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CHAPTER 1

INTRODUCTION

In the 1970s Goddard, Nuyts and Olive were the first to write down a rough version of
what has become one of the most celebrated dualities in high energy physics. Following
earlier work of Englert and Windey on the generalised Dirac quantisation condition [1]
they showed that the charges of monopoles in a theory with gauge groupG take values in
the weight lattice of the dual gauge groupG∗, now known as the GNO or Langlands dual
group. Based on this fact they came up with a bold yet attractive conjecture: monopoles
transform as representations of the dual group [2].
Within a year Montonen and Olive observed that the BogomolnyPrasad Sommerfield
(BPS) mass formula for dyons [3, 4] is invariant under the interchange of electric and
magnetic quantum numbers if the coupling constant is inverted as well [5]. This led to the
dramatic conjecture that the strong coupling regime of somesuitable quantum field the-
ory is described by a weakly coupled theory with a similar Lagrangian but with the gauge
group replaced by the GNO dual group and the coupling constant inverted. Moreover they
proposed that in the BPS limit of a gauge theory where the gauge group is spontaneously
broken toU(1) the ’t Hooft-Polyakov solutions [6, 7] in the original theory correspond to
the heavy gauge bosons of the dual theory. Supporting evidence for the idea of viewing
the ’t Hooft-Polyakov monopoles as fundamental particles came from Erick Weinberg’s
zero-mode analysis in [8].
Soon after Montonen and Olive proposed their duality, Osborn noted thatN = 4 Su-
per Yang-Mills theory (SYM) would be a good candidate to possess the duality since
BPS monopoles fall into the same BPS supermultiplets as the elementary particles of
the theory [9].N = 2 SYM on the other hand has always been considered an unlikely
candidate because the BPS monopoles fall into BPS multiplets that do not correspond to
the elementary fields of theN = 2 Lagrangian. In particular there are no semi-classical
monopole states with spin equal to 1 so that the monopoles cannot be identified with
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Chapter 1. Introduction

heavy gauge bosons. Most surprisingly the Montonen-Olive conjecture has never been
proven forN = 4 SYM whereas a different version of the duality has explicitly been
shown to occur for theN =2 theory in 1994 by Seiberg and Witten [10].
These authors started out fromN =2 SYM with theSU(2) gauge group broken down to
U(1) and computed the exact effective Lagrangian of the theory tofind a strong coupling
phase described by SQED except that the electrons are actually magnetic monopoles.
Moreover by softly breakingN = 2 to N = 1 supersymmetry they were able to show
that in this strong coupling phase the monopoles condense and thereby demonstrated the
’t Hooft-Mandelstam confinement scenario [11, 12]. Similarresults hold for higher rank
gauge groups broken down to their maximal abelian subgroups[13, 14]. In these cases we
indeed have an explicit realisation of a magnetic abelian gauge group at strong coupling.

A fascinating aspect of Seiberg-Witten theory is that it does give rise to not just one
strong coupling phase, but to several. In general only one ofthese phases contains mass-
less monopoles while the other have an effective description in terms of dyons. A priori it
is thus not clear what dynamically the relevant degrees of freedom are. This illustrates the
necessity of a proper kinematic description of all possibledegrees of freedom contained
in the theory. For abelian phases it is not too hard to providesuch a kinematic description
while for non-abelian phases, that is a phases where the gauge group is broken down to a
non-abelian subgroup, this problem has never been solved satisfactorily. The main chal-
lenge is to give a proper labelling of monopoles and dyons. Inthis thesis we tackle this
issue.

As far as it concerns monopoles one finds classically that magnetic charges take value
in the weight lattice of the dual group. Yet, there is no obvious rule to order these weights
into irreducible representations with the appropriate dimensions and degeneracies, let
alone that there is a manifest action of the dual group on the classical field configura-
tions. To illustrate this we consider an example with gauge groupU(2) embedded as a
subgroup inSU(3). The magnetic charge lattice in this case corresponds to theroot lattice
of SU(3) as depicted in figure 1.1. The GNO dual group ofU(2) is again isomorphic to
U(2), in other words the magnetic charge lattice can be identifiedwith the weight lattice
of U(2). This group is by definition equal to(U(1) × SU(2))/Z2. TheSU(2) weights
can be identified with the components of the charges along theaxis defined by one of the
simple roots ofSU(3), sayα1. TheU(1)-charges then correspond to the components of
the charge along the axis perpendicular toα1.
As a next step one would want to use the magnetic charge lattice to characterise the mag-
neticU(2) multiplets as in accordance with the GNO conjecture. The origin of the charge
lattice, i.e. the vacuum, can consistently be identified with the trivial representation of
U(2). Naively one would simply associate the doublet representation with unitU(1) with
the pair of weightsg1 = α1 + α2 andg2 = α2. This relation, however, raises some
questions about the action of the dual group which become even more pressing as soon

