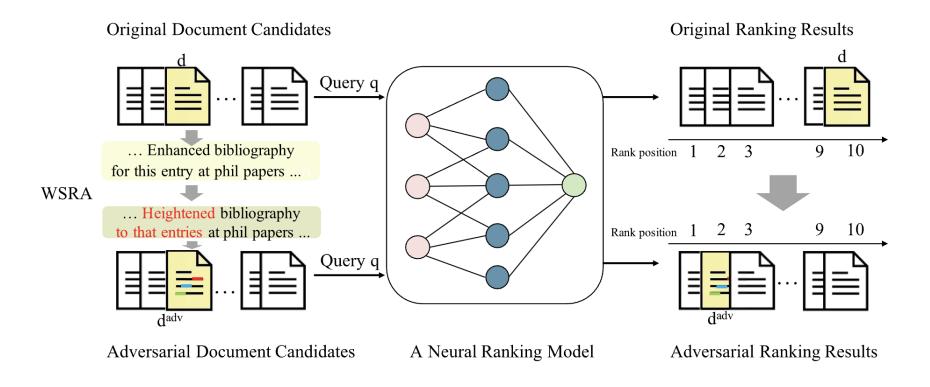


Cohen, Daniel, et al. "Not all relevance scores are equal: Efficient uncertainty and calibration modeling for deep retrieval models." In SIGIR 2021



Hamed Zamani and Michael Bendersky. 2023. Multivariate Representation Learning for Information Retrieval. In SIGIR '23.

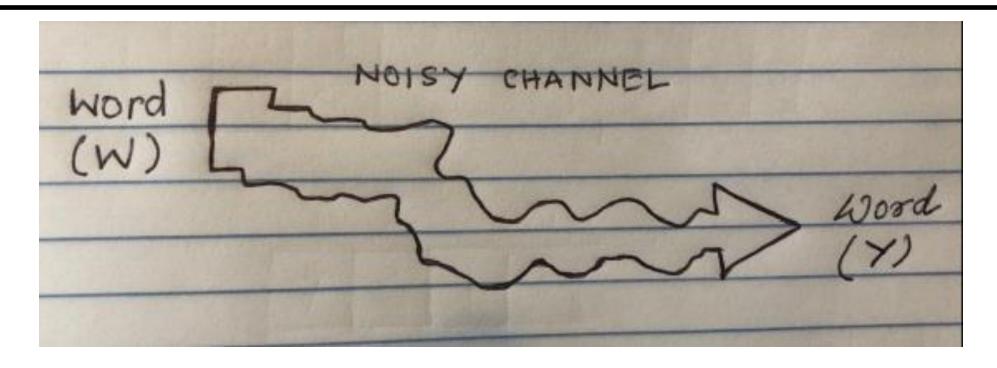
ADVERSARIAL ATTACKS



UNCERTAINTY

- Estimate uncertainty/confidence
- Attribute uncertainty
- Develop remedies
 - Augment data
 - Transfer knowledge across domains
 - Learn to defer
- Express/pass uncertainty

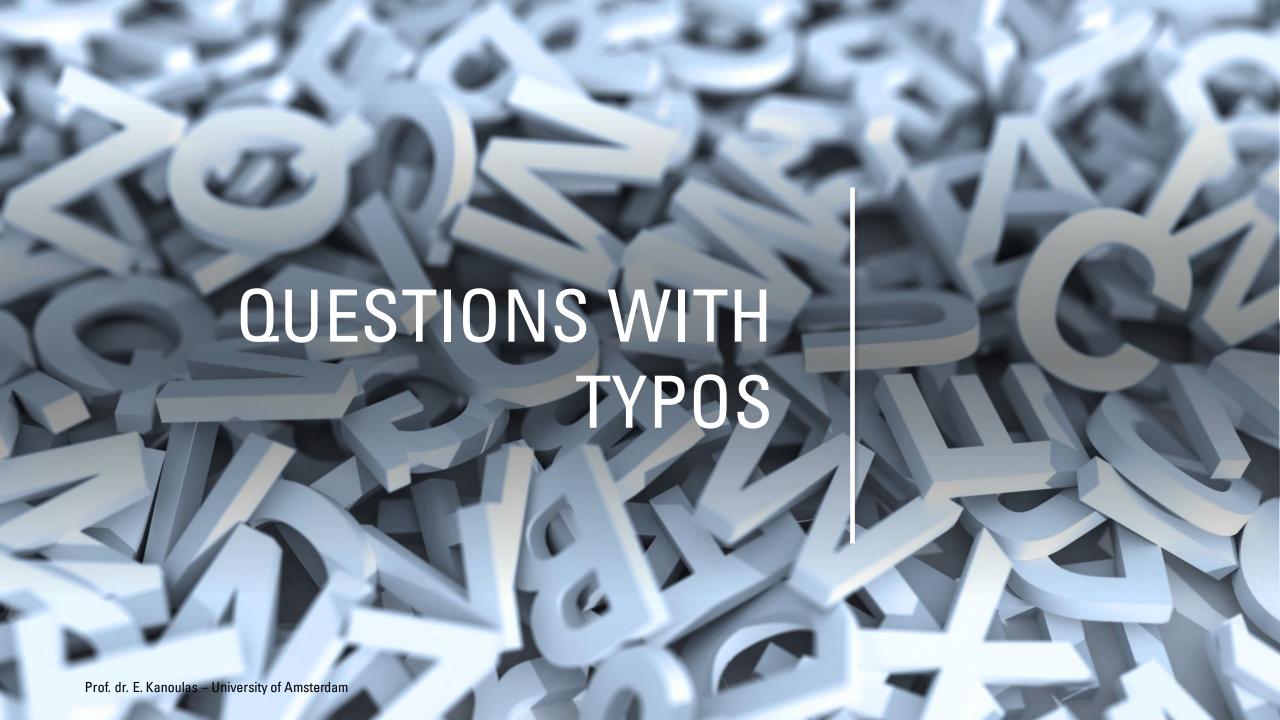
DALL*E



(Attack) Typos and ASR mistakes ——— Contrastive learning and data augmentation.

