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Abstract. Iwahori–Hecke algebras are ubiquitous. One encounters these algebras in subjects as
diverse as harmonic analysis, equivariant K-theory, orthogonal polynomials, quantum groups,
knot theory, algebraic combinatorics, and integrable models in statistical physics. In this ex-
position we will mostly concentrate on the analytic aspects of affine Hecke algebras and study
them from the perspective of operator algebras. We will discuss the Plancherel theorem for these
type of algebras, and based on a conjectural invariance property of their (operator algebraic)
K-theory, study the structure of the tempered dual.
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1. Introduction

LetG be a group and letK ⊂ G be an almost normal subgroup ofG, i.e. a subgroup
whose double cosets are finite unions of one-sided cosets. The Hecke algebra of the
pair (G,K) is the convolution algebra of Z-valued functions with finite support on the
double coset space K\G/K . More generally, given a K-module (M, σ) (over some
commutative, unital ring R) one considers the convolution algebra HR(G,K, σ) of
EndR(M∨)-valued (K, σ∨)-spherical functions which are supported on finitely many
double cosets ofK . Hecke algebras were introduced in this abstract setting by Shimura
in the 1950s, following the original work of Hecke on certain linear operators acting
in a space of modular forms. The study of representations of Hecke algebras in spaces
of modular forms is of basic importance for the study of modular forms.

Later it became apparent that this concept is also fundamental for understanding
the representation theory of finite reductive groups, and this seems also true forp-adic
reductive groups. Let k be a non-archimedean local field and let G be the group of
k-points of a connected reductive group defined over k, equipped with the locally
compact, totally disconnected Hausdorff topology it inherits from k. Any compact
open subgroup K ⊂ G is almost normal, hence in this situation we have a large
supply of Hecke algebras of the formHC(G,K, σ) where (Vσ , σ ) is a complex finite
dimensional smooth representation of K .
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The fundamental and beautiful result which is the underpinning of the application
of these Hecke algebras to the representation theory of G is Bernstein’s Decompo-
sition Theorem [11]. It states that the category of smooth representations of G has
a canonical decomposition as a product of blocks Rs which are parametrized by the
components s of the Bernstein variety � of “supercuspidal pairs” (L, ρ) modulo
G-conjugacy, where L ⊂ G is a Levi-subgroup, and where ρ is an irreducible su-
percuspidal representation of L, i.e. a representation whose matrix coefficients are
compactly supported modulo the center of L. Each block is by construction equiv-
alent to the category of modules over a two sided ideal C∞c (G)s of the convolution
algebra C∞c (G) of compactly supported, locally constant complex valued functions
on G (for the sake of this exposition I will refrain from calling C∞c (G) the Hecke
algebra of G, although it is customary to so).

It is a major question how to describe the blocks Rs. Bushnell and Kutzko [16],
[17] introduced the notion of s-types. A pair (K, σ) is called an s-type if the block Rs

consists precisely of those smooth representations of G which are generated by their
(K, σ) isotypic component. In that case the functor V → HomK(Vσ , V |K) is an
equivalence from Rs to the category of HC(G,K, σ)-modules. This notion of types
originates from the work of Borel [14], who showed that an irreducible smooth G-
module V is a subquotient of the unramified principal series iff V contains fixed
vectors with respect to an Iwahori subgroup B ⊂ G (the corresponding component
of � is called the “Borel component”). Through the work of Bushnell and Kutzko
(loc. cit.), Morris [51], [52], and Moy and Prasad [53] s-types are known to exist in
many cases. For instance s-types always exist for “level 0” components s.

The algebra HC(G,K, σ) comes equipped with a trace tr : f → trace(f (e))
and a ∗ structure f ∗(g) = f (g−1)∗. This defines a canonical C∗-algebra closure
C∗r (H,K, σ) ofHC(G,K, σ) (the reduced C∗-algebra) which is of type I and comes
with the distinguished faithful trace tr. The equivalence between a block Rs and the
module category of the Hecke algebra HC(G,K, σ) of an s respects this structure,
and the Plancherel measure of G restricted to the irreducible representations in the
block Rs coincides with the spectral measure of the trace tr. We normalize tr to
obtain a tracial state τ on C∗r (H,K, σ), and we refer to its spectral measure as the
“Plancherel measure of HC(G,K, σ)”. The theory of types seeks to decompose
the harmonic analysis on G essentially in two separate parts: (1) knowledge of the
supercuspidal representations of all Levi subgroups L ⊂ G and (2) knowledge of the
Plancherel measure of the Hecke algebras HC(G,K, σ) [15].

As a complement to these results, the structure of the Hecke algebraHC(G,K, σ)

of an s-type can be described fairly explicitly in various cases. In the case of the
Borel component this algebra is the Iwahori–Hecke algebra H(W, q) [32], whereW
is an extended affine Weyl group which can be attached to G by Bruhat–Tits theory,
and where q is a label function on W which is defined in terms of the structure of a
(generalized) affine BN-pair for G and the cardinality q of the residue field of k. By
results of Morris (loc. cit.) and Lusztig [41] the Hecke algebraHC(G,K, σ) of a type
(K, σ) of level 0 is always a twisted crossed product of an Iwahori–Hecke algebra of
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the form H(W ′, q ′) (for a certain affine Weyl group W ′ and label function q ′) and a
group C(K, σ) (where the 2-cocycle lives on C(K, σ)). These results draw heavily
on the work of Howlett and Lehrer [31] who successfully followed a similar approach
for the representation theory of finite groups of Lie type.

The above exposition makes a quite compelling case for the study of an Iwahori–
Hecke algebra H(W, q) as an object of (harmonic) analysis and the spectral problem
described above. Indeed, this point of view did not go unnoticed and in some sense
was already promoted by Matsumoto in [47]. But it turns out that it is quite difficult
to carry it out. The description of the support of the Plancherel measure amounts
to the description of the tempered dual of H(W, q). Using geometric methods of
a completely different nature this problem was solved explicitly by Kazhdan and
Lusztig in their profound paper [34], in the special case of the “Borel component”
when in addition G is split semisimple and of adjoint type. Lusztig [41], [42] has
in principle solved such classification problems in greater generality, when G splits
over an unramified extension of k, and σ is a cuspidal unipotent representation. These
methods do not give information on the Plancherel measures.

Iwahori–Hecke algebras also play a fundamental role in a wide range of other areas
for some of which the aforementioned spectral problems are of immediate interest,
such as integrable models in mathematical physics (the Calogero–Moser systems
[29], [54], and also the generalized quantum Bose gas with delta function potential
and the nonlinear Schrödinger equation [27], [24]), and the theory of multivariable
orthogonal polynomials and special functions [46], [19]. These applications have
led to interesting new directions in the theory of Hecke algebras (most notably Ivan
Cherednik’s double affine Hecke algebra [18], [19]) and this in fact raises challenging
new questions in harmonic analysis. We also mention the role of the Hecke algebra
for unitarizability of Iwahori-spherical representations [5], [6].

Therefore it is a problem of considerable interest to describe the Plancherel mea-
sure of the Iwahori–Hecke algebras H(W, q) of affine type (simply called “affine
Hecke algebras” in the sequel) explicitly, and it is this problem that we will address in
this paper. The paper has three parts. In the sections 2–4 we review results of [56] on
theL2-completion of the affine Hecke algebra. The main results are: (1) An algebraic
characterization of the central support of the tempered spectrum. (2) The Plancherel
density depends up to constants independent of q only on the central character. (3)
An explicit product formula for the formal dimensions of the discrete series, up to
constants independent of q. The sections 5–6 give an overview of the joint work of
Patrick Delorme and myself [22], [23] on the Schwartz algebra completion of the
affine Hecke algebra. Here we discuss the geometric structure of the tempered dual
by means of the analogue of results of Harish-Chandra [25], [26] and Knapp–Stein
[36] on analytic R-groups. Finally in Sections 7–8 we discuss various natural con-
jectures on the K-theory of the Schwartz algebra. In the three parameter example of
type Caff

n we indicate how these conjectures lead in fact to complete description of
the tempered dual. In striking contrast to the geometric methods mentioned above,
the affine Hecke algebras with generic unequal parameters should be considered as
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the most basic cases from this point of view. Using the conjectures, all non-generic
cases are understood by deformation to the generic case.

2. Affine Hecke algebras

The structure of an affine Hecke algebra H = H(R, q) is determined by an affine
root datum (with basis) R together with a label function q defined on the extended
affine Weyl group W associated to R. We refer the reader to [39], [56], [22] for the
details of the definition of the algebra H(R, q), which we will only briefly review
here.

Let R = (X,R0, Y, R
∨
0 , F0) be a root datum (with basis F0 ⊂ X of simple roots

of R0 ⊂ X). This means that R0 is a (reduced, integral) root system with basis of
simple roots F0, that R∨0 is the coroot system of R0, and that X, Y are lattices in
duality such that R0 ⊂ X and R∨0 ⊂ Y . For example take X = P(R0), the weight
lattice of R0, and Y = Q(R∨0 ), the root lattice of R∨0 . If a := R⊗Z Y is spanned by
the coroots we call R semisimple.

Let W0 = W(R0) denote the Weyl group of the reduced integral root system R0.
The extended affine Weyl groupW associated with R is by definitionW = W0 �X.
The affine root system R is equal to R := R∨0 × Z ⊂ Y × Z. We view elements
of Y × Z as affine linear functions on X with values in Z. Observe that R is closed
for the natural action of W on the set of integral affine linear functions Y × Z on X.
Furthermore R is the disjoint union of the sets of positive and negative affine roots
R = R+ ∪ R− as usual, and we define the length function l on W by

l(w) := |R+ ∩ w−1R−|. (2.1)

A label function q : W → C× is a function which is length multiplicative (i.e.
q(uv) = q(u)q(v) if l(uv) = l(u) + l(v)) and which in addition satisfies q(ω) = 1
if l(ω) = 0. Thus a label function is completely determined by its values on the set
Saff of affine simple reflections in W . It follows easily that its restriction to Saff is
constant on W -conjugacy classes of simple reflections. Conversely, any C×-valued
function on Saff with this property extends uniquely to a label function.