2
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α2

Figure 1.1: The magnetic charge lattice forG = U(2) corresponds to the root lattice ofSU(3)

but also to the weight lattice ofU(2), henceG∗ equalsU(2) in this case. One of the simple roots
of SU(3), sayα1 is identified with the root ofSU(2) ⊂ U(2).

as one takes fusion of monopoles into account. There is an action that mapsg1 to g2 and
vice versa, suggesting that we are indeed dealing with a doublet. This action corresponds
precisely to the action of the Weyl groupZ2 of U(2) generated by the refection in the
line perpendicular toα1. If we now consider the product of two monopoles in the doublet
representation of the dual group then we expect from the GNO conjecture that one would
obtain a singlet and a triplet. On the other hand in the classical theory the charge of a
combined monopole equals the sum of charges of the constituents, and in this particular
case thus equals2g1, g1 + g2 or 2g2. The charges2g1 and2g2 are again related by the
action of the Weyl group, but this Weyl action does not relatethese two charges tog1+g2.
Moreover it is not clear if a combined classical monopole solution with chargeg1 + g2,
i.e. with anSU(2) weight equal to zero, corresponds to a triplet or a singlet state.
One possible argument to resolve this issue comes from the fact that the action of the Weyl
group is nothing but a large gauge transformation which suggests that charges on a single
Weyl orbit should not distinguished as different weights ofa dual representations. In-
stead such magnetic charges should be identified in the sensethat they constitute a single
gauge invariant charge sector. Pushing this argument a bit further one may conclude that
a monopole should be labelled by an integral dominant weight, i.e. by the highest weight
of an irreducible representations of the GNO dual group. Thedrawback of this interpre-
tation is that it does neither manifestly show the dimensionof the dual representations in
the magnetic charge lattice nor does it directly explain thedegeneracies implied by the
fusion rules ofG∗. From this example we conclude that solving this labelling problem
for monopoles is closely related to proving the GNO conjecture. It is also important to
note that the heuristic arguments above do not disprove the GNO conjecture since, as we
have learned from Montonen and Olive, one does only expect the dual symmetry to be
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Chapter 1. Introduction

manifest at strong coupling. From that perspective it is notvery surprising that the dual
symmetry is to a certain extent hidden in the classical regime. Nonetheless it should be
clear that that the charge labels of monopoles are related toweights or dominant integral
weights of the GNO dual group.
For dyons with non-vanishing electric and magnetic chargesthe situation is worse since,
as we shall explain below, it is not known what the relevant algebraic object is that will
give rise to a proper labelling.

Before we continue one should wonder whether Yang-Mills theories can have non-abelian
phases at strong coupling. Both the classicalN =4 andN = 2 pure SYM theories have
a continuous space of ground states corresponding to the vacuum expectation value of
the adjoint Higgs field. A non-abelian phase corresponds to the Higgs VEV having de-
generate eigenvalues. In theN = 4 theory the supersymmetry is sufficient to protect
the classical vacuum structure even non-perturbatively [15]. So the non-abelian phases
manifestly realised in the classical regime must survive atstrong coupling as well. In the
N = 2 theory the vacuum structure is changed in quite a subtle way by non-perturbative
effects. In those subspaces of the quantum moduli space where a non-abelian phase might
be expected there are no massless W-bosons. Instead the perturbative degrees of freedom
correspond to photons and massless monopoles carrying abelian charges. In the best case
there are some indications that a non-abelian phase may exist at strong coupling in certain
N = 2 theories with a sufficient number of hyper multiplets [16, 17].

Although a kinematic description of monopoles and dyons in non-abelian phases is prob-
ably not very relevant forN = 2 SYM it may be important in understanding strongly
coupled non-abelian phases ofN = 4 SYM or non-abelian phases of other theories. We
shall therefore discuss these issues in a general context. In a very specific theory, however,
progress has already been made.
Quite recently Witten and Kapustin have found extraordinary new evidence to support
the non-abelian Montonen-Olive conjecture. This evidencewas constructed in an effort
to show that the mathematical concept of the geometric Langlands correspondence arises
naturally from electric-magnetic duality in physics [18].
The starting point for Kapustin and Witten is a twisted version ofN = 4 gauge theory.
They identify ’t Hooft operators, which create the flux of Dirac monopoles, with Hecke
operators. The labels of these operators are given by the generalised Dirac quantisation
rule and can up to a Weyl transformation be identified with dominant integral weights
of the dual gauge group. Since a dominant integral weight is the highest weight of a
unique irreducible representation, magnetic charges thuscorrespond to irreducible repre-
sentations of the dual gauge group. The moduli spaces of the singular BPS monopoles
are identified with the spaces of Hecke modifications. The operation of bringing two
separated monopoles together defines a non-trivial productof the corresponding moduli
spaces. The resulting space can be stratified according to its singularities. Each singular