(Attack) False memories Uncertainty estimation and attribution.

(OOD) Conversational questions — Domain transfer and data generation.



Random

• Inserts, deletes, swaps, or substitutes a random character

Keyboard

• Swaps a random character with those close to each other on the QWERTY keyboard

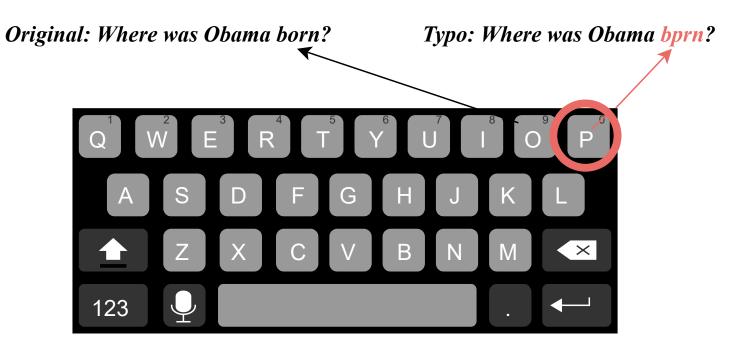
Common misspellings

• Replaces words with misspelled ones, defined in a dictionary of common user-generated misspellings

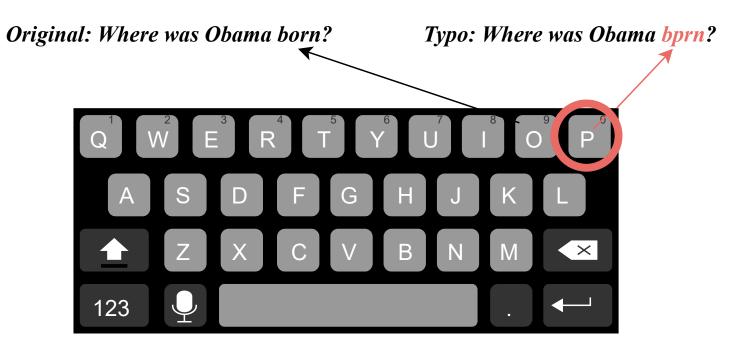
METHODS

Dense Retriever (DR) is a dual-encoder BERT-based model used for scoring question-passage pairs:

$$L_{1}(q_{i}, p_{i}^{+}, p_{i,1}^{\neq}, \cdots, p_{i,n}^{\neq}) = \neq \log \frac{e^{\sin(q_{i}, p_{i}^{+})}}{e^{\sin(q_{i}, p_{i}^{+})} + \frac{p_{i,1}^{\pm}}{j=1} e^{\sin(q_{i}, p_{i,j}^{\neq})}}.$$
 (1)



	Natural Qu		
	Origina1	Original Typos in Random Word	
	AR@5	AR@5	
Dense Retrieval	67.31	49.52	5% droj
			J/0 uro



	MSMa	MSMarco (Dev)		
	Original	Typos in Random Words	_	
	MRR@10	.@10 MRR@10		
Dense Retrieval	28.11	15.11	(0/	
) /	

METHODS

Dense Retriever (DR) is a dual-encoder BERT-based model used for scoring question-passage pairs:

$$L_{1}(q_{i}, p_{i}^{+}, p_{i,1}^{\neq}, \cdots, p_{i,n}^{\neq}) = \neq \log \frac{e^{\sin(q_{i}, p_{i}^{+})}}{e^{\sin(q_{i}, p_{i}^{+})} + \frac{p_{i,1}^{\pm}}{j=1} e^{\sin(q_{i}, p_{i,j}^{\neq})}}.$$
 (1)

Data Augmentation (DR + Data augm.) is one of the traditional approaches for robustifying neural models. By exposing DR on questions with and without typos, the model learns to be invariant to typos.

	Natural Q	uestions (Test)	MSM	arco (Dev)
	Original	Typos in Random Words	Original	Typos in Random Words
	AR@5	AR@5	MRR@10	MRR@10
DR	67.31	49.52	28.11	15.11
DR + Data augm.	66.45	60.69	28.26	22.00

$$26\% \rightarrow 10\% \text{ drop}$$

$$46\% \rightarrow 21\%$$
 drop

METHODS

Contrastive learning (DR + CL) of representations works by maximizing the agreement between differently augmented views of the same object. We propose a contrastive loss that compares the similarity between a question and its typoed variations and other distinct questions:

$$L_{2}(q_{i}, q_{i}^{+}, q_{i,1}^{\neq}, \cdots, q_{i,n}^{\neq}) = \neq \log \frac{e^{\sin(q_{i}, q_{i}^{+})}}{e^{\sin(q_{i}, q_{i}^{+})} + P_{j=1}^{n} e^{\sin(q_{i}, q_{i,j}^{\neq})}}.$$
 (2)

The final loss is a weighted average of the two losses:

$$L = w_1 \cdot L_1 + w_2 \cdot L_2. \tag{3}$$

	Natural Questions (Test)		MSMarco (Dev)	
	Original	Typos in Random Words	Original	Typos in Random Words
	AR@5	AR@5	MRR@10	MRR@10
DR	67.31	49.52	28.11	15.11
DR + Data augm.	66.45	60.69	28.26	22.00
DR + Data augm. + CL (ours)	67.47	62.13	29.14	22.84