For the purpose of this analytic approach to affine Hecke algebras we will work
with positive real label functions only.

Definition 2.1. We denote the set of all positive real label functions for R by Q = QR.
For later reference, we choose a base q > 1 and define fs ∈ R such that q(s) = qfs

for all s ∈ Saff .

Definition 2.2. Given a root datum R and a positive real label function q ∈ Q there
exists a unique complex associative unital algebra H with C-basis Nw (w ∈ W ) sub-
ject to the following relations (here q(s)1/2 denotes the positive square root of q(s)):

(a) Nuv = NuNv for all u, v ∈ W such that l(uv) = l(u)+ l(v).
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(b) (Ns + q(s)−1/2)(Ns − q(s)1/2) = 0 for all s ∈ Saff .

We call H = H(R, q) the affine Hecke algebra associated with the pair (R, q).

Remark 2.3. We equip Q in the obvious way with the structure of the vector group
RN+ where N denotes the number of W -conjugacy classes in Saff . Given the base
q > 1 we identify Q with the finite dimensional real vector space of real functions
s → fs on Saff which are constant on W -conjugacy classes (see Definition 2.1). In
this sense we speak of (linear) hyperplanes in Q (this notion is independent of q). By
a half line in Q we mean a family of label functions q ∈ Q in which the fs ∈ R are
kept fixed and are not all equal to 0 and q is varying in R>1. As we will see later,
for many problems it is interesting to consider the family of Hecke algebras when q
varies in a half line in Q (“changing the base”).

2.1. Root labels for the non-reduced root system. The label function q on W can
also be defined in terms of root labels for a certain possibly non-reduced root system
which is associated with R. We define Rnr associated with R by

Rnr := R0 ∪ {2α | α∨ ∈ R∨0 ∩ 2Y }. (2.2)

Observe that a + 2 ∈ Wa for all a ∈ R, but that a + 1 ∈ Wa iff a = α∨ + n with
2α �∈ Rnr. For affine simple roots a ∈ F aff (and thus in particular for a ∈ F∨0 ) we
define

qa+1 := q(sa), (2.3)

and we extend this to aW -invariant function a→ qa on the affine root systemR (this
is possible in a unique fashion). Now for α = 2β ∈ Rnr\R0 we define

qα∨ := qβ∨+1

qβ∨
. (2.4)

In this way the set of label functions q on W corresponds bijectively to the set of
positive W0-invariant functions Rnr 
 α→ qα∨ .

2.2. Bernstein presentation. There is another, extremely important presentation
of the algebra H , due to J. Bernstein (unpublished) and Lusztig [39]). Since the
length function is additive on the dominant cone X+, the map X+ 
 x → Nx is
a homomorphism of the commutative monoid X+ with values in H×, the group of
invertible elements of H . Thus there exists a unique extension to a homomorphism
X 
 x → θx ∈ H× of the lattice X with values in H×.

The abelian subalgebra of H generated by θx , x ∈ X, is denoted by A. Let H0 =
H(W0, q0) be the finite type Hecke algebra associated withW0 and the restriction q0
of q to W0. Then the Bernstein presentation asserts that both the collections θxNw
and Nwθx (w ∈ W0, x ∈ X) are bases of H over C, subject only to the cross relation



6 Eric M. Opdam

(for all x ∈ X and s = sα with α ∈ F0):

θxNs −Nsθs(x) =⎧⎨
⎩
(q

1/2
α∨ − q−1/2

α∨ )
θx−θs(x)
1−θ−α if 2α �∈ Rnr,

((q
1/2
α∨/2q

1/2
α∨ − q−1/2

α∨/2 q
−1/2
α∨ )+ (q1/2

α∨ − q−1/2
α∨ )θ−α)

θx−θs(x)
1−θ−2α

if 2α ∈ Rnr.

(2.5)

2.3. The center Z of H . From the Bernstein presentation of H one easily derives
the following fundamental result, the description of the center of H .

Theorem 2.4 (Bernstein). The center Z of H is equal to AW0 . In particular, H is
finitely generated over its center.

As an immediate consequence we see that irreducible representations of H are
finite dimensional by application of (Dixmier’s version of) Schur’s lemma.

We denote by T the complex algebraic torus T = Hom(X,C×) of complex
characters of the lattice X. The space Spec(Z) of complex homomorphisms of Z
is thus canonically isomorphic to the (categorical) quotient W0\T . By Bernstein’s
theorem and Schur’s lemma we obtain a continuous, finite, surjective map

z : Irr(H)→ MaxSpec(Z) = W0\T , [π ] �→ z(π), (2.6)

where Irr(H), the set of equivalence classes of irreducible representations of H ,
is given the usual Jacobson topology via its identification with the primitive ideal
spectrum of H . We call this map the (algebraic) central character.

3. L2-theory and abstract Plancherel theorem

We will study H via certain topological completions of H . In this section we will
study the L2-completion of H and the associated reduced C∗-algebra of H .

3.1. H as a Hilbert algebra. It is a basic fact that the anti-linear map ∗ on H defined
by ( ∑

w∈W
cwNw

)∗ = ∑
w∈W

cwNw−1 (3.1)

is an anti-involution of H , making (H , ∗) into an involutive algebra. In addition, the
linear functional τ defined by

τ
( ∑
w∈W

cwNw

)
= ce (3.2)

is a positive trace on (H , ∗). In particular, the sesquilinear pairing (x, y) := τ(x∗y)
defines a pre-Hilbert structure on H .
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Definition 3.1. We call L2(H) the Hilbert space completion of H . Observe that the
elements Nw (w ∈ W ) form a Hilbert basis for L2(H).

It is easy to see that the regular representation of H extends to a representation
of H in B(L2(H)), the algebra of bounded linear operators on L2(H). This gives H
the structure of a unital Hilbert algebra, with its Hermitian form defined by the finite
positive trace τ .

3.2. The reduced C∗-algebra C of H . The following results on the reduced C∗-
algebra of H go back to [47].

Definition 3.2. We define the reduced C∗-algebra C of H as the norm closure of
λ(H) ⊂ B(L2(H)), where λ denotes the left regular representation of H . We
identify C with a dense subspace of L2(H) via the continuous injection C 
 x →
x(1) ∈ L2(H).

Let λ (resp. ρ) denote the left (resp. right) regular representation of C on L2(H).
One has the following basic statements:

Corollary 3.3. The C∗-algebra completion C of H has type I, and τ extends to a
finite tracial state of C such that λ = λτ (resp. ρ = ρτ ), where λτ (resp. ρτ ) denotes
the left (resp. right) GNS-representation of C associated with τ .

Standard results in the spectral theory ofC∗-algebras of type I yield the following:

Corollary 3.4. There exists a unique positive Borel measureμPl on Ĉ, the Plancherel
measure of H , such that we have the following decomposition of τ in irreducible
characters of C:

τ =
∫
π∈Ĉ

χπdμPl(π). (3.3)

4. The Plancherel measure

We will now address the problem to describe the spectrum Ĉ of C and the Plancherel
measure μPl. The spectrum of C is a rather complicated topological space. But
it turns out that μPl-almost everywhere it can be described by a simpler structure,
namely a compact orbifold. This orbifold is represented by (in the sense of [50])
a groupoid of unitary standard induction data W
u which is canonically associated
with the affine Hecke algebra H (see [56], [22]). Its space of objects 
u consists of
induction data of H and the arrows W
u are twisting isomorphisms between induction
data. We will exhibit an explicit (up to some positive real multiplicative constants
which are independent of the base q)) positive measure μ on the compact orbifold
|
u| := W\
u such that a suitable open dense subset of (|
u|, μ)with a complement
of measure 0 describes (Ĉ, μPl) almost everywhere.
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The method in [56] to find this almost explicit Plancherel formula is a calculation of
residues, starting from a basic complex analytic representation of τ as an integral over
a certain rational n-form with values in the linear dual of H , over a coset pTu ⊂ T of
the compact real form Tu with p ∈ Trs := Hom(X,R+) far in the negative chamber
[55]. Although such residue computations are certainly not new (see e.g. [1], [2],
[38], [49]), the treatment of the uniqueness of residue data is new and is based on a
simple geometric lemma in distribution theory which goes back to joint work with
Gert Heckman [27]. This improved treatment of the residues is surprisingly powerful.
It is sufficient to compute the Plancherel measure of the center Z of H explicitly, and
in particular the central projection of the support of the Plancherel measure follows
exactly [56] (see also [30]). In combination with Lusztig’s results on the structure of
completions of affine Hecke algebras at central characters (see [39]) we reorganize in
[56] the residues according to parabolic induction and we derive the Maass–Selberg
relations, the unitarity of the normalized intertwining operators, and finally the explicit
(up to positive real factors) product formula for the Plancherel density.

4.1. The discrete series representations. Let us first recall the definition of the
discrete series and of tempered representations:

Definition 4.1. An irreducible representation (V , π) of H is called a discrete series
representations if it is equivalent to a subrepresentation of (L2(H), λ). Equivalently,
(V , π) is a discrete series representation if its character χπ extends continuously
to L2(H).

Remark 4.2. As an immediate consequence of this definition, a discrete series repre-
sentation (V , π) can be equipped with an Hermitian inner product 〈 ·, ·〉 with respect
to which π(h∗) = π(h)∗ for all h ∈ H . Such a Hilbert space representation of H is
called unitary.

We will describe an algebraic criterion for a central characterW0t ∈ W0\T to be
the central character of a discrete series representation. For this we need to introduce
the Macdonald c-function (see [45], [55]). This c-function is introduced as an element
of the field of fractions of A. The ring A can be interpreted as the ring of regular
functions on T via θx → x, and thus the c-function can be interpreted as a rational
function on T . Explicitly, we put

c :=
∏

α∈R1,+
cα, (4.1)

where cα is defined for α ∈ R1 by

cα := (1+ q−1/2
α∨ θ−α/2)(1− q−1/2

α∨ q−1
2α∨θ−α/2)

1− θ−α . (4.2)

The square roots here are positive square roots; observe that this formula makes sense:
if α/2 �∈ X then we have q2α∨ = 1 (since 2α∨ �∈ Rnr) and thus the numerator reduces
to (1− qα∨θ−α).
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We remark that there is no problem in defining the pole order of the rational
function

ν(t) := (c(t)c(t−1))−1 (4.3)

at a point t0 ∈ T , since ν(t) is equal to a product of the rational functions of the form
(cα(t)cα(t

−1))−1 (with α ∈ R1). This function is the pull back via α/2 (or α) of a
rational function on C× and so it has a well defined pole order at t0. The pole order
of ν(t) at t0 is defined as the sum of these pole orders.

