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Notions of symmetry

Symmetry has become one of the major guiding principles in physics during the
twentieth century. Over the past ten decades, we have gradually progressed from
external to internal, from global to local, from finite to infinite, from ordinary to
super symmetry and quite recently arrived at the notion of Hopf algebras or quantum
groups.

In general, a physical system consists of a finite or infinite number of degrees of
freedom which may or may not interact. The dynamics is prescribed by a set of evo-
lution equations which follow from varying the action with respect to the different
degrees of freedom. A symmetry then corresponds to a group of transformations on
the space time coordinates and/or the degrees of freedom that leave an action and
therefore also the evolution equations invariant. External symmetries have to do
with invariances (e.g. Lorentz invariance) under transformations on the space time
coordinates. Symmetries not related to transformations of space time coordinates
are called internal symmetries. We also discriminate between global symmetries and
local symmetries. A global or rigid symmetry transformation is the same throughout
space time and usually leads to a conserved quantity. Turning a global symmetry
into a local symmetry, i.e. allowing the symmetry transformations to vary continu-
ously from one point in space time to another, requires the introduction of additional
gauge degrees of freedom mediating a force. It is this so-called gauge principle that
has eventually led to the extremely successful standard model of the strong and
electro-weak interactions between the elementary particles based on the local gauge
group SU(3)× SU(2)× U(1).
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Broken symmetry

The use of symmetry considerations has been extended significantly by the ob-
servation that a symmetry of the action is not automatically a symmetry of the
groundstate of a physical system. If the action is invariant under some symmetry
group G and the groundstate only under a subgroup H of G, the symmetry group
G is said to be spontaneously broken down to H. The symmetry is not completely
lost though, for the broken generators of G transform one groundstate into another.

The physics of a broken global symmetry is quite different from a broken local
(gauge) symmetry. The signature of a broken continuous global symmetry group
G in a physical system is the occurrence of massless scalar degrees of freedom, the
so-called Goldstone bosons. Specifically, each broken generator of G gives rise to
a massless Goldstone boson field. Well-known realizations of Goldstone bosons are
the long range spin waves in a ferromagnet, in which the rotational symmetry is
broken below the Curie temperature through the appearance of spontaneous mag-
netization. An application in particle physics is the low energy physics of the strong
interactions, where the spontaneous breakdown of (approximate) chiral symmetry
leads to (approximately) massless pseudoscalar particles such as the pions.

In the case of a broken local (gauge) symmetry, in contrast, the would be massless
Goldstone bosons conspire with the massless gauge fields to form massive vector
fields. This celebrated phenomenon is known as the Higgs mechanism. The canon-
ical example in condensed matter physics is the ordinary superconductor. In the
phase transition from the normal to the superconducting phase, the U(1) gauge
symmetry is spontaneously broken to the finite cyclic group Z2 by a condensate of
Cooper pairs. This leads to a mass MA for the photon field in the superconducting
medium as witnessed by the Meissner effect: magnetic fields are expelled from a
superconducting region and have a characteristic penetration depth which in proper
units is just the inverse of the photon mass MA. Moreover, the Coulomb interactions
among external electric charges in a superconductor are of finite range ∼ 1/MA. The
Higgs mechanism also plays a key role in the unified theory of weak and electromag-
netic interactions, that is, the Glashow-Weinberg-Salam model where the product
gauge group SU(2)× U(1) is broken to the U(1) subgroup of electromagnetism. In
this context, the massive vector particles correspond to the W and Z bosons medi-
ating the short range weak interactions. More speculative applications of the Higgs
mechanism are those where the standard model of the strong, weak and electromag-
netic interactions is embedded in a grand unified model with a large simple gauge
group. The most ambitious attempts invoke supersymmetry as well.
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Topological excitations or defects