4



subspace is again the compactified moduli space of a monopolerelated to an irreducible
representation in the tensor product. The multiplicity of the BPS saturated states for each
magnetic weight is found by analysing the ground states of the quantum mechanics on
the moduli space. The number of ground states given by the De Rham cohomology of
the moduli space agrees with the dimension of the irreducible representation labelled by
the magnetic weight. Moreover Kapustin and Witten exploited existing mathematical re-
sults on the singular cohomology of the moduli spaces to showthat the products of ’t
Hooft operators mimic the fusion rules of the dual group. Theoperator product expansion
(OPE) algebra of the ’t Hooft operators thereby reveals the dual representations in which
the monopoles transform.

There is an enormous amount of evidence to support the Montonen-Olive conjecture for
the ordinaryN =4 SYM theory, see for example [19, 20, 21]. These results whichmainly
concern the invariance of the spectrum do not leave much roomto doubt that the strongly
coupled theory can be described in terms of monopoles. However, they do not say much
about the fusion rules of these monopoles. If the original GNO conjecture does indeed ap-
ply for N =4 SYM theory with residual non-abelian gauge symmetry, smooth monopoles
should have properties similar to those of the singular BPS monopoles in the Kapustin-
Witten setting. By the same token we claim that one can exploit these properties to find
new evidence for the GNO duality in spontaneously broken theories. In chapter 3 we aim
to set a first step in this direction by generalising the classical fusion rules found by Erick
Weinberg for abelian BPS monopoles [22] to the non-abelian case. Our results indicate
that smooth BPS monopoles are naturally labelled by integral dominant weights of the
residual dual gauge group.

A stronger version of the GNO conjecture is that a gauge theory has a hidden electric-
magnetic symmetry of the typeG×G∗. The problem with this proposal is that the dyonic
sectors do not respect this symmetry in phases where one has aresidual non-abelian gauge
symmetry. In such phases it may be that in a given magnetic sector there is an obstruction
to implement the full electric group. In a monopole background the global electric sym-
metry is restricted to the centraliser inG of the magnetic charge [23, 24, 25, 26, 27, 28].
Dyonic charge sectors are thus not labelled by aG × G∗ representation but instead (up
to gauge transformations) by a magnetic charge and an electric centraliser representation.
For example in the case ofG = U(2), the centraliser for the magnetic chargeα2, see
figure 1.1, equals the abelian subgroupU(1) × U(1). Hence, a dyon with this magnetic
charge has an electric label corresponding to a representation of this abelian centraliser.
For a dyon with magnetic charge equal toα1 + 2α2 the electric charge corresponds to a
representation of the non-abelian centraliser groupU(2). This interplay of electric and
magnetic degrees of freedom lacks in theG × G∗ structure. Therefore one would like to
find a novel algebraic structure reflecting this complicatedpattern of the different electric-
magnetic sectors in such a non-abelian phase. We see that onedoes not need this algebraic
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Chapter 1. Introduction

structure just to find a labelling for dyons but actually, first, to proof the consistency of the
labelling already proposed, and second, to retrieve the fusion rules of non-abelian dyons
which are not known up to today. In terms of centraliser representations one seems to run
into trouble as soon as one considers fusion of dyons. On the electric side it is not clear
how to define a tensor product involving the representationsof distinct centraliser groups
such as for exampleU(1) × U(1) andU(2), even though the fusion rules for each of the
centraliser groups are known. The algebraic structure we seek would thus have to gener-
ate the complete set of fusion rules for all the different sectors and in particular it would
have to combine the different centraliser groups that may occur in such phases within one
framework. It also has to be consistent with the fact that in the pure electric sector charges
are labelled by the the full electric gauge groupG, while in the purely magnetic sector, at
least for the twistedN = 4 theory considered by Kapustin and Witten in [18], monopoles
form representations of the magnetic gauge groupG∗.

In chapter 4 we propose a formulation of a gauge theory, basedon the so-called skele-
ton groupS. This is in general a non-abelian group that allows to manifestly include
non-abelian electric and magnetic degrees of freedom. The skeleton group therefore im-
plements (at least part of) the hidden electric-magnetic symmetry explicitly and the rep-
resentation theory ofS provides us with a consistent set of fusion rules for the dyonic
sectors for an arbitrary gauge group. Nonetheless it does not quite fulfill our original
objective. The skeleton group has roughly the product structure S = W ⋉ (T × T ∗)

whereT andT ∗ are the maximal tori ofG andG∗ andW the Weyl group. ThereforeS
contains neither the full electric gauge groupG nor the magnetic groupG∗, and this of
course implies that its representation theory will not contain the representation theories
of eitherG or G∗. We show, however, that in for example the purely electric sector the
representation theory of the skeleton group is consistent with the representation theory of
G.