The following theorem is of crucial importance.

Theorem 4.3 ([56, Corollary A.12]). For any point t0 ∈ T , the pole order of ν(t) at
t0 is at most equal to the rank rk(R0) of R0.

Definition 4.4. We call t0 ∈ T a residual point if the pole order of ν(t) at t0 is equal
to the rank rk(X) of X.

Theorem 4.3 was proved in [56] by reducing it to a case by case inspection using
the classification of residual points for graded Hecke algebras in [27], Section 4 1.
The following result follows easily from Theorem 4.3.

Corollary 4.5. For any root datum R and positive real label function q the set of
residual points in T is a finite union of W0-orbits. This set is nonempty only if
rk(R0) = rk(X).

Example 4.6 (The split adjoint case). By the split adjoint case we mean that fs = 1
for all s ∈ Saff andX = P . The work of Kazhdan and Lusztig [34] implies (see [56],
Appendix B for the translation) that the residual points are the points of T of the
following form. Let G be the Langlands dual group, i.e. the complex semisimple
group with root datum R (G is simply connected). Then T is a maximal torus forG.
Let s ∈ Tu be such that Gs ⊂ G is semisimple. Let O be a distinguished unipotent
orbit of Gs and choose a homomorphism φ : SL2(C)→ Gs with the property that

φ

(
1 1
0 1

)
∈ O and c := φ

(
q1/2 0

0 q−1/2

)
∈ T .

Then r = sc ∈ T is a residual point, and all residual points in this case are of this
form.

In general there exists an effective algorithm to classify the set of residual points
for any root datum R with indeterminate positive real label function q (see [56,
Theorem A.7]). The residual points come in finitely many generic families of residual
points:

1The notion of a residual point in [27] seems more restrictive at first sight since it involves the existence
of a full flag of intermediate “residual subspaces”. In [56], Lemma A.11 we show however that this technical
condition is always fulfilled. The existence of such full flags is the main tool for the classification of residual
points in [27].
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Proposition 4.7. Let R be a semisimple root datum. There exists a nonempty finite
W0-invariant set Res of generic residual points r : Q → T of R. If r ∈ Res then
r(q) = s.c(q) where s ∈ Tu (Tu denoting the compact real form of T ) is independent
of q, and such that rank(R0,s) = rank(R0), and where c : Q → Trs (Trs being the
connected component of the split real form of T ) is a group homomorphism such that
for all α ∈ R0, α(c)2 is a monomial in the root labels qβ∨ (β ∈ Rnr). For each
generic residual point r ∈ Res there exists an open set Qr ⊂ Q (depending only on
the orbitW0r) which is the complement of finitely many (rational) hyperplanes in Q,
such that r(q0) is residual iff q0 ∈ Qr (see [56, Theorem A.14] ).

Remark 4.8. For each R one can explicitly determine the generic residual points r
and the sets Qr . From the classification one can check that all residual points r ∈ T
of R have the important property that r−1 ∈ W0r .

The following theorem expresses the central support of the discrete series repre-
sentations of H in terms of residual points of T .

Theorem 4.9 ([56, Theorem 3.29]). An orbit W0r ∈ W0\T is the algebraic central
character of a discrete series representation of H if and only if r ∈ T is a residual
point. In particular, the set �R of equivalence classes of discrete series representa-
tions of H is finite, and is nonempty only if rk(R0) = rk(X).

As a consequence of the residue calculus one obtains an almost explicit product
formula for the formal dimension (the Plancherel mass) of the discrete series as a
function of the base q.

Theorem 4.10 ([56, Corollary 3.32, Theorem 5.6]). In this theorem we fix fs ∈ R

and we denote the corresponding half line in Q by L ⊂ Q (see Remark 2.3).
Notice that for each r ∈ Res we have either L ⊂ Qr or L∩Qr = ∅. Let r ∈ Res

be such that L ⊂ Qr . Via scaling isomorphisms [56, Theorem 5.6] there exists a
finite (trivial) fibration �W0r → L whose fiber at q ∈ L is �W0r(q), the finite set of
discrete series representations of H(R, q) with algebraic central characterW0r(q).

Recall that we view q > 1 as coordinate on L. The expressions α(r) = α(r(q))
and qα∨ (α ∈ Rnr) with q ∈ L are thus viewed as functions of q > 1. For each
connected component δ ⊂ �W0r there exists a nonzero real constant dδ ∈ R× inde-
pendent of q such that for all q ∈ L,

μPl({δ(q)}) = dδ
q(w0)

∏′
α∈R1

(α(r)− 1)∏′
α∈R1

(q
1/2
α∨ α(r)

1/2 + 1)
∏′
α∈R1

(q
1/2
α∨ q2α∨α(r)1/2 − 1)

(4.4)

where
∏′ denotes the product in which we omit the factors which are equal to 0.

Remark 4.11. (a) Observe that only the constant dδ depends on δ; the other factors
only depend on the central character W0r of δ.

(b) It was shown by Mark Reeder [57] that this leads to an effective way to
determine L-packets of square integrable unipotent representations for exceptional
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p-adic Chevalley groups (also see [28]) by considering the almost explicit product
formulae for the Plancherel densities of the unipotent representations as a function
of q, the cardinality of the residue field 2. Lusztig [41], [42] has given a more general
parameterization of the unipotent L packets from a different point of view. In the
cases considered the partitions of the set of square integrable unipotent representations
coincide [57].

(c) This formula is explicit up to the nonzero real constant dδ . We remark that if
the restrictions χδ|A of the characters χδ with δ ∈ �W0r are linearly independent then
dδ ∈ Q for all δ ∈ �W0r ([56, Remark 3.35]). However we do not know this linear
independence, and in fact for the more general class of tempered representations of
H(R, q) it is easy to find counterexamples for this. In any case, we conjecture that
dδ ∈ Q (see [56], Conjecture 2.27).

(d) The constants dδ were computed for the exceptional root systems (in the case
q(s) = q for all s ∈ Saff , and X = P ) in terms of the Kazhdan–Lusztig parameters
of δ by Mark Reeder [57].

(e) An irreducible representation of H is a discrete series if and only if its matrix
coefficients have exponential decay with respect to the norm function N on W (see
Definition 5.1); this follows from the Casselman conditions (see [56, Lemma 2.22,
Theorem 6.1(ii)]). In particular these matrix coefficients belong to the Schwartz
algebra S ⊂ C (see Definition 5.1), and this shows that the discrete series are isolated
points in Ĉ.

4.2. Standard parabolic structures. We will now concentrate on the higher dimen-
sional spectral series. Let P denote the power set of F0. Let RP ⊂ R0 be the root
subsystem RP ∩R0. Notice that P is a basis of simple roots forRP . With P ∈ P we
associate the sub root datum RP := (X,RP , Y,R∨P , P ). The associated nonreduced
root system Rnr(R

P ) is equal to Rnr(R
P ) = RP ∩Rnr hence we can restrict the root

labels on Rnr to RP,nr. This defines a label function qP for the affine Weyl group of
the root datum RP . We now define the subalgebra

HP := H(RP , qP ) ↪→ H . (4.5)

This affine Hecke algebra will typically not be semisimple. Its semisimple quotient
is called HP , the quotient of HP by the two sided ideal generated by θx − 1 where
x ∈ ZP := {x ∈ X | x(α∨) = 0∀α ∈ P }. Notice that the elements θx with
x ∈ ZP are central in HP . Let us denote by XP the quotient XP = X/ZP , and
by YP = Y ∩ RP∨ ⊂ Y its dual lattice. This gives us a semisimple root datum
RP := (XP ,RP , YP , R∨P , P ). Again we see that Rnr(RP ) = RP ∩Rnr, so from the
restriction of the root labels on Rnr to Rnr(R

P ) we can define a label function qP on

2At the time when [57] was written, (4.4) was only conjectural for general discrete series representations (see
[28]). Instead Reeder used a general Euler–Poincaré type formula for the formal dimension of a discrete series
representation of a semisimple p-adic group (see [59]), which requires case-by-case considerations and presents
serious computational difficulties. With (4.4) at hand some of these aspects of [57] can be simplified.
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the affine Weyl group of RP . It is now easy to check that the semisimple quotient
HP of HP is equal to

HP � HP = H(RP , qP ). (4.6)

4.3. Twisting. Let TP = Hom(XP ,C×) ⊂ T be the character torus of XP . Let T P

be the connected component of e of the subgroup {t ∈ T | α(t) = 1} ⊂ T . We
see that T = TP T P , that KP := TP ∩ T P is a finite abelian group, and that T P is
pointwise fixed by the action of WP on T .

Using the cross relations (2.5) we check that t ∈ T P gives rise to an automorphism

φt : HP → HP , φt (θxNw) = t (x)θxNw (4.7)

of HP (where w ∈ WP ).

Definition 4.12. Let �P denote the set of equivalence classes of discrete series rep-
resentations of HP . For δ ∈ �P and t ∈ T P we write δt = δ̃ � φt for the twist by φt
of the lift δ̃ of δ to HP . Observe that for k ∈ KP , φk descends to an automorphismψk
of HP .

Let WP,P ′ = {w ∈ W0 | w(P ) = P ′}. If w ∈ WP,P ′ then w induces an
isomorphism of root data w : RP → RP ′ and w : RP → RP ′ which is compatible
with the label functions. This defines corresponding isomorphisms

φw : HP → HP ′ ; ψw : HP → HP ′ (4.8)

of affine Hecke algebras.