In addition to the aforementioned characteristics in the spectrum of fundamental
excitations, there are in general other fingerprints of a broken symmetry in a physical
system. These are usually called topological excitations or just defects and correspond
to collective degrees of freedom carrying ‘charges’ or quantum numbers which are
conserved for topological reasons, not related to a manifest symmetry of the action.
(See, for example, the references [1, 2, 3, 4] for reviews). It is exactly the appearance
of these topological charges which renders the corresponding collective excitations
stable. Topological excitations may manifest themselves as particle-like, string-like
or planar-like objects (solitons), or have to be interpreted as quantum mechanical
tunneling processes (instantons). Depending on the model in which they occur,
these excitations carry evocative names like kinks, domain walls, vortices, cosmic
strings, Alice strings, monopoles, skyrmions, texture, sphalerons and so on. Defects
are crucial for a full understanding of the physics of systems with a broken symmetry
and lead to a host of rather unexpected and exotic phenomena which are in general
of a nonperturbative nature.

The prototypical example of a topological defect is the Abrikosov-Nielsen-Olesen flux
tube in the type II superconductor with broken U(1) gauge symmetry [5, 6]. The
topologically conserved quantum number characterizing these defects is the magnetic
flux, which indeed can only take discrete values. A beautiful but unfortunately not
yet observed example in particle physics is the ’t Hooft-Polyakov monopole [7, 8]
occurring in any grand unified model in which a simple gauge group G is broken to
a subgroup H containing the electromagnetic U(1) factor. Here, it is the quantized
magnetic charge carried by these monopoles that is conserved for topological reasons.
In fact, the discovery that these models support magnetic monopoles reconciled the
two well-known arguments for the quantization of electric charge, namely Dirac’s
argument based on the existence of a magnetic monopole [9] and the obvious fact
that the U(1) generator should be compact as it belongs to a larger compact gauge
group.

An example of a model with a broken global symmetry supporting topological exci-
tations is the effective sigma model describing the low energy strong interactions for
the mesons. That is, the phase with broken chiral symmetry mentioned before. One
may add a topological term and a stabilizing term to the action and obtain a theory
that features topological particle-like objects called skyrmions, which have exactly
the properties of the baryons. See reference [10] and also [11, 12]. So, upon extending
the effective model for the Goldstone bosons, we recover the complete spectrum of
the underlying strong interaction model (quantum chromodynamics) and its low en-
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ergy dynamics. Indeed, this picture leads to an attractive phenomenological model
for baryons.

Another area of physics where defects may play a fundamental role is cosmology.
See for instance reference [13] for a recent review. According to the standard cosmo-
logical hot big bang scenario, the universe cooled down through a sequence of local
and/or global symmetry breaking phase transitions in a very early stage. The ques-
tion of the actual formation of defects in these phase transitions is of prime impor-
tance. It has been argued, for instance, that magnetic monopoles might have been
produced copiously. As they tend to dominate the mass in the universe, however,
magnetic monopoles are notoriously hard to accommodate and if indeed formed,
they have to be ‘inflated away’. Phase transitions that see the production of (local
or global) cosmic strings, on the other hand, are much more interesting. In contrast
with magnetic monopoles, the presence of cosmic strings does not lead to cosmo-
logical disasters and according to an attractive but still speculative theory cosmic
strings may even have acted as seeds for the formation of galaxies and other large
scale structures in the present day universe.

Similar symmetry breaking phase transitions are extensively studied in condensed
matter physics. We have already mentioned the transition from the normal to the
superconducting phase in superconducting materials of type II, which may give rise
to the formation of magnetic flux tubes. In the field of low temperature physics,
there also exists a great body of both theoretical and experimental work on the
transitions from the normal to the many superfluid phases of helium-3 in which
line and point defects arise in a great variety, e.g. [14]. Furthermore, in uniaxial
nematic liquid crystals, point defects, line defects and texture arise in the transition
from the disordered to the ordered phase in which the rotational global symmetry
group SO(3) is broken down to the semi-direct product group U(1)×s.d.Z2. Bi-axial
nematic crystals, in turn, exhibit a phase transition in which the global rotational
symmetry group is broken down to the product group Z2 × Z2 yielding line defects
labeled by the elements of the (nonabelian) quaternion group D̄2, e.g. [2]. Nematic
crystals are cheap materials and as compared to helium-3, for instance, relatively
easy to work with in the laboratory. The symmetry breaking phase transitions
typically appear at temperatures that can be reached by a standard kitchen oven,
whereas the size of the occurring defects is such that these can be seen by means of
a simple microscope. Hence, these materials form an easily accessible experimental
playground for the investigation of defect producing phase transitions and as such
may partly mimic the physics of the early universe in the laboratory. For some recent
ingenious experimental studies on the formation and the dynamics of topological
defects in nematic crystals making use of high speed film cameras, the interested
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reader is referred to [15, 16].