The appearance of the skeleton group can be understood from gauge fixing and in that
sense our approach matches an interesting proposal of ’t Hooft [29]. In order to get a
handle on non-perturbative effects in gauge theories, likechiral symmetry breaking and
confinement, ’t Hooft introduced the notion of non-propagating gauges. An important
example of such a non-propagating gauge is the so-called abelian gauge. In this gauge
a non-abelian theory can be interpreted as an abelian gauge theory with monopoles in it.
This has led to a host of interesting approximation schemes to tackle the aforementioned
non-perturbative phenomena which remain elusive from a first principle point of view up
to today.
We present a generalisation of ’t Hooft’s proposal from an abelian to a minimally non-
abelian scheme. That is where the skeleton group comes in. The attractive feature is that
our generalisation does not affect the continuous part of the residual gauge symmetry af-
ter fixing, it is still abelian, but it adds (non-abelian) discrete components. That implies
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that the non-abelian features of the effective theory manifest themselves through topolog-
ical interactions only and that makes them manageable. The effective theories we end
up with are actually (non-abelian) generalisations of Alice electrodynamics [30, 31, 32].
In this sense the effective description of the non-abelian theory with gauge groupG in
the skeleton gauge is an intricate merger of an abelian gaugetheory and a (non-abelian)
discrete gauge theory [33, 34]. Moreover, the skeleton gauge incorporates configurations
which are not accesible in the abelian gauge. Hence, compared to the abelian gauge, the
skeleton gauge and thereby the skeleton group may yield a much wider scope on certian
non-perturbative features of the original gauge theory.

The motivation for exploring non-propagating gauges is to obtain a formulation of the
theory as much as possible in terms of the physically relevant degrees of freedom. In that
sense ’t Hooft’s approach looks like studying the Higgs phase in a unitary gauge, but it
goes beyond that because one does not start out from a given phase determined by a suit-
able (gauge invariant) order parameter. Instead the effective theory in the abelian gauge
is obtained after integrating out the non-abelian gauge field components. Nonetheless the
resulting theory is particularly suitable to describe the Coulomb phase where the residual
gauge symmetry is indeed abelian. Similarly, the skeleton group is related to a generalised
Alice phase.
Once this gauge-phase relation is understood our skeleton formulation not only allows us
to obtain the precise fusion rules for the mixed and neutral sectors of the theory, but as
a bonus allows us to analyse the phase structure of gauge theories. Yang-Mills theories
give rise to confining phases, Coulomb phases, Higgs phases,discrete topological phases,
Alice phases etc. These phases not only differ in their particle spectra but also in their
topological structure. It is therefore crucial to have a formulation that highlights the rele-
vant degrees of freedom which allow one to understand what the physics of such phases
is.
Starting from the skeleton gauge we are in a position to answer kinematic questions con-
cerning different phases and possible transitions betweenthem. For this purpose it is
of utmost importance to work in a scheme that allows one to compute the fusion rules
involving electric, magnetic and dyonic sectors. This is deduced from some common
wisdom concerning the abelian case where the fusion rules are very simple: if there is a
condensate corresponding to a particle with a certian electric or magnetic charge then any
particle with a multiple of this charge will also be condensed. If two electric-magnetic
charges confine then the sum of these charges will also confine. Given the fusion rules
predicted by the skeleton group we can in priciple analyse all phases that emerge from
generalised Alice phases by condensation or confinement.
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CHAPTER 2

CLASSICAL MONOPOLE

SOLUTIONS

This preliminary chapter serves multiple purposes. First,we want to explain what mono-
poles are and review some of their properties. Most of these are well known, a few are
not. Second, we want to introduce some conventions, concepts and quantities that will be
used in the remainder of this thesis. Finally, we want to explain how one can create some
order in the monopole jungle by introducing several types ofmonopoles.

Very roughly speaking a monopole is a solution to equations of motion of a gauge theory
with a non-vanishing magnetic charge. The nature of such a charge depends of course on
exactly what Yang-Mills theory is considered and specifically what the gauge group is.
Nonetheless, in general the magnetic charges constitute a discrete set which in turn and
can be used to distinguish different monopoles within a given theory. These sets will be
discussed in section 2.3. A cruder way to classify monopolesis to distinguish singular
monopoles from smooth monopoles and non-BPS monopoles fromBPS monopoles. In
the first two sections of this chapter we shall review these properties and some related
concepts.