Definition 4.13. Let δ ∈ �P . We denote by δw = δ � ψ−1
w ∈ �P ′ the twist of δ

by the isomorphism ψw. We define (δt )w (with t ∈ T P ,w ∈ WP,P ′) similarly.
Observe that (δ̃w)wt = (δt )w. We denote by δk = δ �ψ−1

k ∈ �P the twist of δ by the

automorphism ψk of HP . Observe that (δ̃k)kt = δt if k ∈ KP and t ∈ T P .

4.4. The groupoid of standard induction data. First of all, we denote by W the
(standard) Weyl groupoid, the groupoid whose set of objects is P and whose space of
arrows from P to P ′ is equal to WP,P ′ . This groupoid acts in an obvious way on the
groupoid K whose set of objects is also P and whose space of arrows is described
by KP,P ′ = ∅ if P �= P ′, and KP,P = KP . We denote by W the semidirect product
W = K � W, i.e. W is the finite groupoid whose set of objects is P and whose set
of arrows from P to P ′ equals WP,P ′ = KP ′ ×WP,P ′ . The composition of arrows
is given by (k × u)(l × v) = ku(l)× uv.

The above twisting action on induction data coming from HP naturally gives rise
to an action of the groupoid W on the set
 of induction data of the various subquotient
algebras HP with P ∈ P . Let 
 be the set of triples (P, δ, t) with P ∈ P , δ ∈ �P
and t ∈ T P . We see that 
 is a finite union of complex algebraic tori of the form
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(P,δ) = {(P, δ, t) | t ∈ T P }. In particular 
 is fibered over P in a way compatible
with the twisting action of W .

The groupoid of standard induction data W
 is the translation groupoid arising
from the action of W on 
. Explicitly, if ξ = (P, δ, t), ξ ′ = (P ′, δ′, t ′) ∈ 
u then
the set of arrows Wξ,ξ ′ in W
 between these induction data consists of the set of
g = k × w ∈ KP ′ ×WP,P ′ such that P ′ = w(P ), δ′ = δg , and t ′ = gt . One easily
verifies that this forms an orbifold groupoid in the sense of [50]. We remark that the
action of K on 
 is free. Thus the quotient W
 → K\W
 = WK\
 is a Morita
equivalence and defines the same orbifold structure on |
| = W\
.

We denote by W
u the full subgroupoid whose set of objects 
u consists of the
unitary standard induction data, i.e. the induction data of the form (P, δ, t) with
t ∈ T Pu , the compact real form of T P . Hence
u is a finite disjoint union of compact
tori, and W
u is a compact orbifold groupoid.

4.5. The induction-intertwining functor. We choose explicit representatives (Vδ, δ)
for the equivalence classes δ ∈ � = ∐

p∈P �P . Given ξ = (P, δ, t) ∈ 
 we de-

note by π(ξ) the induced representation IndH
HP (δt ), realized on the finite dimensional

vector space
i(Vδ) = H ⊗HP Vδ =

⊕
w∈WP

Nw ⊗ Vδ (4.9)

where WP denotes the set of shortest length representatives in W0 for the left cosets
ofWP = W(RP ). It is not very difficult to show (see [6] or [56]) that for ξ ∈ 
u, the
induced representation π(ξ) is unitary with respect to the Hermitian inner product on
i(Vδ) defined by (with x, y ∈ WP and u, v ∈ Vδ)

〈Nx ⊗ u,Ny ⊗ v〉 = δx,y〈u, v〉. (4.10)

Theorem 4.14 ([56, Theorem 4.38]). The assignment 
u 
 ξ → π(ξ) extends to
a functor π (the “induction intertwining” functor) from W
u to P Rep(H)unit, the
category of unitary modules of H in which the morphisms are unitary H-intertwiners
modulo scalars. This functor assigns a projectively unitary intertwining isomorphism
π(g, ξ) : π(ξ) → π(ξ ′) to each g ∈ Wξ,ξ ′ . For all h ∈ H , the map ξ → π(ξ)(h)

extends to a regular function on 
, and for all g ∈ Wξ,ξ ′ the map ξ → π(g, ξ)

is rational but regular at 
u. The functor π is independent of the choices of the
realizations (Vδ, δ) of the δ ∈ � up to natural isomorphisms.

Remark 4.15. In fact the representationsπ(ξ)with ξ ∈ 
u are known to be tempered,
see below (see [56, Proposition 4.20]).

The projective representation π of W
u canonically determines a 2-cohomology
class [η] ∈ H 2(W
u, S

1) of the groupoid W
u , namely the pull back via π of the
2-cohomology class of the standard central extension of the category of finite dimen-
sional projective Hilbert spaces by S1. Notice that [η] is obviously a torsion class
since the dimensions of the representations π(ξ) are bounded by |W0|.
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In fact we can be a bit more precise here. Let W� be the finite groupoid which is
defined like W
 but with the finite set of objects � instead of 
, and its morphisms
given by twisting. Then the assignment (P, δ)→ Vδ can be upgraded to a projective
representation of W� by choosing, for each arrow g ∈ W1

� with source δ, unitary
intertwining isomorphisms δig : Vδ → Vδg such that for all h ∈ HP ′ :

δig � δ(ψ−1
g h) = δg(h) � δig. (4.11)

One easily checks that such a choice defines a 2-cocycle η� with values in S1 by

δig � (δ′)ig′ = η�(g, g′)(δ′)igg′ (4.12)

where g, g′ are composable arrows of W�. Its class [η�] ∈ H 2(W�, S
1) is indepen-

dent of the chosen representatives and intertwining morphisms. Then the details of the
construction of the projective representation π actually show that [η] ∈ H 2(W
u, S

1)

is the pull back of [η�] ∈ H 2(W�, S
1) via the natural homomorphism of groupoids

W
u → W�, (P, δ, t) �→ (P, δ). (4.13)

Let D denote the order of [η�]. Then we can choose the 2-cocycle η� so that it has
its values in μD , the group of complex D-th roots of unity. Then the above amounts
to

Proposition 4.16. Let W̃
u denote the central extension of W
u by μD determined
by [η]. The lifting π̃ to W̃
u of the projective representation π of W
u splits.

4.6. The Plancherel decomposition of τ . We finally have everything in place to
formulate the Plancherel theorem for the spectral decomposition ofL2(H) as a (type I)
representation of C. In order to describe the Plancherel density, we introduce relative
c-functions for the spectral series of the form π(ξ) with ξ ∈ 
(P,δ),u := {(P, δ, t) |
δ ∈ �P , t ∈ T Pu }.
Definition 4.17. We adopt the notation (P, α) to denote the restriction of α ∈ R0\RP
to T P ⊂ T . Let XP denote the character lattice of T P . We write RP ⊂ XP \{0}
for the set of restrictions (P, α) of roots α ∈ R0\RP which are in addition primitive
in the sense that if β ∈ R0\RP and (P, α) ∈ RP such that (P, α) and (P, β) are
proportional, then (P, β) = c(P, α) with c ∈ Z. We write RP+ for the primitive
restrictions corresponding to the positive roots α ∈ R0,+\RP,+. An element (P, α)
is called simple if (P, α) is indecomposable in Z+RP+ . This is equivalent to saying
that (P, α) is the restriction of an element of F0\P . To each (P, α) ∈ RP we
denote by (P,Hα) ⊂ T P the connected component of e of Ker(P, α) ⊂ T P . It
is a codimension 1 subtorus of T P . The real hyperplanes (P,Hα) ∩ T Prs are called
the walls in T Prs . The positive chamber T P,+rs is the connected component of the
complement of the walls on which (P, α) > 1 for all (P, α) ∈ RP+ .
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Let (P, α) ∈ RP . Then the rational function on T defined by

c(P,α)(t) :=
∏

β∈R0,+\RP :(P,β)∈Z+(P,α)
cβ(t) (4.14)

is clearly WP = W(RP )-invariant. Hence it can be viewed as a rational function
on WP \T . We compose this rational function with the algebraic central character
map zP : Irr(HP )→ WP \T and write c(P,α)(σ ) for any σ ∈ Irr(HP ). We define a
rational function c(P,α) on 
(P,δ) by putting c(P,α)(ξ) := c(P,α)(δt ). Observe that its
poles and zeroes are orbits of (P,Hα) acting on 
(P,δ).

Definition 4.18. (i) We define the c-function on ξ ∈ 
(P,δ) by means of the formula
c(ξ) =∏

(P,α)∈RP+ c(P,α)(ξ).
(ii)We putμ(P,α)(ξ) = (c(P,α)(ξ)c(P,−α)(ξ))−1= |c(P,α)(ξ)|−2 (see Remark 4.8).
(iii) If ξ ∈ 
(P,δ) we put μ(ξ) = ∏

(P,α)∈RP+ μ(P,α)(ξ) = (c(ξ)c(wP ξ))−1

(where wP denotes the longest element in WP ).

The following main theorem of [56] makes the abstract Plancherel formula (3.3)
almost (up to the constants dδ ∈ R+ for δ ∈ �) explicit.

Theorem 4.19 ([56, Theorem 4.39, Proposition 4.42, Theorem 4.43]). (i) For all
(P, α) ∈ RP+ the functionsμ(P,α) are smooth and nonnegative on
(P,δ),u. Moreover
μ is W -invariant on 
.

(ii) The function � 
 (P, δ) → μ(RP ,qP ),Pl({δ}) (given by the product formula
(4.4) applied to H(RP , qP )) is W -invariant on �.

(iii) Outside a W -invariant subset
reg
u whose complement in
u consists of finitely

many components of codimension at least 1, the representations π(ξ) are irreducible.
This defines a homeomorphism [ξ ] → [π(ξ)] from |
reg

u | := W\
reg
u onto a subset

of Ĉ whose complement has measure zero.
(iv) For ξ in the compact torus
(P,δ),u, letdξ denote the normalized Haar measure

on 
(P,δ). The Plancherel measure μPl is the push forward to the quotient |
u| =
W\
u of the absolutely continuous, W -invariant measure on 
u given by (with
ξ = (P, δ, t) ∈ 
(P,δ),u)

dμPl(π(ξ)) = q(wP )−1|WP |−1μ(RP ,qP ),Pl({δ})μ(ξ)dξ (4.15)

where WP denotes the set {w ∈ W0 | w(P ) ⊂ F0}.