From a theoretical point of view, many aspects of topological defects have been
studied and understood. At the classical level, one may roughly sketch the following
programme. One first uses simple topological arguments, usually of the homotopy
type, to see whether a given model does exhibit topological charges. Subsequently,
one may try to prove the existence of the corresponding classical solutions by func-
tional analytic methods or just by explicit construction of particular solutions. On
the other hand, one may in many cases determine the dimension of the solution
or moduli space and its dependence on the topological charge using index theory.
Finally, one may attempt to determine the general solution space more or less ex-
plicitly. In this respect, one has been successful in varying degree. For example,
the self-dual instanton solutions of Yang-Mills theory on S4 have been obtained
completely.

Properties of a single defect

The physical properties of topological defects can be probed by their interactions
with the ordinary particles or excitations in the model. This amounts to inves-
tigating (quantum) processes in the background of the defect. In particular, one
may calculate the one-loop corrections to the various quantities characterizing the
defect, which involves studying the fluctuation operator. Here, one naturally has
to distinguish the modes with zero eigenvalue from those with nonzero eigenvalues.
The nonzero modes generically give rise to the usual renormalization effects, such as
mass and coupling constant renormalization. The zero modes, which often arise as
a consequence of the global symmetries in the theory, lead to collective coordinates.
Their quantization yields a semiclassical description of the spectrum of the theory
in a given topological sector, including the external quantum numbers of the soliton
such as its energy and momentum and its internal quantum numbers such as its
electric charge, e.g. [1, 3].

In situations where the residual gauge group H is nonabelian, the analysis outlined
in the previous paragraph is rather subtle. For instance, the naive expectation
that a soliton can carry internal electric charges which form representations of the
complete unbroken group H is wrong. As only the subgroup of H which commutes
with the topological charge can be globally implemented, these internal charges form
representations of this so-called centralizer subgroup. (See [?, 19, 18] for the case of
magnetic monopoles and [20, 21] for the case of magnetic vortices). This makes the
full spectrum of topological and ordinary quantum numbers in such a broken phase
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rather intricate.

Also, an important effect on the spectrum and the interactions of a theory with a
broken gauge group is caused by the introduction of additional topological terms in
the action, such as a nonvanishing θ angle in 3+1 dimensional space time and the
Chern-Simons term in 2+1 dimensions. It has been shown by Witten that in case
of a nonvanishing θ angle, for example, magnetic monopoles carry electric charges
which are shifted by an amount proportional to θ/2π and their magnetic charge [22].

Other results are even more surprising. A broken gauge theory only containing
bosonic fields may support topological excitations (dyons), which on the quantum
level carry half-integral spin and are fermions, thereby realizing the counterintuitive
possibility to make fermions out of bosons [23, 24]. It has subsequently been argued
by Wilczek [25] that in 2+1 dimensional space time one can even have topologi-
cal excitations, namely flux/charge composites, which behave as anyons [26], i.e.
particles with fractional spin and quantum statistics interpolating between bosons
and fermions. The possibility of anyons in two spatial dimensions is not merely of
academic interest, as many systems in condensed matter physics, for example, are
effectively described by 2+1 dimensional models. Indeed, anyons are known to be
realized as quasiparticles in fractional quantum Hall systems [27, 28]. Further, it
has been been shown that an ideal gas of electrically charged anyons is supercon-
ducting [29, 30, 31, 32]. At present it is unclear whether this new and rather exotic
type of superconductivity is actually realized in nature.