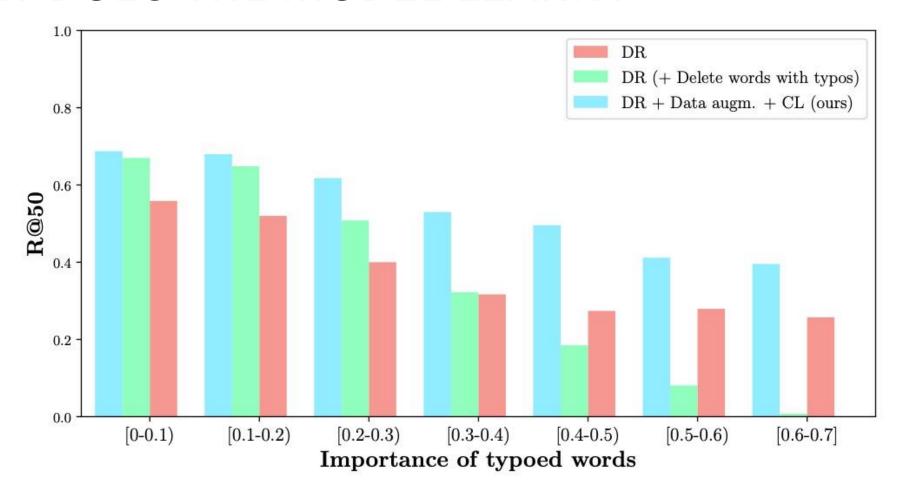
 $26\% \rightarrow 7\% \text{ drop}$

46% → 18% drop

DO ALL TYPOS MATTER EQUALLY?

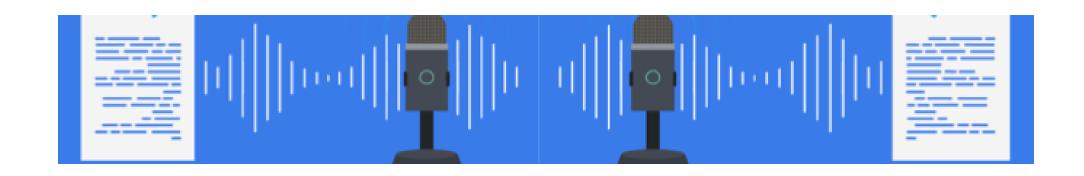
		Natural Questions (Test)			
	Original	Typos in Random Words	Typos in Discriminative Utterances		
	AR@5	AR@5	AR@5		
DR	67.31	49.52	38.89		
DR + Data augm.	66.45	60.69	51.68		
DR + Data augm. + CL (ours)	67.47	62.13	53.15		

WHAT DOES THE MODEL LEARN?



SPECH-BASED QUESTIONS

SYNTHETIC QUESTIONS



Sidiropoulos, Georgios, Svitlana Vakulenko, and Evangelos Kanoulas. "On the impact of speech recognition errors in passage retrieval for spoken question answering." In CIKM 2022

SIGNIFICANT DROP IN PERFORMANCE

	Natural	Natural Questions (Test)	
	Original	ASR	
	AR@5	AR@5	
DR	66.26	41.91	

37% drop

Sidiropoulos, Georgios, Svitlana Vakulenko, and Evangelos Kanoulas. "On the impact of speech recognition errors in passage retrieval for spoken question answering." In CIKM 2022

DATA AUGMENTATION FOR THE WIN

		Natural	Questions (Test)
	Noise	Original	ASR
		AR@5	AR@5
DR		66.26	41.91
DR + Data augm.	Typos	67.47	46.75

29% drop

DATA AUGMENTATION FOR THE WIN

		Natural Questions (Test)	
	Noise	Original	ASR
		AR@5	AR@5
DR		66.26	41.91
DR + Data augm.	Typos	67.47	46.75
DR + Data augm.	ASR	66.67	54.84

17% drop

... BUT HOW MUCH AND WHAT KIND

# Additional training questions with ASR noise	AR@5
40K	54.84
4K	48.69
400	44.29
0	41.91

Data hungry

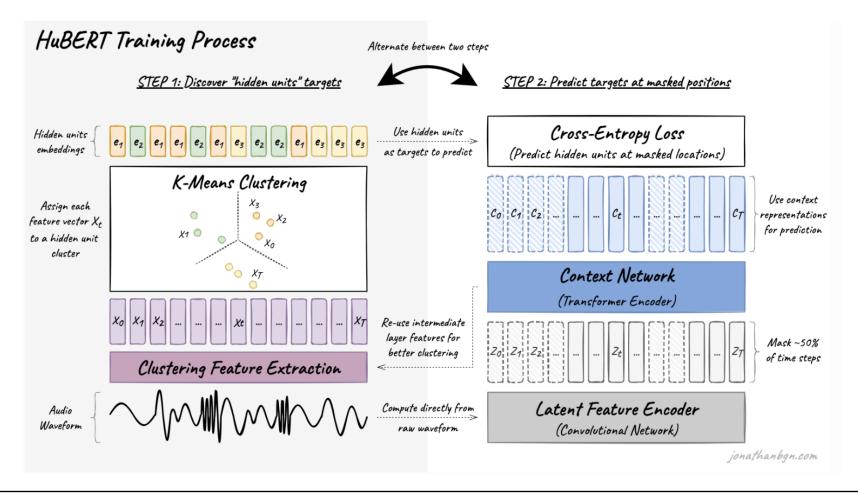
... BUT HOW MUCH AND WHAT KIND

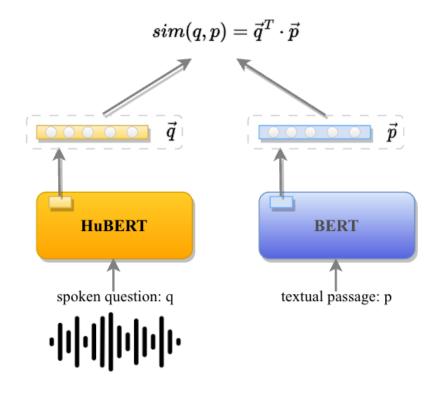
Data augm.	test	AR@5
en-US	en-US	54.84
en-US	en-AU	53.54
en-US	en-IN	46.37