5. The structure of the Schwartz algebra S

In joint work with Patrick Delorme [22], [23] we studied the refinement of the Fourier
isomorphism where the L2-functions are replaced by smooth functions. Following
Harish-Chandra and Langlands this step miraculously leads to deep insights in the
structure of Ĉ and of Irr(H). It also brings into play methods from noncommutative
geometry.
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5.1. The Schwartz algebra S. We define a sub-multiplicative function N : W →
R+ as follows. Let Z = X+ ∩ X− ⊂ X be the lattice of central translations in W .
Given v ∈ a∗we denote by v ∈ R⊗Z the projection of v onto R⊗Z along R⊗Q(R0).
We choose a Euclidean norm ‖ · ‖ on R⊗ Z and put for any w ∈ W :

N (w) := l(w)+ ‖w(0)‖. (5.1)

Now we come to the definition of the Schwartz space completion S of H .

Definition 5.1. The Schwartz space completion S ⊂ L2(H) of H is the nuclear
Fréchet space consisting of the elements

∑
w∈W cwNw ∈ L2(H) such thatw→ |cw|

is of rapid decay with respect to the function N .

As an application of the explicit knowledge on Ĉ we obtained in the previous
section one can actually prove that

Theorem 5.2 ([56, Theorem 6.5]). The multiplication of H extends continuously to S,
giving S the structure of a nuclear Fréchet algebra. Moreover, matrix coefficients of
discrete series representations are elements of S.

5.2. Tempered representations

Definition 5.3. A finite dimensional representation (V , π) of H is called tempered
if it extends continuously to S. Equivalently, (V , π) is tempered if χπ extends con-
tinuously to S.

The next theorem explains the relation of tempered representations withL2-theory:

Theorem 5.4 ([22, Theorem 3.19]). If ξ ∈ 
u then π(ξ) is unitary and tempered.
Conversely, let (V , π) be an irreducible tempered H representation. Then there exists
a ξ ∈ 
u such that (V , π) is a direct summand of π(ξ).

Corollary 5.5. Irreducible tempered representations of H are unitarizable. The set Ŝ
of irreducible tempered representations is equal to the support Ĉ of the Plancherel
measure.

5.3. The Fourier isomorphism. Let us denote by V
u the trivial fibre bundle over

u whose fibre at ξ = (P, δ, t) ∈ 
u is Vξ := i(Vδ) (the representation space of
π(ξ)), thus

V
u :=
∐
(P,δ)


(P,δ),u × i(Vδ). (5.2)

We denote by End(V
u) the corresponding bundle of endomorphism algebras. Let
Pol(
u,End(V
u)) denote the algebra of polynomial sections in End(V
u), i.e. sec-
tions such that the matrix coefficients are Laurent polynomials on each component

(P,δ),u of 
u.



Hecke algebras and harmonic analysis 17

There is a natural action of W on End(V
u)by algebra homomorphisms as follows.
Suppose that ξ ∈ 
u and that A ∈ End(Vξ ). Given g ∈ Wξ,ξ ′ we define g(A) :=
π(g, ξ)�A�π(g, ξ)−1 ∈ End(Vξ ′). A section off of End(V
) is calledW -equivariant
if we have f (g(ξ)) = g(f (ξ)) for all ξ ∈ 
u and all g ∈ W
u with source ξ .

Observe that for all h ∈ H , the polynomial section ξ → π(ξ)(h) on 
u is
W -equivariant. Let us denote the algebra of W -equivariant polynomial sections by
Pol(
u,End(V
))W . The Fourier transform on H is the canonical algebra homo-
morphism

FH : H → Pol(
u,End(V
))
W ,

h �→ {ξ → π(ξ)(h)}. (5.3)

The image of FH is difficult to describe. But it turns out that the situation becomes
very intelligible upon extension to L2(H) or to S.

LetL2(
u,End(V
u), dμPl) denote the Hilbert space ofL2-sections of End(V
u)
with respect to the inner product

〈σ, τ 〉 =
∫

u

trace(σ (ξ)∗τ(ξ))dμPl(π(ξ)). (5.4)

Let the Fréchet algebra of smooth sections of End(V
u) on 
u be denoted by
C∞(
u,End(V
u)).

Theorem 5.6 ([56, Theorem 4.43], [22, Theorem 5.3]). (i) The Fourier transform FH

extends to an isometric isomorphism

F : L2(H)→ L2(
u,End(V
u), dμPl)
W . (5.5)

(ii) The Fourier transform F restricts to an isomorphism FS of Fréchet algebras

FS : S → C∞(
u,End(V
u))
W . (5.6)

5.4. The center of ZS of S. As a consequence of Theorem 5.6 we see:

Corollary 5.7. The center ZS of S is, via the Fourier Transform FS , isomorphic to the
algebra C∞(
u)W of W -invariant C∞-functions on
u. In particular the algebra S
is a ZS-algebra of finite type.

This gives, for irreducible tempered representations, a finer notion of central char-
acter which we call the tempered central character.

Definition 5.8. We denote by Ŝ the set of irreducible tempered representations,
equipped with its Jacobson topology.

It is easy to see that in our situation Ŝ is naturally in bijection with the set Prim(S)
if primitive ideals of S. In view of Corollary 5.5 we have a bijection Ŝ → Ĉ, and it
is not difficult to show that this bijection is in fact a homeomorphism.
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Proposition 5.9. We have a surjective, finite, continuous map

zS : Ŝ → |
u| = W\
u. (5.7)

We call this map the tempered central character. The irreducible summands of π(ξ)
(ξ ∈ 
u) all have central character [ξ ] = Wξ ξ .

5.5. Analytic R-groups. The structure of the fibres of the tempered central character
map zS is completely determined by the geometry of the orbifold W
u in combination
with the behaviour of the Plancherel density μ and the cohomology class η. This is
revealed by studying the explicit inversion of the Fourier isomorphism FS by means
of the wave packet operator JS . Let J be the adjoint of F defined on the space
L2(
u,End(V
u), dμPl) of non-invariant L2-sections. Then pW := F � J is equal
to taking the W -average, and [22, Theorem 5.3] shows that pW maps the subspace of
L2(
u,End(V
u), dμPl) consisting of sections of the form cσ (with c the c-function
and σ ∈ C∞(
u,End(V
u))) to the spaceC∞(
u,End(V
u))

W of smooth invariant
sections.

Definition 5.10. We call the connected components of the poles of c(P,α) on
(P,δ),u
the set of (P, α)-mirrors (since a root (P, α) is real, this set is empty or of codimension
one in 
(P,δ),u). We define the set of mirrors on 
u to be the union of all (P, α)-
mirrors (with P ∈ P and (P, α) ∈ RP ). This set is W -invariant.

Using the above properties of pW one shows that:

Proposition 5.11. (i) For any (P, α)-mirror M ⊂ 
(P,δ) there exists a mirror re-
flection sM ∈ W(P,δ),(P,δ), i.e. an involution in WP,P fixing δ such that sM fixes M
pointwise.

(ii) Let ξ ∈ 
u, say ξ = (P, δ, t). The set Rξ of roots (P, α) ∈ RP such that ξ
lies in a (P, α)-mirror is a reduced integral root system. We denote by Rξ,+ the set
of roots in Rξ which are element of (P, α) ∈ RP+ .

(iii) For each mirror M ∈ 
u and for all ξ ∈ M , the intertwining operator
π(sM, ξ) is scalar.

Definition 5.12. Denote by Wm
ξ = W(Rξ ) ⊂ Wξ,ξ the normal reflection subgroup

generated by the reflections in the mirrors through ξ . The analytic R-group Rξ at ξ
is the group of r ∈ Wξ,ξ such that r(Rξ,+) = Rξ,+. Then Wξ,ξ = Wm

ξ � Rξ .

The above implies that the restriction ηξ of the 2-cocycle η to Wξ,ξ is cohomolo-
gous to the pull-back of a 2-cocycle (also denoted ηξ ) of Rξ . We have the following
analog of results of Harish-Chandra ([25], [26]), Knapp–Stein ([36]) and Silberger
[61] on analytic R-groups.

Theorem 5.13 ([22], [23]). The restriction of the induction-intertwining functor π
to Rξ gives rise to an isomorphism EndH Vξ � C[Rξ , η], the ηξ -twisted group ring
of Rξ . In particular, the functor Eξ defined by ψ → HomC[Rξ ,η](ψ, Vξ ) defines
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an equivalence between the category of C[Rξ , η]-modules and the category of finite
dimensional unitary tempered H-modules with tempered central character Wξ .

Corollary 5.14. Let w ∈ Wξ . There is a unique decomposition w = xm with
m ∈ Wm

ξ and x(Rξ,+) = Rwξ,+. Hence xRξ x
−1 = Rwξ . Consider the isomorphism

of algebras cw : C[Rξ , η] → C[Rwξ , η] defined by η-twisted conjugation with x, i.e.
cw(r) = η(x, r)η(xr, x−1)η(x, x−1)−1xrx−1. For any C[Rξ , η]-module ρ we have
Eξ(ρ) = Ewξ (ρw) where ρw = ρ � c−1

w .

Recall that the action of K on 
u is free. We identify the R-groups Rkξ (k ∈K)
via conjugation by k, and write RKξ . We identify via the twisted conjugations ck
(k ∈ K) the rings C[Rkξ , η] (k ∈ K) and write C[RKξ , ηK ]. We consider the
sheaf G(R, η) on 
u whose fiber at ξ is the complex representation space G(Rξ , η)

of C[Rξ , ηξ ] (the argument that this defines a sheaf is the same as for the usual
representation ring sheaf of the orbifold W
u , see [7]). By the above there exists a
W -sheaf G(R, η) of complex vector spaces on 
u (we identify Rξ with the quotient
Wξ,ξ /W

m
ξ , so that the action on characters by conjugation withw ∈ Wξ is equal to cw

as in Proposition 5.14):

Definition 5.15. The W -sheaf G(R, η) on
u descends to a sheaf of complex vector
spaces on |
u| denoted by G(R, η), and to a sheaf G(RK , ηK) on K\
u.