Furthermore, remarkable calculations by ’t Hooft revealed a nonperturbative mecha-
nism for baryon decay in the standard model through instantons and sphalerons [33].
Afterwards, Rubakov and Callan discovered the phenomenon of baryon decay catal-
ysis induced by grand unified monopoles [34, 35]. Baryon number violating processes
also occur in the vicinity of grand unified cosmic strings as has been established by
Alford, March-Russell and Wilczek [36].

Topological interactions between defects

So far, we have given a (rather incomplete) enumeration of properties and processes
that involve the interactions between topological and ordinary excitations. However,
the interactions between defects themselves can also be highly nontrivial. Here, one
should not only think of ordinary interactions corresponding to the exchange of field
quanta. Consider, for instance, the case of Alice electrodynamics which occurs if
some nonabelian gauge group (e.g. SO(3)) is broken to the nonabelian subgroup
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U(1) ×s.d. Z2, that is, the semi-direct product of the electromagnetic group U(1)
and the additional cyclic group Z2 whose nontrivial element reverses the sign of the
electromagnetic fields [37]. This model features magnetic monopoles and in addition
a magnetic Z2 string (the so-called Alice string) with the miraculous property that if
a monopole (or an electric charge for that matter) is transported around the string,
its charge will change sign. In other words, a particle is converted into its own anti-
particle. This nonabelian analogue of the celebrated Aharonov-Bohm effect [39] is
of a topological nature. That is, it only depends on the number of times the particle
winds around the string and is independent of the distance between the particle and
the string.

Similar phenomena occur in models in which a continuous gauge group is sponta-
neously broken down to some finite subgroup H. The topological defects supported
by such a model are string-like in three spatial dimensions and carry a magnetic flux
corresponding to an element h of the residual gauge group H. As these string-like
objects trivialize one spatial dimension, we may just as well descend to the plane, for
convenience. In this arena, these defects become magnetic vortices, i.e. particle-like
objects of characteristic size 1/MH with MH the symmetry breaking scale. Be-
sides these topological particles, the broken phase features matter charges labeled
by the unitary irreducible representations Γ of the residual gauge group H. Since all
gauge fields are massive, there are no ordinary long range interactions among these
particles. The remaining long range interactions are topological Aharonov-Bohm
interactions. If the residual gauge group H is nonabelian, for instance, the non-
abelian fluxes h ∈ H carried by the vortices exhibit flux metamorphosis [40]. In the
process of circumnavigating one vortex with another vortex their fluxes may change.
Moreover, if a charge corresponding to some representation Γ of H is transported
around a vortex carrying the magnetic flux h ∈ H, it returns transformed by the
matrix Γ(h) assigned to the element h in the representation Γ of H.

The spontaneously broken 2+1 dimensional models just mentioned will be the sub-
ject of these lecture notes. One of our aims is to show that the long distance physics
of such a model is, in fact, governed by a Hopf algebra or quantum group based on
the residual finite gauge group H [20, 41, 42, 43]. This algebraic framework mani-
festly unifies the topological and nontopological quantum numbers as dual aspects
of a single symmetry concept. The results obtained are quirte general and strongly
suggest that revisiting the symmetry breaking concept in general will reveal similar
underlying algebraic structures.

7



Bibliography

[1] S. Coleman, Classical lumps and their quantum descendents, in Aspects of
symmetry, (Cambridge University Press, Cambridge, 1985).

[2] N.D. Mermin, Rev. Mod. Phys. 51 (1979) 591.

[3] J. Preskill, in Architecture of the fundamental interactions at short distances,
edited by P. Ramond and R. Stora, (North-Holland, Amsterdam, 1987).

[4] R. Rajaraman, Solitons and Instantons, (North-Holland, Amsterdam, 1982)

[5] A. Abrikosov, JETP 5 (1959) 1174.

[6] H.B. Nielsen and P. Olesen, Nucl. Phys. B61 (1973) 45.

[7] G. ’t Hooft, Nucl. Phys. B79 (1974) 276.

[8] A.M. Polyakov, JETP Letters 20 (1974) 194.