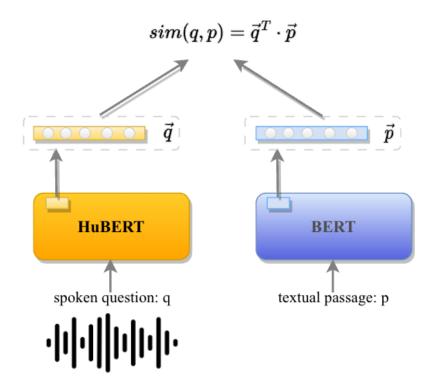
Does not generalize well

NATURAL QUESTIONS

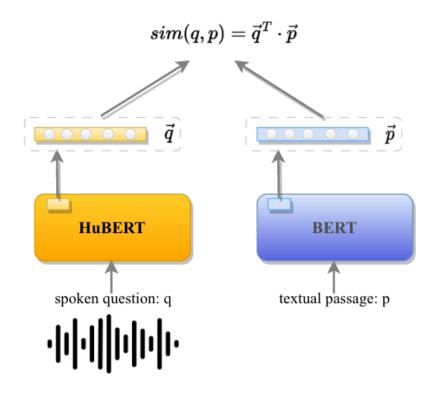
		Natural Questions (Test)		
	Noise	Original	ASR Synthetic	ASR NAtural
		AR@5	AR@5	AR@5
DR		66.26	41.91	16.64
DR + Data augm.	Typos	67.47	46.75	24.82
DR + Data augm.	ASR Synthetic	66.67	54.84	29.98



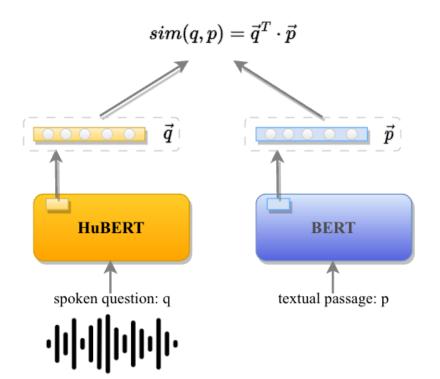




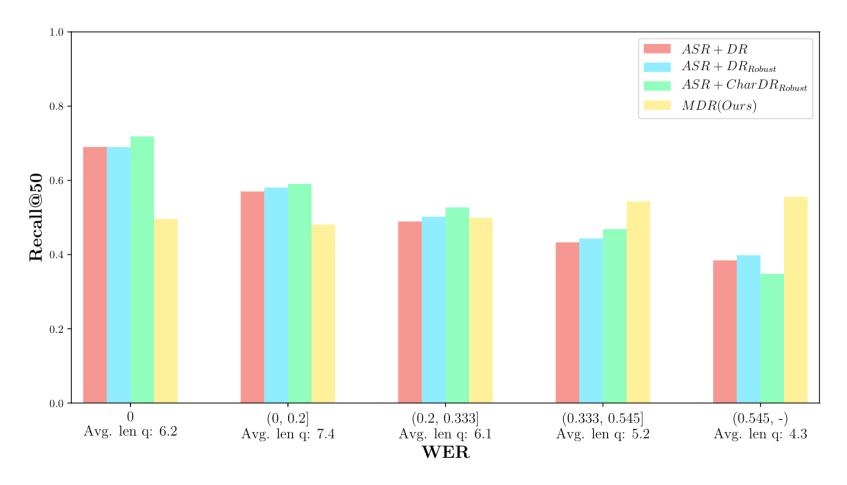
	Natural Question
	AR@5
DR + ASR	68,36
MDR	57,25