6. Smooth families of tempered representations

We investigate the geometry of the orbifold structure of |
u| in relation to the structure
of the Grothendieck group of (finite dimensional) tempered representations of H in
this subsection. The approach is comparable with [12] (but working with S instead
of H). Much of the material in this section and the next is joint work in progress with
Maarten Solleveld.

As was explained by Arthur [3], it is a basic fact that the functor Eξ is compatible
with the geometric structure of W
u in the following sense. The same arguments apply
in the present situation. Let ξ = (P, δ, t) and let P ⊂ Q. Let R

Q
ξ be the subgroup

of elements of Rξ which pointwise fix the T Qu -orbit through ξ . Let πQ denote
the induction-intertwining functor of the Hecke algebra HQ = H(RQ, qQ) ⊂ H ,
and let EQξ be the corresponding equivalence. Let 
Qu denote the space of unitary

standard induction data for HQ. Then R
Q
ξ is the R-group at ξ ∈ 
Qu ⊂ 
u for

induction to HQ.

Proposition 6.1 ([3], [23]). We have the following equality of functors:

IndH
HQ �EQξ = Eξ � Ind

C[Rξ ,η]
C[RQ

ξ ,η]
. (6.1)
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For any r ∈ Rξ the set of fixed points is of the form T
Q
u ξ for some parabolic

subsystem RQ where Q is not necessarily standard, but compatible in the sense that
there exists a w ∈ Wξ such that w(Q) is standard and w(Rξ,+) = Rwξ,+ (compare
with [3, Section 2]). In combination with basic aspects of the structure theory of
the (analytic or formal) completion of H at an algebraic central character (see [39]
or [56]) we can draw several conclusions. Let G(SWξ ) denote the Grothendieck
group of S-modules with tempered central character Wξ where ξ = (P, δ, t), and let
GQ(SWξ ) = Q⊗Z G(SWξ ) (viewed as virtual tempered characters of H).

Corollary 6.2. Let χ ∈ GQ(SWξ ) where ξ = (P, δ, t) ∈ 
(P,δ),u, and letQ ∈ P be
such that P ⊂ Q. The following are equivalent:

(i) χ = Eξ(ρ) with ρ induced from C[RQ
ξ , η].

(ii) χ = Eξ(ρ) with ρ supported on the Rξ -conjugacy classes meeting R
Q
ξ .

(iii) χ is induced from a virtual tempered character of HQ.

(iv) χ = (χt )|t=1 for a (weakly) smooth family T Qu 
 t → χt ∈ GQ(SW(tξ)).

Proof. It is elementary (using the formula for induced characters in twisted group
rings) that (i)⇔ (ii) and (i)⇔ (iii) follows from (6.1). It is trivial that (iii)⇒ (iv).
The step (iv) ⇒ (iii) needs explanation. By the (weak) smoothness of the family
it enough to prove that χt is induced from HQ for generic t ∈ T Qu . For generic
t ∈ T Qu the algebraic central character z(χt ) is “RQ-generic” in the sense of [56,
Definition 4.12]. By [56, Corollary 4.15] all characters with an RQ-generic central
character are induced from HQ. �

Definition 6.3. We say that χ ∈ GQ(SWξ ) is d-smooth and pure if there exists an
open neighborhood U ⊂ 
u of ξ , a d-dimensional smooth submanifold S ⊂ U with
ξ ∈ S, and a weakly smooth family S 
 s → χs ∈ GQ(SWs) (weakly smooth means
that S 
 s → χs(h) is smooth for all h ∈ H) such that the tempered central character
ofχs equals Ws andχ = χξ . We say thatχ is d-smooth ifχ is a Q-linear combination
of pure d-smooth characters.

We obtain a descending filtration F iWξ = C⊗Q {χ ∈ GQ(SWξ ) | χ is i-smooth}
of GC(SWξ ). Observe that the filtration is stationary at least until the rank iZ of the
central lattice Z ⊂ X of R.

Definition 6.4. The vector space Elltemp
Wξ of elliptic tempered characters of S =

S(R, q) with tempered central character Wξ (with ξ ∈ 
u) is defined as F 0
Wξ /F

1
Wξ .

We call an irreducible tempered representation (with tempered central character Wξ )
elliptic if its character has a nonzero image in Elltemp

Wξ .
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Proposition 6.5. The complex vector space Elltemp
Wξ is zero for all but finitely many

orbits Wξ ∈ |
u|. There exist orbits Wξ ∈ |
u| such that Elltemp
Wξ �= 0 only if R is

semisimple.

One can show the following result:

Proposition 6.6. Let Fd(RQ
ξ , η) denote the complex vector space of virtual η-twist-

ed characters of R
Q
ξ whose support consists of elements r ∈ R

Q
ξ whose fixed point

set in TQ,u has dimension at least d. In the case Q = F0 this defines a filtration
of GC

Wξ (R, η) (the complex span of irreducible η-twisted characters of Rξ ). Put

I
Q
ξ := Ind

C[Rξ ,η]
C[RQ

ξ ,η]
and define Ell(RQ

ξ , η) = F 0(R
Q
ξ , η)/F

1(R
Q
ξ , η). We have an

isomorphism of graded vector spaces⊕
Q

I
Q
ξ :

⊕
Q

Ell(RQ
ξ , η)

∼−→ gr(GC
Wξ (R, η)) (6.2)

where Q runs over a complete set of representatives of the W -association classes of
compatible parabolic subgroups, and the degree of Ell(RQ

ξ , η) is defined as
the depth of Q. The functor Eξ induces an isomorphism of graded vector spaces
gr(GC

Wξ (R, η))→ gr(GC(SWξ )). If w ∈ Wξ,ξ satisfies w(Q) = Q then twisting by

w acts trivially on Ell(RQ
ξ , η).

7. K-theory of the Schwartz algebra S

In the last two sections we will discuss results and conjectures for the K-theory and
noncommutative geometry of affine Hecke algebras and we indicate some of the
evidence in support of these conjectures. These conjectures are not new, certainly not
their analogues in the context of reductive algebraic groups. The point is however
that these conjectures give a detailed guideline for representation theory of affine
Hecke algebras with (unequal) continuous positive real parameters. In this sense the
discussion below is a natural extension of the harmonic analysis questions that have
been studied in this paper.

First of all recall the following result.

Proposition 7.1 (Corollary 5.9, [22]). The dense ∗-subalgebra S ⊂ C is closed
for holomorphic functional calculus. Hence the inclusion i : S → C induces an
isomorphism K∗(S)

∼−→ K∗(C).

7.1. The Chern character for S. The result in this subsection is due to Maarten
Solleveld. Proposition 7.1 shows that we can study the K-theory of the reduced
C∗-algebra C of H in terms of S. By Theorem 5.6(ii) it follows easily that S is a
Fréchetm-algebra, and for this type of topological algebras Cuntz [20] has shown the
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existence of a unique functorial Chern character map ch : K∗ → HP∗ with values
in Connes’ periodic cyclic homology HP∗ and which is subject to certain natural
compatibility properties. In [64] it is shown for a quite general class of Fréchet
m-algebras that the Chern character becomes a natural isomorphism after tensoring
with C. Theorem 5.6(ii) shows that the Schwartz algebra S of H always falls in the
class of algebras to which Solleveld’s Theorem applies. Thus we have

Theorem 7.2 (Corollary 9, [64]). The abelian group K∗(S) is finitely generated, and
upon tensoring by C the Chern character Id⊗ ch : KC∗ (S) → HP∗(S) becomes an
isomorphism, where we have used the notation KC∗ (S) := C⊗Z K∗(S).

7.2. Comparison between S and H . The material this subsection is joint work in
progress with Maarten Solleveld.

Conjecture 1 (Conjecture 8.9, [9]). The inclusion homomorphism i : H → S in-
duces an isomorphism HP∗(H)→ HP∗(S).

There is quite solid evidence in support of this conjecture. Under certain additional
assumptions we in fact have a proof of the statement (in fact, Solleveld has recently
announced a general proof (private communication)). This proof is based on the
philosophy explained in the important paper [35] and the Langlands classification for
general affine Hecke algebras [23].

7.3. Independence of the parameters. Let us introduce the notation S(q) :=
S(R, q) to stress the dependence on the base q > 1 of the function q defined by
q(s) = qfs while keeping the fs ∈ R fixed. (In the terminology of Remark 2.3, we
vary q in a half-line.) Let SW = S(1) denote the limiting case, the Schwartz algebra of
functionsf : W → C of rapid decay. Observe that the Fréchet space SW is isomorphic
to S(q) as a Fréchet space via the naive linear isomorphism f →∑

w∈W f (w)Nw.
Solleveld has shown that there exists a family of isomorphisms (unique up to

homotopy) ψε : S(q) → S(qε) of pre C∗-algebras depending continuously on ε ∈
(0, 1] such thatψ1 = idS . Now consider the family of linear isomorphismsφε : SW →
S(q) (with ε ∈ (0, 1]) consisting of the composition of the naive linear isomorphism
SW → S(qε) with the inverse of ψε. Solleveld has shown that the family φε behaves
as an asymptotic morphism SW → S(q) as ε ↓ 0 and defines a homomorphism
K∗(φ) : K∗(SW)→ K∗(S(q)).

Conjecture 2. The map KQ∗ (φ) is an isomorphism.

This conjecture is the natural extension of [8, Conjecture 6.21] in the present
context (after throwing away torsion), and in this sense it is entirely in the spirit of
the Baum–Connes–Kasparov conjecture for p-adic reductive groups. In our situation
(working with general continuous, unequal Hecke algebra parameters) it would be a
very powerful principle for understanding the geometry of the irreducible spectrum
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and the tempered irreducible spectrum of affine Hecke algebras, especially in combi-
nation with certain geometric refinements to be described below (see Conjectures 2b
and 2c).

Let us first consider a weaker statement and the evidence in support of it:

Conjecture 2a (weaker version). dim(KQ∗ (S(q))) = dim(KQ∗ (SW)).