[9] P.A.M. Dirac, Proc. R. Soc. London A133 (1931) 60.

[10] T.H.R. Skyrme, Proc. Roy. Soc. A260 (1962) 127.

[11] D. Finkelstein and J. Rubinstein, J. Math. Phys. 9 (1968) 1762, reprinted in
reference [32].

[12] E. Witten, Nucl. Phys. B223 (1983) 433.

[13] R.H. Brandenberger, Int. J. Mod. Phys. 9 (1994) 2117.

[14] G.E. Volovik, Exotic Properties of Superfluid 3He, Series in Modern Condensed
Matter Physics Volume 1, (World Scientific, Singapore, 1992)

[15] M. Bowick, L. Chandar, E. Schiff and A. Srivastava, Science 263 (1994) 943.

8



[16] I. Chuang, R. Durrer, N. Turok and B. Yurke, Science 251 (1991) 1336.

[17] A.P. Balachandran, F. Lizzi and V.G. Rodgers, Phys. Rev. Lett. 52 (1984)
1818.

[18]

[19] P. Nelson and A. Manohar, Phys. Rev. Lett. 50 (1983) 943. P. Nelson and S.
Coleman, Nucl. Phys. B237 (1984) 1.

[20] F.A. Bais, P. van Driel and M. de Wild Propitius, Phys. Lett. B280 (1992) 63.

[21] A.P. Balachandran, F. Lizzi and V.G. Rodgers, Phys. Rev. Lett. 52 (1984)
1818.

[22] E. Witten, Phys. Lett. B86 (1979) 293.

[23] G. ’t Hooft and P. Hasenfratz, Phys. Rev. Lett. 36 (1976) 1116.

[24] R. Jackiw and C. Rebbi, Phys. Rev. Lett. 36 (1976) 1116.

[25] F. Wilczek, Phys. Rev. Lett. 48 (1982) 1144.

[26] J.M. Leinaas and J. Myrheim, Nuovo Cimento 37B (1977) 1.

[27] B.I. Halperin, Phys. Rev. Lett. 52 (1984) 1583.

[28] R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395.

[29] Y.-H. Chen, F. Wilczek, E. Witten and B.I. Halperin, Int. J. Mod. Phys. B3
(1989) 1001.

[30] A. Fetter, C. Hanna and R.B. Laughlin, Phys. Rev. B39 (1989) 9679.

[31] R.B. Laughlin, Phys. Rev. Lett. 60 (1988) 2677.

[32] F. Wilczek editor, Fractional statistics and anyon superconductivity, (World
Scientific, Singapore, 1990).

[33] G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8; Phys. Rev. D14 (1976) 3432.

[34] C. Callan, Phys. Rev. D26 (1982) 2058; Nucl. Phys. B212 (1983) 391.

[35] V. Rubakov, Pis’ma Zh. Eksp. Teor. Fiz. 33 (1981) 658; JETP Lett. 33 (1981)
644; Nucl. Phys. B203 (1982) 311.

9



[36] M.G. Alford, J. March-Russell and F. Wilczek, Nucl. Phys. B328 (1989) 140.

[37] A.S. Schwarz, Nucl. Phys. B208 (1982) 141.

[38] S. Shnider and S. Sternberg, Quantumgroups, from coalgebras to Drinfeld al-
gebras, a guided tour, International Press Incorporated, Boston, 1993).

[39] Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959) 485.

[40] F.A. Bais, Nucl. Phys. B170 (FSI) (1980) 32.

[41] F.A. Bais, P. van Driel and M. de Wild Propitius, Nucl. Phys. B393 (1993)
547.

[42] F.A. Bais and M. de Wild Propitius, in The III International Conference on
Mathematical Physics, String Theory and Quantum Gravity, Proceedings of
the Conference, Alushta, 1993, Theor. Math. Phys. 98 (1994) 509.

[43] M. de Wild Propitius, Topological Interactions in Broken Gauge Theories, PhD
thesis, Universiteit van Amsterdam, 1995, hep-th/9511195.

10