2.1 SINGULAR MONOPOLES

Singular monopoles can appear in any gauge theory but the most basic example is a pure
Yang-Mills theory. This can be either the abelian theory with gauge group that arises from
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Chapter 2. Classical monopole solutions

the homogeneous Maxwell equations or a generalisation where the gauge groupU(1) is
replaced by a larger and possibly non-abelian gauge group which we shall denote byH .
The Lagrangian of such a Yang-Mills theory is completely defined in terms of the field
strength tensorFµν :

L = −1

4
Tr(FµνFµν) (2.1)

The field strength tensor can be further expanded asFµν = F a
µνta, whereta are the

generators of the Lie algebra ofH . In terms of the gauge fieldAµ = Aa
µta we have

F a
µν = ∂µAν − ∂µAν − ie[Aµ, Aν ]. (2.2)

Using differential forms one can writeA = Aµdxµ andF = 1
2Fµνdxµ ∧ dxν so that by

definitionF = dA − ieA ∧ A.
The equations of motion derived from the Lagrangian in (2.1)are given by:

D ∗ F = 0

DF = 0.
(2.3)

The first of these two equations is the true equation of motion, the second is the Bianchi
identity, see e.g. section 10.3 of [35]. The electric and andmagnetic fields can be ex-
pressed in terms of the field strength tensor as

Ei = F 0i = −F i,0 = Fi,0 (2.4)

Bi =
1

2
ǫijkFij ⇐⇒ F ij = ǫijkBk. (2.5)

If the electric field vanishes we thus have

F = ∗B. (2.6)

where∗ corresponds to the Hodge star of the 3-dimensional Euclidean spaceR3.

A Dirac monopole [36] is a configuration of the electric-magnetic field with everywhere
vanishing electric field and a static magnetic field of the form

B =
G0

4πr2
dr. (2.7)

Note that for an abelian theoryB is gauge invariant. If the gauge group is truly non-
abelian the magnetic field transforms as

B 7→ G−1BG (2.8)

under a gauge transformation

A 7→ G−1

(
A +

i

e
d

)
G. (2.9)

10



2.1. Singular monopoles

Hence in a non-abelian theory the magnetic field of a Dirac monopole is defined by (2.7)
up to gauge transformations.

From equation (2.7) we find for the field strength

F = ∗
(

G0

4πr2
dr

)
=

G0

4π
sin θdθ ∧ dφ. (2.10)

We shall check that this satisfies the equations motion (2.3)except at the origin where the
Bianchi identity is violated. Note that since the field strength transforms in the adjoint
representation of the gauge group, its covariant derivatives contain a commutator term
with the gauge field. However, there is a gauge in which (2.7) is satisfied and in which the
gauge field commutes with the field strength so that effectively the equations of motion
reduce to the abelian case where the covariant derivatives of the field strength become
ordinary derivatives. If the electric field vanishes such that F = ∗B the equations of
motion simplify to:

dB = 0 ⇐⇒ ǫijk∂jBk = 0

d ∗ B = 0 ⇐⇒ ∂iBi = 0.
(2.11)

While the curl of the magnetic field given in (2.7) obviously vanishes everywhere the
divergence vanishes only away from the origin. As a matter fact fact one finds

∂iBi = G0δ
(3)(r). (2.12)

From Gauss’ theorem we now see that the magnetic charge of themonopole equalsG0.
Finally, making a comparison with (2.11) one finds that a monopole with non-vanishing
chargeG0 violates the Bianchi identity at the origin. In that sense the Dirac monopole is
singular at the origin.

Another way to view the singularity of the Dirac monopole is to consider the gauge field
itself. One possible solution for the gauge field that gives rise to equation 2.7 is given by

A+ =
G0

4π
(1 − cos θ)dϕ. (2.13)

On the negativez-axis (including the origin) wheredϕ divergesA+ is singular. This
Dirac string, however, is merely a gauge artifact as can be seen by adopting the Wu-Yang
formalism [37]. One can introduce a second gauge potential

A− = −G0

4π
(1 + cos θ)dϕ (2.14)

which also gives rise to 2.7 and which is well defined everywhere onR3 except for the
positivez-axis and the origin. One could also construct other gauges where the Dirac

11



Chapter 2. Classical monopole solutions

string does not coincide with the positive or negativez-axis. Nonetheless in every gauge
there is a singularity at the originO for non-vanishing values ofG0. The two gauge po-
tentialsA+ andA− thus give a complete description.
In the region where they are both well-definedA+ andA− are related by a gauge trans-
formation:

A− = G−1(ϕ)

(
A+ +

i

e
d

)
G(ϕ). (2.15)

One can check

G(ϕ) = exp

(
ie

2π
G0ϕ

)
. (2.16)