By Solleveld’s Theorem 7.2 this statement is equivalent to dim(HP∗(S(q))) =
dim(HP∗(SW)), and thus in cases where Conjecture 1 is known (certainly including the
split casefs = 1,∀s ∈ Saff ) it is equivalent to dim(HP∗(H(q))) = dim(HP∗(C[W ])).
In the split case this is a theorem of Baum and Nistor [10]. The proof in [10] is
very interesting and is based on Lusztig’s asymptotic morphism in combination with
techniques from [35]. For unequal label Hecke algebras one may connect this with
Lusztig’s conjectures from [43], see [4].

7.4. Equivariant K-theory. The conjecture 2 can be expressed more geometrically
in terms of equivariantK-theory using well known results (see [7], [10], [67]). First of
all SW = C∞(Tu)�W0, and this gives the identification K∗(SW) = K∗W0

(Tu). Recall
that for any finite group G acting on a compact topological space X the equivariant
Chern character defines an isomorphism Id⊗ chG : C⊗Z K∗G(X)

∼−→ H[∗](G\X̂,C)
where X̂ = ∪g∈G(g,Xg) is the disjoint union of the fixed point spaces Xg of the
elements of G, and where H[∗] denotes the Z/2Z-periodic Čech cohomology groups
(see [7]). The topological space G\X̂ is called the extended quotient of X. It is
the orbit space of the inertia orbifold �(GX) := G

X̂
of the translation orbifold

GX = X�G. In this geometric form the conjecture gives rise to a natural refinement
of the conjecture for K0(S) which is the main reason for this reformulation.

Definition 7.3. Given ξ ∈ W\
u we have a quotient homomorphism πξ : S →
S/mξS where mξ denotes the maximal ideal of ZS at ξ (the ring S/mξS is finite
dimensional and semisimple by Theorem 5.6). For α ∈ K0(S) we define Supp(α) =
{Wξ ∈ W\
u | K0(πξ )(α) �= 0} (a closed set in W\
u, as one checks easily).

Conjecture 2b (geometric refinement). There exists a natural isomorphism (take
KC∗ (φ) composed with the inverse of the equivariant Chern character for the action of
W0 on Tu):

κ : H[∗](W0\T̂u,C) ∼−→ KC∗ (S(q)). (7.1)

The ascending filtration Fi(KC
0 (S(q))) = {α | dim(Supp(α)) ≤ i} of KC

0 (S(q))
coincides via this isomorphism with the filtration of the left hand side whose i-th
filtered piece consist of the sum of the even cohomologies of the components of the
extended quotient W0\T̂u of dimension at most i.

This form of the conjecture guides us to a further reduction to the discrete part
F0(KC

0 (S(q))) of the vector space KC
0 (S(q)). This is best understood in the context

of a conjecture concerning index theory.
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8. Index functions

The material in this section was shaped in its present form in the course of various
conversations with Mark Reeder and Joseph Bernstein. I am much indebted for their
insightful comments. The ideas in this section have their origin in the theory of
the Selberg trace formula. We want to construct “index functions” using the Euler–
Poincaré principle in K-theory (see e.g. [37], [59], [21]).

We assume throughout in this section that the root datum R is semisimple unless
stated otherwise. Every finite dimensional tempered module π gives rise to a Z-
valued “local index” function Indπ on K0(S). Namely π : S → EndC(Vπ) is a
continuous algebra homomorphism, and given α = [p] ∈ K0(S) (with p ∈ MN(S)
an idempotent) we define Indπ(α) = rank(π(p)) ∈ Z. This naturally descends to
bilinear pairing [ · , ·] : K0(S)×G(S)→ Z given by [α, [π ]] := Ind[π ](α). Moreover,
by the structure theory of S (Theorem 5.6), it is clear that if the local index function
[π ] → Ind[π ](α) vanishes identically on G(S) then α = 0.

Now suppose that α ∈ F0(KC
0 (S)). By definition of the support of α and of

our notion of smooth families this means that Ind[π ](α) = 0 for all π which are
1-smooth (it must be constant along the family on the one hand, but on the other hand
its support must be finite). Therefore π → Ind[π ](α) factors through a function on
Elltemp, and [ · , ·] factors through a bilinear pairing [ · , ·] on F0(KC

0 (S)) × Elltemp

which is non-degenerate on the left.
Next we consider the change of base ring homomorphism β : K0(H)→ K0(S)

defined by [P ] → [S ⊗H P ] if P denotes a finitely generated projective H-module.
One would like to complement this base change homomorphism β with a base change
homomorphism β : K(Modfg(H))→ K(Mod(S)) but there seems no obvious way
to do this. First of all S is not flat over H (this problem already occurs in rank 1)
and it is also not quite clear which category of S-modules one should consider. The
conjecture we are about to make precisely states that this can anyway be done if one
restricts in some sense to the tempered modules of finite length. To this end we will
first show that the projective dimension of H-modules of finite length is bounded by
the rank 3 (which is a joint result with Mark Reeder). Let (π, V ) be an H-module
of finite length. Let C ⊂ a∗ = R ⊗Z X be the fundamental alcove for the action
of Wa = W0 � Q � W (the normal subgroup generated by reflections in W ). Let
� ⊂ W be the finite abelian subgroup of elements of length 0, thenW = Wa��. We
denote by Ha ⊂ H the unital subalgebra of H spanned by the elements {Nw}w∈Wa ,
then H = Ha �� (a crossed product).

Given a nonempty facet ∅ �= f ⊂ C of C we have the corresponding subset
Sf ⊂ Saff of affine simple reflections fixing f . Let Hf ⊂ Ha be the finite type
Hecke subalgebra Hf = H(Sf , qSf ). For any subset I ⊂ Saff we denote by CI the

3One can deduce from this the fact that the category of H -modules is of finite cohomological dimension, as
was explained to me by Joseph Bernstein. One should compare this to Bernstein’s result that the category of
smooth representations of a reductive p-adic group has finite cohomological dimension, see [65, Prop. 37].
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complex vector space which has as a basis the set I . Put

C̃i(V ) =
⊕

f :dim(f )=i
H ⊗Hf

(V |Hf
)⊗C

n−i∧
CSf . (8.1)

Since Hf ⊂ H is a finite dimensional semisimple subalgebra this is clearly a pro-
jective, finitely generated H-module. We define H-linear maps d̃i : C̃i → C̃i−1
by

d̃i (h⊗Hf
v ⊗ λ) :=

⊕
f ′⊂f

dim(f ′)=i−1

h⊗Hf ′ v ⊗ (λ ∧ sf,f ′) (8.2)

where sf,f ′ ∈ Saff is defined by Sf ′ = Sf ∪ {sf,f ′ }. Observe that there is a natural left
�-action on C̃i(V ) by means of H-intertwining operators via

jω(h⊗Hf
v ⊗ λ) = hω−1 ⊗Hω(f )

π(ω)v ⊗ ω(λ). (8.3)

This action commutes with the action of the operators d̃i . Finally, we defineCi(V ) =
(C̃i(V ))

j (�) and we denote by di the restriction of d̃i to Ci(V ).

Proposition 8.1 (E. Opdam and M. Reeder, unpublished). Let (V , π) be an H-module
of finite length. The graded H-linear operator d = {di} is a differential on C∗(V ),
making C∗(V ) into a bounded complex of finitely generated projective H-modules.
The H-linear map d0 : C0(V ) → C−1(V ) � V extends this to a finite projective

resolution 0← V
d0←− C∗(V ) of V .

The proof of this proposition reduces simply to the case H = Ha , and there the
proof is a variation of Kato’s proof [33] of a statement about a similar “restriction-
induction” complex for finite type Hecke algebras.

Definition 8.2. By the previous result all H-modules of finite length have finite
projective dimension. Hence there is a well defined Euler–Poincaré homomorphism
ε : G(H)→ K0(H). It has an explicit realization ε([V ]) :=∑

i (−1)i[Ci(V )].
Let ρ : G(S)→ G(H) be the homomorphism which corresponds to the forgetful

functor (forgetting temperedness). We have now altogether constructed a homomor-
phism γ = β � ε � ρ : G(S) → K0(S). We extend this to an anti-linear map
γ : GC(S) → KC

0 (S). It is not difficult to show that this map vanishes on modules
induced from a proper parabolic subalgebra (e.g. by using the Koszul resolution for
a regular sequence of parameters for the smooth family of induced representations).
Thus we obtain an anti-linear map

γ : Elltemp → F0(K
C
0 (S)). (8.4)

Using γ the previously defined bilinear pairing [ · , ·] on F0(KC
0 (S)) × Elltemp

gives rise to a sesquilinear form 〈U,V 〉ell := [γ (U), V ] on Elltemp. This is the
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precise analog of the elliptic pairing of tempered characters as defined by Schneider
and Stuhler [59]: suppose that U and V are finite dimensional tempered modules
of H , then

〈U,V 〉ell = [γ (U), V ] =
∑
i≥0

(−1)i dim ExtiH (U, V ). (8.5)

In this context we remark that the natural map Elltemp → Ellalg (the elliptic virtual
representations of H) is a linear isomorphism [23], by the Langlands parametrization
[23] for affine Hecke algebras.

By the Euler–Poincaré principle applied to our standard resolution we can also
express this explicitly (following [59], [58]) in terms of an “index function” for U .
Let�f ⊂ � be the stabilizer of f in�, and let εf be the character of�f on CSf . We
define the index function fU ∈ H by

fU =
∑
f

(−1)dim(f )
∑

σ∈Irr(Hf��f )

dim(σ )−1[U |(Hf��f ) ⊗ εf : σ ]eσ ∈ H (8.6)

where f runs over a complete set of representatives of the�-orbits of faces of C, and
where eσ ∈ Hf ��f denotes the central idempotent corresponding to σ in the finite
dimensional complex semisimple algebra Hf ��f . Then

〈U,V 〉ell = χV (fU) (8.7)

By (8.5) it is clear that this pairing is Hermitian, and that (virtual) tempered representa-
tionsU andV with distinct tempered central characters are orthogonal. Moreover, the
pairing is integral with respect to the lattice generated by the elliptic (true) characters.