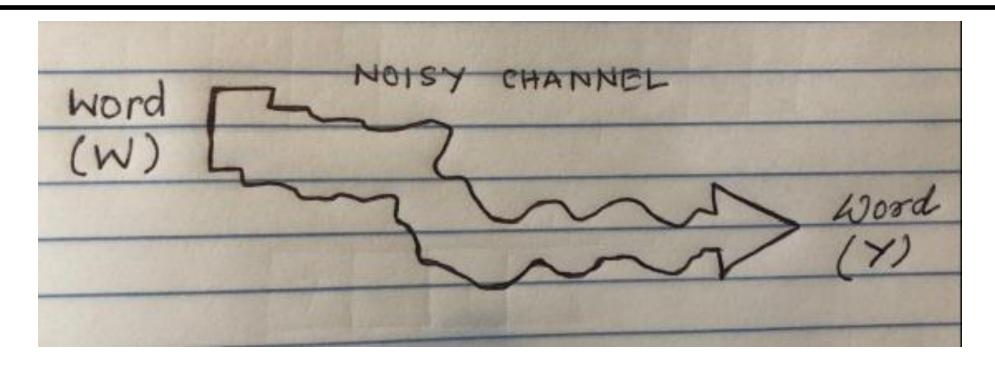


	MS Marco	
	MMR	
DR + ASR	17.74	
MDR	15.77	



	MS	MS
	Marco	Marco
	Seen	Unseen
	MMR	MMR
DR + ASR	16.69	13.45
MDR	15.47	18.52



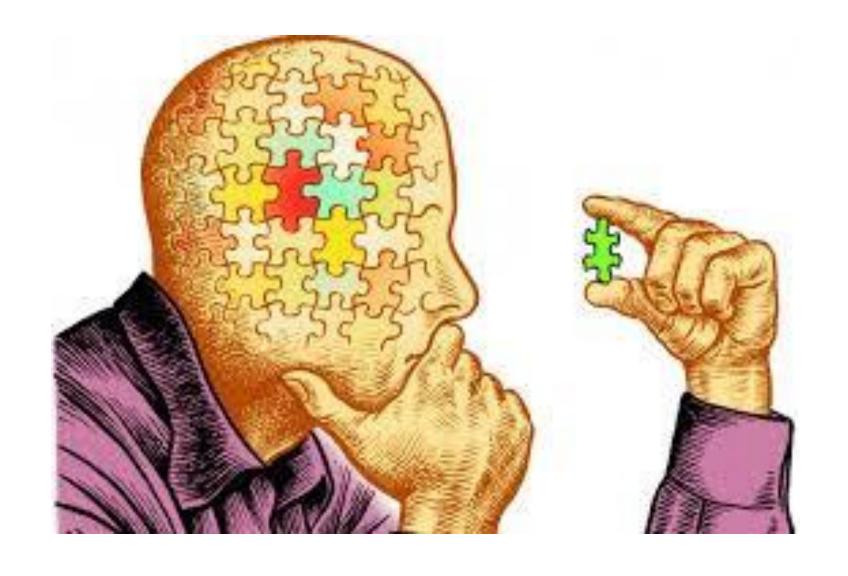


Typos and ASR mistakes ——— Contrastive learning and data augmentation.

False memories Uncertainty estimation and attribution.

Conversational questions — Domain transfer.

RIGHT ON THE TIP OF MY TONGUE



IT'S ON THE TIP OF MY TONGUE

Ok so I don't really remember anything but one scene, so I will try to give as much detail as I can. I saw this movie when I was very young and only remember this scene because (from what I remember) I don't think I actually watched most of the movie because I found it pretty scary, so it is probably not a children/family movie. I think I watched it in 2006 (mid-end of the year probably) and it was on a tv in someone's house, so it was old enough to be released on tv/dvd (not still in cinemas). It was in English and colour I'm pretty sure. So this scene: There was a (or multiple) giant robot-like things and I think they were sort of sphere shaped. It was destroying a city and going around picking people up (possible killing them?) in giant net-like things i think. There was a father and daughter (i think it was a daughter) and they ended up getting separated because the father got picked up by the robot thing. When the robot thing was picking people up there was a lot of red liquid stuff (quite possibly blood, but maybe something else?). In the end I think the father made it back to the daughter. And that is all I remember, sorry if it is vague, but really hope someone can help.

- Social nieces
- Contextual episodic memories
- Semantic memories about metadata, scenes, plots, etc.
- Exclusion criteria
- Multi-hop reasoning (comparisons)

Ok so I don't really remember anything but one scene, so I will try to give as much detail as I can. I saw this movie when I was very young and only remember this scene because (from what I remember) I don't think I actually watched most of the movie because I found it pretty scary, so it is probably not a children/family movie. I think I watched it in 2006 (mid-end of the year probably) and it was on a tv in someone's house, so it was old enough to be released on tv/dvd (not still in cinemas). It was in English and colour I'm pretty sure. So this scene: There was a (or multiple) giant robot-like things and I think they were sort of sphere shaped. It was destroying a city and going around picking people up (possible killing them?) in giant net-like things i think.

- Social nieces
- Contextual episodic memories
- Semantic memories about metadata, scenes, plots, etc.
- Exclusion criteria
- Multi-hop reasoning (comparisons)

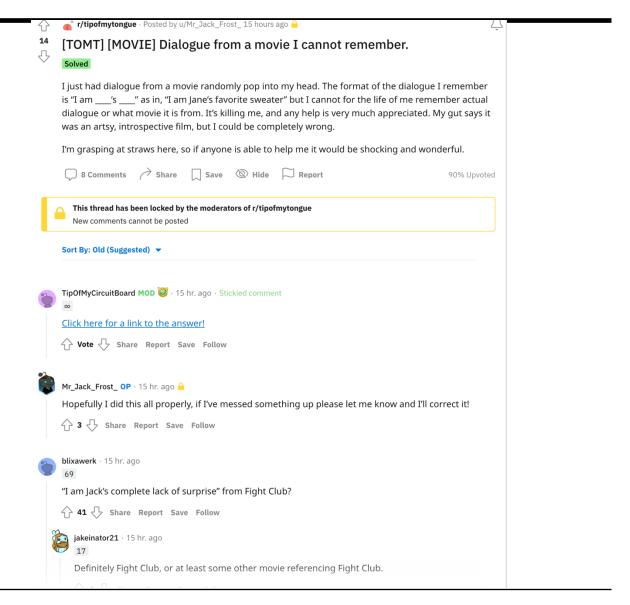
Ok so I don't really remember anything but one scene, so I will try to give as much detail as I can. I saw this movie when I was very young and only remember this scene because (from what I remember) I don't think I actually watched most of the movie because I found it pretty scary, so it is probably not a children/family movie. I think I watched it in 2006 (mid-end of the year probably) and it was on a tv in someone's house, so it was old enough to be released on tv/dvd (not still in cinemas). It was in English and colour I'm pretty sure. So this scene: There was a (or multiple) giant robot-like things and I think they were sort of sphere shaped. It was destroying a city and going around picking people up (possible killing them?) in giant net-like things i think.