We thus see that a singular monopole inR3 with non-vanishing magnetic charge defines a
non-trivialH-bundle onR3 {O} and hence a non-trivial bundle on each sphere centred at
the origin. We shall discuss this further in section 2.3. Nonetheless we already note that
the non-triviality of theH-bundle is closely related to the violation of the Bianchi identity
at the origin. In the bundle description one quite literallyexcises the origin fromR3. One
might therefore be tempted to say that such monopoles cannotexist. On the other hand
one can simply accept that the magnetic field has certain prescribed singularities.
Still, in some sense singular monopoles seem avoidable if one restricts the fields to be
smooth everywhere. This restriction does not rule out the possibility of having classical
monopole solutions. It is also possible to have soliton likemonopoles, see e.g. [6, 7].
Such monopoles satisfy the equations of motion, including the Bianchi identity, every-
where onR3. SinceR3 is contractible a smooth monopole is related to a trivial bundle.
Nonetheless these smooth monopoles behave asymptoticallyas Dirac mopoles. In section
2.3 we shall explain this relation between singular and smooth monopoles in further detail.

2.2 BPS MONOPOLES

A very special subtype of monopoles are BPS monopoles which by definition satisfy the
BPS equation discussed below. Examples of smooth solutionsof the BPS equation for
SU(2) are the ’t Hooft-Polyakov monopoles [6, 7]. Precisely thesemonopoles have been
conjectured by Montonen and Olive to correspond to the heavygauge bosons of the S-
dual gauge theory [5]. Though we shall mainly focus on smoothmonopoles in this thesis
it should be noted that for singular monopoles only BPS monopoles have been shown to
transform as representations of the dual gauge group by Kapustin and Witten [18]. This
motivates why also for smooth monopoles one should work in the BPS limit to obtain
some insight in for example the fusion rules monopoles.

Instead of giving a detailed description of BPS solutions weshall merely try to give an

12



2.2. BPS monopoles

idea of the general context by introducing the BPS limit and by sketching the derivation
of the BPS equations and the BPS mass formula [3, 4]. In section 2.3 we shall come back
to the asymptotic behaviour of smooth BPS monopoles.

In general smooth monopoles exist in certain Yang-Mills-Higgs theories. Special cases
are Grand Unified theories or Yang-Mills-Higgs theories embedded in a larger theory with
extra fermionic fields such as for example a super Yang-Millstheory. The Lagrangian for
the Yang-Mills-Higgs theory can be written as:

L = −1

4
Tr(FµνFµν) +

1

2
Tr(DµΦDµΦ) − V (Φ). (2.17)

Unless stated otherwise we shall takeV to be the Mexican hat potential given by

V (Φ) = λ/4
(
|Φ|2 − |Φ0|2

)2
. (2.18)

The energy functional for the Yang-Mills-Higgs theory for this theory is given by:

E[Φ, A] =

∫
1

2
|D0Φ|2 +

1

2
|DkΦ|2 +

1

2
|Bk|2 +

1

2
|Ek|2 + V (Φ) d3x. (2.19)

To retrieve the Bogomolny equations one should restrict theHiggs fieldΦ to transform in
the adjoint representations. One can now rewrite the total energy as [3, 38]:

E[Φ, A] = |Φ0| (Qe sin α + Qm cosα) +
∫

1

2
|D0Φ|2 +

1

2
|Bk − cosαDkΦ|2 +

1

2
|Ek − sin αDkΦ|2 + V (Φ) d3x. (2.20)

whereqe andqm are the so-called total abelian electric and magnetic charge defined by

Qe =
1

|Φ0|

∫

S2
∞

dSiTr(EiΦ) (2.21)

Qm =
1

|Φ0|

∫

S2
∞

dSiTr(BiΦ). (2.22)

If we now take the BPS-limit by lettingλ → 0 while keepingΦ0 fixed and set

sin α =
Qe

(Q2
e + Q2

m)1/2
and cosα =

Qm

(Q2
e + Q2

m)1/2
, (2.23)

we find from (2.20) the following inequality for the energy:

E ≥ |Φ0| (Qe sin α + Qm cosα) = |Φ0|
(
Q2

e + Q2
m

)1/2
= |Φ0||Qe + iQm|. (2.24)

This lower bound for the energy is known as the Bogolmolny bound and is satisfied when
the fields satisfy the following field equations:

Bi = cosαDiΦ

13



Chapter 2. Classical monopole solutions

Ei = sin αDiΦ (2.25)

D0Φ = 0.

The BPS bound is very natural in supersymmetric Yang-Mills theories in the sense that it
is satisfied if the gauge group is broken but the supersymmetry remains unbroken.