Conjecture 3. The pairing 〈U,V 〉ell on Elltemp
Wξ corresponds, via the functor Eξ of

Theorem 5.13, with the elliptic paring on Ell(Rξ , η) given by

〈φ, χ〉ell = |Rξ |−1
∑
r∈Rξ

| det(1− r)|φ(r)χ(r) (8.8)

(see [3] and [58]). In particular, this pairing is positive definite (since the support of
the function det(1− r) is exactly equal to the set of elliptic conjugacy classes of Rξ ).

This conjecture is the natural analog of results of Arthur in the theory of the local
trace formula [3]. In the split case with X = P it was shown by Mark Reeder [58]
using the Kazhdan–Lusztig parameterization and a comparison between geometric
and analytic R-groups. The formula (8.6) for the index functions fU is due to Mark
Reeder [57], based on work of Schneider and Stuhler [59]. Recently a related and
very general result was obtained by R. Meyer [48] for Schwartz algebra’s of reductive
p-adic groups. In order to explain this, first observe that Theorem 5.6 implies that
a discrete series representation (U, δ) of S is a projective S-module. Therefore it
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defines a class [U ]S ∈ K0(S). On the other hand we have defined the class γ ([U ]) ∈
K0(S) above. In our context Meyer’s result would mean that [U ]S = γ ([U ]), and
in particular that all higher extensions ExtiH (U, V ) (i > 0) vanish if V is tempered
(this is remarkable since S is not flat over H). Meyer’s Theorem actually implies the
validity of this statement for all affine Hecke algebras which arise in connection with
a reductive p-adic groupG via the theory of types of equivalence classes ofG-inertial
cuspidal data (of course, we conjecture that it holds for general H). This proves that
in those cases Conjecture 3 holds for the discrete series representations of H , thus
providing strong evidence in support of this conjecture.

Corollary 8.3 (L2-index for discrete series representations of H). We have the fol-
lowing explicit Euler–Poincaré formula for the formal dimension of a discrete series
representation (U, δ) of H , expressed in terms of its “K-types”:

μPl({δ(q)}) = τ(fU(q))
=

∑
f

(−1)dim(f )
∑

σ∈Irr(Hf��f )

[U |(Hf��f ) ⊗ εf : σ ]dσ (q) (8.9)

where f runs over a complete set of representatives of the �-orbits of faces of C,
and where dσ (q) denotes the formal dimension of σ in the finite dimensional Hilbert
algebra Hf ��f whose trace is the restriction of the trace τ of H (these are rational

functions in the parameters q1/2
s , q−1/2

s with rational coefficients).

Please compare this statement with the product formula (4.4) for the formal di-
mensions. Observe that the rationality of the constant dδ in (4.4) is an immediate
consequence. The Euler–Poincaré formula for fU (as obtained by Schneider and
Stuhler [59]) was used by Reeder [57] for the computation of all formal dimensions
of the square integrable unipotent representations of Chevalley groups of exceptional
type. The main computational work in [57] consists in the reduction of the Euler–
Poincaré alternating sum to the product formula.

A second consequence of Conjecture 3 is:

Corollary 8.4. The map γ : Elltemp → F0(KC
0 (S)) is an anti-linear isomorphism.

Let us write Elltemp(q) in order to stress the dependence on q. Observe that
Elltemp(q) is a semisimple Z-module via the algebraic central character z map. The
combination of Corollary 8.4 with Conjecture 2b implies that the dimension of the
finite dimensional space (see Proposition 6.5) Elltemp(q) is independent of q ∈ Q.
We conjecture a stronger statement:

Conjecture 2c. The Q-family of finite dimensional semisimple Z-modules q →
Elltemp(q) is continuous (i.e. isomorphic to a direct sum of one-dimensional Z-
modules, each depending continuously on q).

Let us denote by j : |
u| → W0\Tu the map that sends Wξ (with ξ = (P, δ, t))
to W0(|r|−1rt) where zP (δ) = WP r is the central character of δ. Let q = 1 and let
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t ∈ Tu = 
u(1). Then Rt is the isotropy groupW0,t of t inW0. Using Proposition 6.6,
Conjecture 2c implies an isomorphism of sheaves

j∗(G(R, η)) � G(W0) (8.10)

onW0\Tu, where the sheaf on the right hand side is the usual complex representation
ring sheaf for the action of W0 on Tu.

8.1. Discussion and examples. We discuss the implications of Conjecture 2c for the
problem of understanding the tempered spectrum of non-simply laced affine Hecke
algebras. The results in this section are joint with Maarten Solleveld. In these cases,
Proposition 4.7, Theorem 4.9 and Conjecture 2c suggest to use deformations to generic
points q ∈ Q in order to approach this problem.

Let us consider the three parameter case R = (Zn, Bn,Z
n, Cn, F0) with F0 =

{e1 − e2, . . . , en−1 − en, en} (thus Q(Bn) = Zn; we refer to this case as “type Caff
n ”)

with parameters q0 = q(s0), q1 = q(sei ), q2 = q(sei−ei+1). The case n = 1 will be
considered as a special case (but with two parameters q0, q1); the discussion below
applies to this degenerate case without modifications). The set of distinct W0-orbits
of generic residual points is easily seen to be parametrized (using [56, Appendix A])
by ordered pairs (μ, ν) of partitions of total weight n. The orbit of the unitary part
of (μ, ν) only depends on i := |μ| ∈ {0, 1, . . . , n}. Let W0si denote this orbit. The
orbitsW0si ∈ W0\Tu are mutually distinct, and the stabilizer group of si is isomorphic
to the Weyl group of type Bi × Bn−i .

We see that for each i the cardinality of the set of orbits of generic residual points
whose corresponding orbit of unitary parts equals W0si is precisely equal to the
number of elliptic conjugacy classes of the stabilizer groupW(Bi)×W(Bn−i ) of si ,
which is theR-group Rsi for SW = S(1). By Theorem 4.9 each orbitW0r of residual
points carries at least one discrete series representation of H . We call q ∈ Q generic
if q ∈ ∩Qr (intersection over all r ∈ Res) and if for all r, r ′ ∈ Res : W0r(q) =
W0r

′(q) ⇒ W0r = W0r
′. By Conjecture 2c and the above description of the set

of orbits of generic residual points we conclude that for a generic parameter q each
residual orbit W0r(q) must carry precisely one discrete series representation. So for
generic q ∈ Q the discrete series characters are separated by their algebraic central
character. Moreover, the complex linear span of these discrete series characters is
isomorphic to the space Elltemp(q).

By the continuity aspect of Conjecture 2c we are now in principle able to under-
stand the spaces Elltemp(q0) for an arbitrary parameter q0 ∈ Q by deformation to the
generic case. The central support of the discrete series representations of H(q0) is
given by Theorem 4.9. For a given orbit of residual points W0r for H(q0) the set of
discrete series representations which it carries is, in view of the above, parametrized
by the set of orbits of generic residual points W0r(q) such thatW0r(q0) = W0r . This
determines the set �F0(q0), with complete information about the action of Z. We
can repeat this for any standard parabolic subset P , since the associated affine Hecke
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algebra HP is a tensor product of at most one factor of typeCaff
m (withm ≤ n) (which

we can handle as above) and factors of type Aλj−1 (with lattice Xj = P(Aλj−1), the
corresponding weight lattice) such that

∑
λj = n−m. The groupKP is a product of

cyclic groups Cλj of order λj . We also get complete information on the action of W
on� :W is generated by permutations of the typeA-factors, by twisting with−w ifw
is the longest element in the Weyl group of one of the type A-factors, and by twisting
of one of the typeA factorsAk−1 by the corresponding cyclic groupCk . Observe that
the action of W only affects the type A-factors of HP .

From this information we can reconstruct W
u , and we can verify directly that
the cocycle η� (and thus η itself) is in fact always trivial. Using Theorem 4.19 we
can in principle compute theR-groups (this was actually carried out by Klaas Slooten
[63] in the case of real central characters for all q0 ∈ Q). By Theorem 5.13 this gives
essentially complete information about the structure of the tempered dual Ŝ.

If q ∈ ∩Qr (intersection over all r ∈ Res) it is not hard to show that the R-groups
are all trivial. This implies that S(q), in view of Theorem 5.13 and Theorem 5.11, is
Morita equivalent to the algebra of W -invariant C∞-functions on
u(q). We see that
the components of |
u(q)| are parametrized by the set of ordered triples of partitions
(λ, μ, ν) of total weight n. If λ = (1m1, 2m2, . . . , kmk ) then the component corre-
sponding to (λ, μ, ν) is the product of the quotientsW0(Bmi )\(S1)mi (i = 1, . . . , k),
and thus homeomorphic to [0, 1]|λ|. Hence K1(S(q)) = 0, and K0(S(q)) is the free
abelian group generated by the above set of components.

Let us compare this result with the other extreme case q = 1. Now S(1) = SW �
C∞(Tu)�W0 and thus K∗(S(1)) � K∗W0

(Tu). Application of the equivariant Chern
character [7] to this last group yields an isomorphism (after killing torsion) with the
periodized cohomology of the extended quotient W0\T̂u of Tu with respect to the
action of W0 = W(Bn). The extended quotient W0\T̂u can be computed directly
in this case. It turns out that this space is actually homeomorphic to the orbit space
|
u(q)|which we have just computed in the case where q ∈ ∩Qr . This is in complete
accordance with Conjecture 2b (but of course, we already used the “discrete part” of
this conjecture in order to conclude that each generic residual orbit carries precisely
one discrete series representation).

Conjecture 2c gives in this example complete information on the classification
problem of the irreducible tempered representations, but not on the internal structure
of these representations. In the case of type Caff

n Klaas Slooten [62] defined (for real
central character) a “generalized Springer correspondence” in terms of certain symbols
(in the sense of Malle [45]) and conjectured that the restriction of these tempered
representations to H(W0) is precisely given by the generalized Green functions [40],
[60] attached to these symbols. These conjectures were verified for n = 3, 4.
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