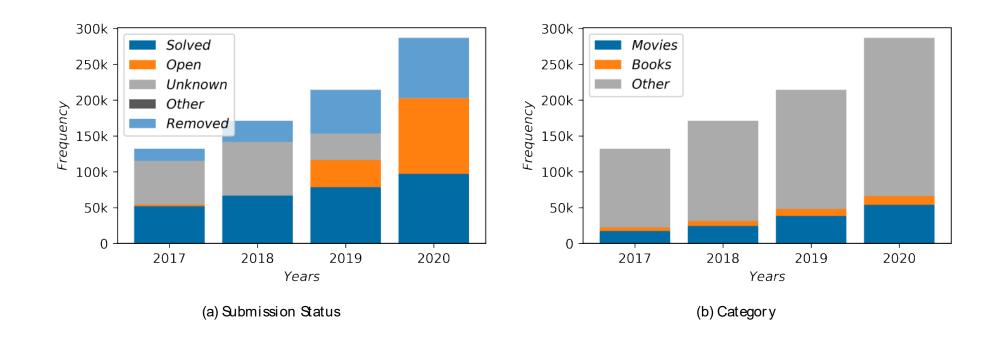
- Social nieces
- Contextual episodic memories
- Semantic memories about metadata, scenes, plots, etc.
- Exclusion criteria
- Multi-hop reasoning (comparisons)

Ok so I don't really remember anything but one scene, so I will try to give as much detail as I can. I saw this movie when I was very young and only remember this scene because (from what I remember) I don't think I actually watched most of the movie because I found it pretty scary, so it is probably not a children/family movie. I think I watched it in 2006 (mid-end of the year probably) and it was on a tv in someone's house, so it was old enough to be released on tv/dvd (not still in cinemas). It was in English and colour I'm pretty sure. So this scene: There was a (or multiple) giant robot-like things and I think they were sort of sphere shaped. It was destroying a city and going around picking people up (possible killing them?) in giant net-like things i think.

REDDIT

• /r/TipOfMyTongue Reddit community





Subset	No. queries	No. positive documents	No. other candidates	No. negatives	Total documents
Books	2319	1910	710	-	2620
Movies	13469	8845	4797	1221	14863
Total	15788	10755	5507	1221	17483

Table 2: Overall statistics of Reddit-TOMT.

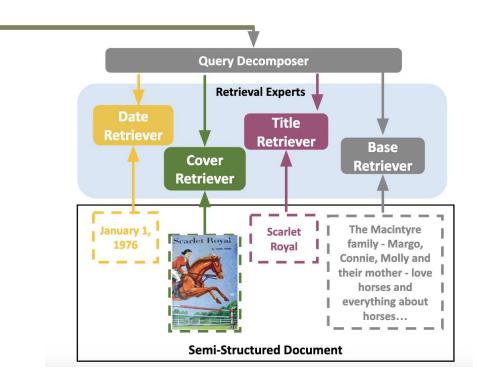
Dataset	Query Length	Lexical Overlap
MSMarco (Campos et al., 2016)	7.68	0.55
Natural Questions (Kwiatkowski et al., 2019)	10.35	0.52
BioASQ (Tsatsaronis et al., 2015)	14.82	0.58
TREC-COVID (Roberts et al., 2020)	15.94	0.41
SciFact (Wadden et al., 2022)	19.52	0.50
HotPotQA (Yang et al., 2018b)	22.78	0.45
TOMT (Bhargav et al., 2022)	136.50	0.25

Dataset	Query Length	Lexical Overlap
MSMarco (Campos et al., 2016)	7.68	0.55
Natural Questions (Kwiatkowski et al., 2019)	10.35	0.52
BioASQ (Tsatsaronis et al., 2015)	14.82	0.58
TREC-COVID (Roberts et al., 2020)	15.94	0.41
SciFact (Wadden et al., 2022)	19.52	0.50
HotPotQA (Yang et al., 2018b)	22.78	0.45
TOMT (Bhargav et al., 2022)	136.50	0.25
WhatsThatBook	156.20	0.19

Dataset	Method	MRR@10	
Books	BM25	0.197	
	DR	0.278	
Movies	BM25	0.167	
	DR	0.193	
MSMarco	BM25	0.240	
	DR	0.311	

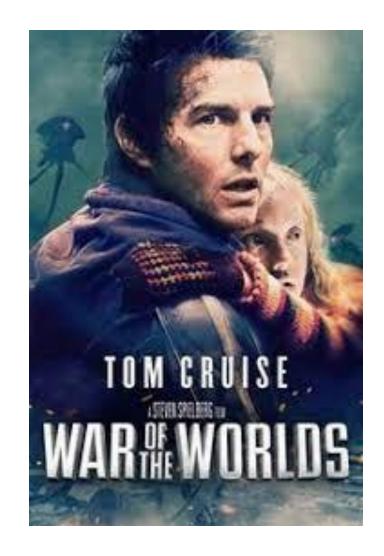
Dataset	Method	MRR@10
Books	BM25	0.197
	DR	0.278
Movies	BM25	0.167
	DR	0.193
MSMarco Dev	BM25	0.240
	DR	0.311

Hi there, I read this book in highschool around 2002-2005. From what I remember, the main character is nicknamed "Mouse" and she rides a big chestnut horse in jumper shows. I think this book may have been Australian. The cover just showed a chestnut horse and rider in mid jump. I think the title was one word--it may have been the name of the horse. I cannot remember the name or the author of this book. I have googled everything I can think of but I cannot to find this book and its driving me crazy! I'd be grateful for any help on this! Thank you!



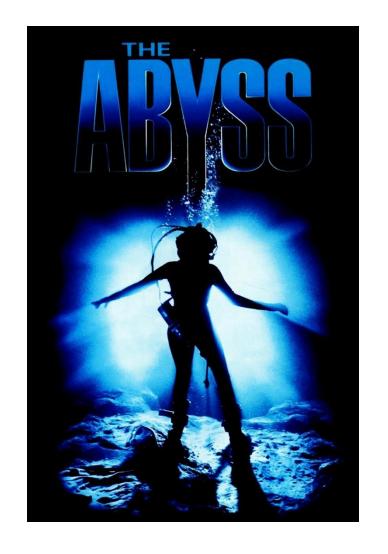
HEDGING

I don't think I actually watched most of the movie because I found it pretty scary, so it is probably not a children/family movie. I think I watched it in 2006 (mid-end of the year probably) and it was on a tv in someone's house, so it was old enough to be released on tv/dvd (not still in cinemas). It was in English and colour I'm pretty sure. So this scene: There was a (or multiple) giant robot-like things and I think they were sort of sphere shaped. It was destroying a city and going around picking people up (possible killing them?) in giant net-like things i think.