In the special case that the electric charge vanishes, i.e.Qe = 0, and all fields are static
these three equations reduce to the Bogomolny or BPS equation:

Bi = DiΦ. (2.26)

A solution to this BPS equation is called aBPS monopole. In general a solution of the
equations of motion satisfying the Bogomolny bound is called a BPSdyon. As for ordi-
nary particles the energy of a BPS monopole or dyon is boundedfrom below by its rest
mass. Therefore the right hand side of equation (2.24) is called the BPS mass formula. To
obtain a more profound understanding of the BPS limit it is very convenient to re-express
the BPS formula as

M =

∣∣∣∣Φ0 ·
(

eλ +
4πi

e
g

)∣∣∣∣ . (2.27)

The quantaties(λ)i=1···r and(g)i=1···r are the electric charge and the magnetic charge. To
determine the allowed values of the electric chargeλ is somewhat delicate, see [39] and
references therein. There exist classical solutions for every value of the electric charge
but in the semi-classical theory the electric charge must bequantised. Without going into
details we note that in a gauge theory with gauge groupG it is heuristically clear thatλ
takes value in the weight lattice ofG and that this is at least consistent with the fact that
the BPS mass formula reproduces the mass of the massive gaugebosons with chargeα
equal to a root ofG, see e.g. [40]:

Mα = e|Φ0 · α|. (2.28)

The magnetic charge is also quantised, we shall discuss thisin much more detail in sec-
tion 2.3.

An interesting adaptation of the theory is obtained by turning on theθ parameter. This
means that one adds to the Lagrangian the term:

− θe2

32π2

∫
Tr(F ∗ F ). (2.29)

By introducing the complex coupling parameterτ as

τ =
θ

2π
+

4πi

e2
(2.30)
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2.3. Magnetic charge lattices

the total Lagrangian can now be conveniently rewritten in a commonly used form as:

L = − e2

32π
Im [τTr(Fµν + i ∗ Fµν)(Fµν + i ∗ Fµν)]+

1

2
Tr(DµΦDµΦ)−V (Φ). (2.31)

The additional term does not change the equations of motion since (2.29) can be written
as a total derivative, see e.g. section 23.5 of [41]. Even though the classical physics is
unchanged by turning on theθ-parameter, the quantum theory is affected in a subtle way
via instanton effects. As shown by Witten [39] these instanton effects give rise to non-
integral abelian electric charges in the sense that

|Φ0|Qe = eΦ0 · λ +
θe2

8π2
|Φ0|Qm, (2.32)

with λ taking value on the weight lattice ofG. This shift in the abelian electric charge is
called the Witten effect. For an arbitrary value ofθ the BPS mass formula is given by

M = ||Φ0|Qe + i|Φ0|Qm| =

√
4π

τ
|Φ0 · (λ + τg)|. (2.33)

In section 4.5 we shall review the invariance under S-duality transformations of this BPS
mass formula for dyons in a gauge theory with arbitrary gaugegroup.

2.3 MAGNETIC CHARGE LATTICES

In this section we describe and identify the magnetic charges for several classes of mono-
poles. We shall start with a review for Dirac monopoles, thencontinue with smooth
monopoles in spontaneously broken theories. Specifically for adjoint symmetry breaking
we shall explain how the magnetic charge lattice can be understood in terms of the Lang-
lands or GNO dual group of either the full gauge group or the residual gauge group. This
will finally culminate in a thorough description of the set ofmagnetic charges for smooth
BPS monopoles.

Dirac monopoles can be described as solutions of the Yang-Mills equations with the prop-
erty that they are time independent and rotationally invariant. More importantly they are
singular at a point as discussed in section 2.1. As a direct generalisation of the Wu-Yang
description ofU(1) monopoles [37], singular monopoles in Yang-Mills theory with gauge
groupH correspond to a connection on anH-bundle on a sphere surrounding the singu-
larity. TheH-bundle may be topologically non-trivial, but in addition the monopole con-
nection equips the bundle with a holomorphic structure. Theclassification of monopoles
in terms of their magnetic charge then becomes equivalent toGrothendieck’s classification
of H-bundles onCP

1. As a result, the magnetic charge has topological and holomorphic
components, both of which play an important role in this thesis.
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Chapter 2. Classical monopole solutions

A different class of monopoles is found from smooth static solutions of a Yang-Mills-
Higgs theory onR3 where the gauge groupG is broken to a subgroupH . SinceR3 is
contractible theG-bundle is necessarily trivial. Choosing the boundary conditions so that
the total energy is finite while the total magnetic charge is nonzero one finds that smooth
monopoles behave asymptotically as Dirac monopoles. Sincethe long range gauge fields
correspond to the residual gauge group this gives a non-trivial H-bundle at spatial infin-
ity. The charges of smooth monopoles in a theory withG spontaneously broken toH are
thus a subset in the magnetic charge lattice of singular monopoles in a theory with gauge
groupH .
Finally one can restrict solutions to the BPS sector where the energy is minimal. Smooth
BPS monopoles are solutions of the BPS equations and therefore automatically solutions
of the full equations of motion of the Yang-Mills-Higgs theory. Thus the charges of BPS
monopoles are in principle a subset of the charges of smooth monopoles. This subset is
determined by the so-called Murray condition which we shallintroduce below. We shall
also define the fundamental Murray cone which is related to the set of magnetic charge
sectors.