FALSE MEMORIES

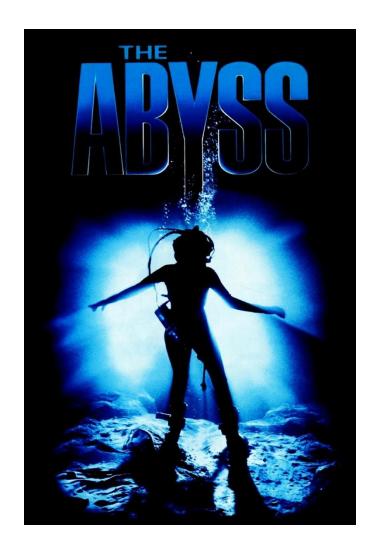
The only things that I remember are that there was something to do with water, and by this, I mean like an ocean, or maybe it was something like a submarine or an oil rig, and I think that the main character was a guy, who was either a ghost, or a silvery liquid metally alien/liquidy thing, that looks a bit like the T-1000 in Terminator 2. Sorry for the lack of detail, and please help me remember this!



FALSE MEMORIES

The only things that I remember are that there was something to do with water, and by this, I mean like an ocean, or maybe it was something like a submarine or an oil rig, and I think that the main character was a guy, who was either a ghost, or a silvery liquid metally alien/liquidy thing, that looks a bit like the T-1000 in Terminator 2. Sorry for the lack of detail, and please help me remember this!

The average rank of the correct item drops from position 10 to position 15.



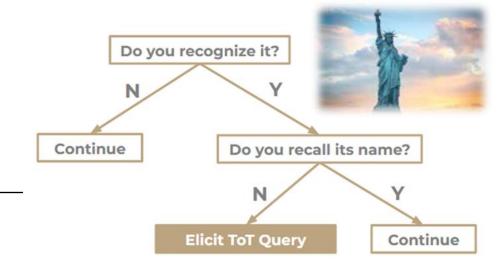
TREC 2024 TIP-OF-THE-TONGUE (TOT) TRACK

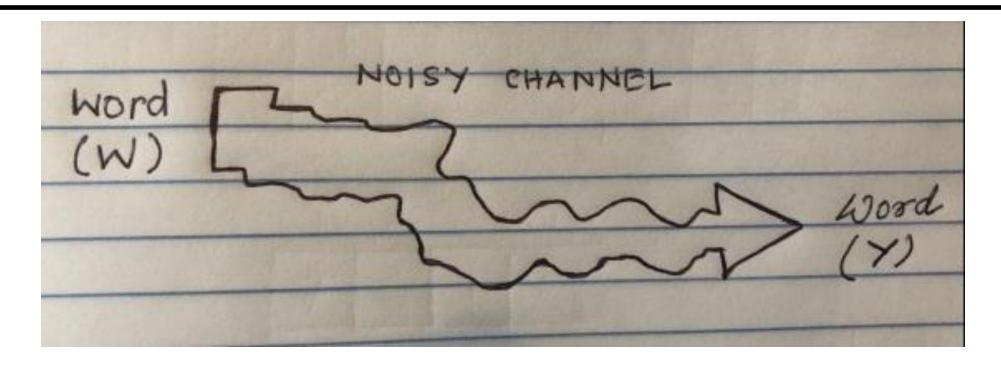
Task 1: Movie identification (same as 2023)

- **Test Queries:** 150 new queries sampled from MS-ToT dataset
- Train/Dev Queries: 450 queries from 2023 ToT Track
- **Corpus:** Wikipedia Corpus (~230K articles)
- **Task:** Given a ToT query, rank Wikipedia articles

Task 2: ToT known-item search for new domains with ToT query elicitation

- New ToT queries elicited from crowd workers
- **Domains:** movies, landmarks, celebrities, recipes, everyday objects, etc.



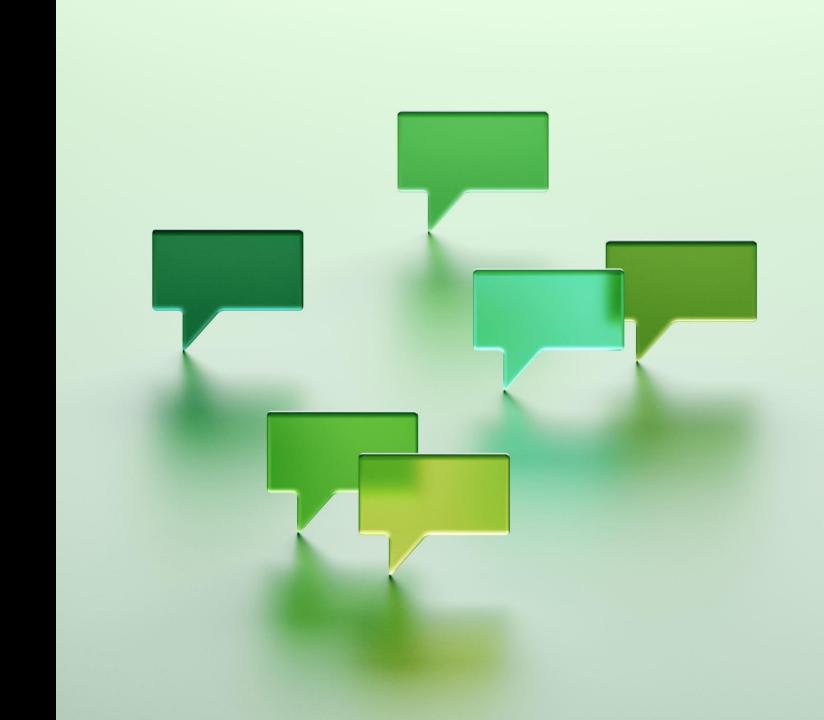


Typos and ASR mistakes Contrastive learning and data augmentation.

False memories Uncertainty estimation and attribution.

Conversational questions — Domain transfer.

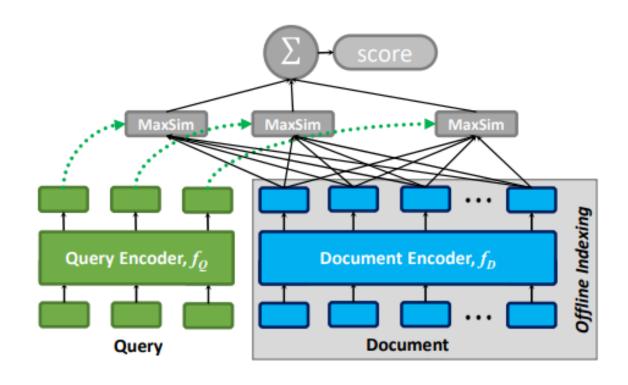
CONVERSATIONS



Turn Query / Answer What are the alternatives to cow milk? Commercially available almond milk is often enriched with vitamins A and D, as well as calcium, to make it seem more like regular milk. (Almonds provide some calcium, but not as much as cow's milk.) Almond milk is low in calories compared to other milk substitutes and contains some heart-healthy monounsaturated fat. You might also try oat, hemp or rice milk. Oat milk provides more fiber than other milk substitutes and was shown in a Swedish study to help lower LDL ("bad") cholesterol and total cholesterol. Hemp milk, made by pulverizing the seeds, blending them with water and straining out the solid residue, provides both omega-6 and omega-3 essential fatty acids in a healthy three-toone ratio. Which is healthiest?

CONVERSATIONS

LATE INTERACTION



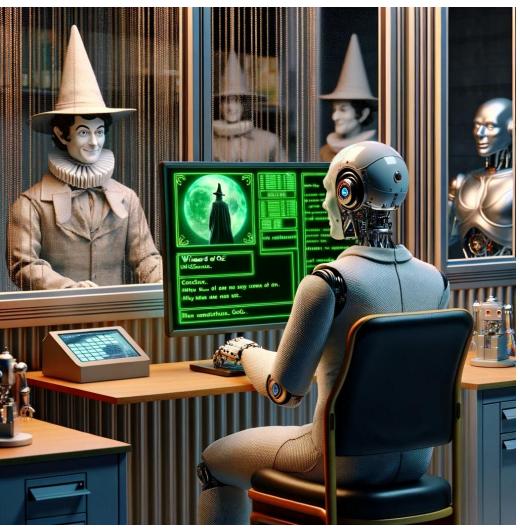
ZERO-SHOT QUERY CONTEXTUALIZATION



ZERO-SHOT QUERY CONTEXTUALIZATION

turn ₃	$z^{\text{Resolution }(R)}$ tell me about lung cancer.		
turn ₄			symptoms?
	Anaphora (A)		
sim(A _{last_turn} , R)			0.13
$sim(A_{ZeCo^2}, R)$			0.47
$\Delta sim(AT!R)$			0.34
ΔR ecall			+ 0.24

DALL*E



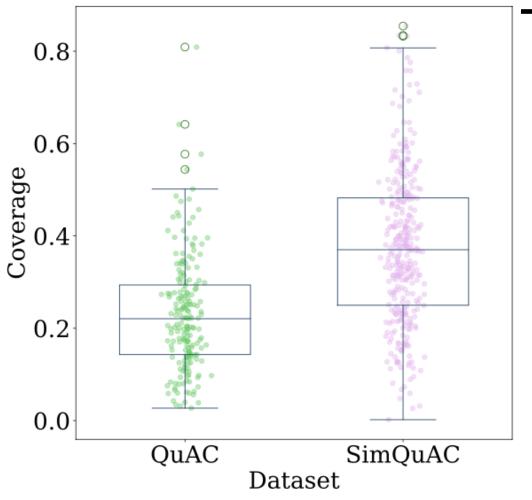
DALL*E

VS

Annot. level	Metric	$answer_{QuAC}$	$answer_{Sim}$	Tie
	Correctness	11.31%	38.6%	50.0%
Question	Naturalness	7.1%	42.1 %	50.7%
	Completeness	5.26%	53.8 %	40.8%
Conversation	Preference	6.12%	87.7%	6.18%

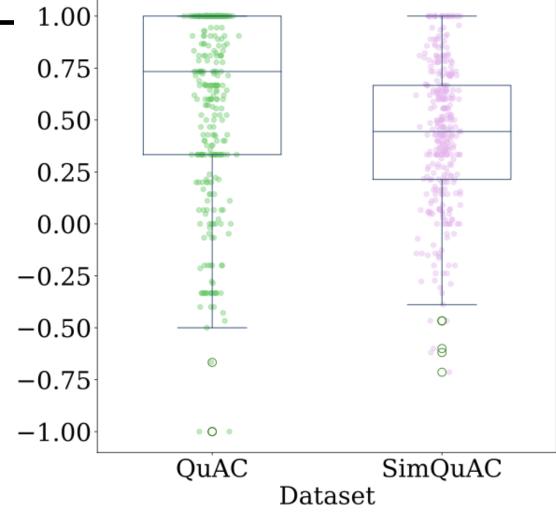
DALL*E

VS



(a) Topic coverage

VS



(b) Conversation flow

BROKEN TELEPHONE