2.3.1 QUANTISATION CONDITION FOR SINGULAR MONOPOLES

The magnetic charge of a singular monopole is restricted by the generalised Dirac quan-
tisation condition [1, 2]. This consistency condition can be derived from the bundle de-
scription [37]. One can work in a gauge where the magnetic field has the form

B =
G0

4πr2
dr, (2.34)

with G0 an element in the Lie algebra of the gauge groupH . This magnetic field corre-
sponds to a gauge potential given by:

A± = ±G0

4π
(1 ∓ cos θ) dϕ. (2.35)

The indices of the gauge potential refer to the two hemispheres. On the equator where the
two patches overlap the gauge potentials are related by a gauge transformation:

A− = G−1(ϕ)

(
A+ +

i

e
d

)
G(ϕ). (2.36)

One can check

G(ϕ) = exp

(
ie

2π
G0ϕ

)
. (2.37)

One obtains similar transition functions for associated vector bundles by substituting ap-
propriate matrices representingG0. All such transition functions must be single valued.
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2.3. Magnetic charge lattices

In the Dirac picture this means that under parallel transport around the equator electri-
cally charged fields should not detect the Dirac string. Consequently we find for each
representation the condition:

G(2π) = exp (ieG0) = I, (2.38)

whereI is the unit matrix. To cast this condition in slightly more familiar form we note
that there is a gauge transformation that maps the magnetic field and hence alsoG0 to a
Cartan subalgebra (CSA) ofH . Thus without loss of generality we can takeG0 to be a
linear combination of the generators(Ha) of the CSA in the Cartan-Weyl basis:

G0 =
4π

e

∑

a

ga · Ha ≡ 4π

e
g · H. (2.39)

The generalised Dirac quantisation condition can now be formulated as follows:

2λ · g ∈ Z, (2.40)

for all chargesλ in the weight latticeΛ(H) of H .

We thus see that the magnetic weight latticeΛ∗(H) defined by the Dirac quantisation
condition is dual to the electric weight latticeΛ(H). Consider for example the case where
H is semi-simple as well as simply connected so that the weightlatticeΛ(H) is gener-
ated by the fundamental weights{λi}. ThenΛ∗(H) is generated by the simple coroots
{α∗

i = αi/α2
i } which satisfy:

2α∗
i · λj =

2αi · λj

α2
i

= δij . (2.41)

As observed by Englert and Windey and Goddard, Nuyts and Olive the magnetic weight
lattice can be identified with the weight lattice of the GNO dual groupH∗. For example
if we takeH = SU(n) and define the roots ofSU(n) such thatα2 = 1, we see that
Λ∗(SU(n)) corresponds to the root lattice ofSU(n). The root lattice ofSU(n) on the
other hand is precisely the weight lattice ofSU(n)/Zn. In the general simple caseΛ∗(H)

resulting from the Dirac quantisation condition is the weight latticeΛ(H∗) of the GNO
dual groupH∗ whose weight lattice is the dual weight lattice ofH and whose roots are
identified with the coroots ofH [1, 2]. In addition the center and the fundamental group
of H∗ are isomorphic to respectively the fundamental group and the center ofH . Note
that for all practical purposes the root system ofH∗ can be identified with the root system
of H where the long and short roots are interchanged.

We shall not repeat the proof of the duality of the center and the fundamental group,
but we will sketch the proof of the fact that the root lattice of H∗ is always contained in
the magnetic weight lattice. Finally we sketch the generalisation to any connected com-
pact Lie group.
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Chapter 2. Classical monopole solutions

If H is not simply-connected we haveH = H̃/Z whereH̃ is the universal cover ofH and
Z ⊂ Z(H̃) a subgroup in the center of̃H . SinceΛ(H) ⊂ Λ(H̃) with Z = Λ(H̃)/Λ(H)

the Dirac quantisation condition (2.40) applied onH is less restrictive than the condition
for H̃ . Moreover one can check [2]:

Λ∗(H)/Λ∗(H̃) = Λ(H̃)/Λ(H). (2.42)

This implies that the coroot latticeΛ∗(H̃) of H is always contained in the magnetic
weight latticeΛ∗(H) of H and in particular that any corootα∗ = α/α2 with α a rootH ,
is contained inΛ∗(H).
Without much effort this property can be shown to hold for anycompact, connected Lie
group. Any such groupH say of rankr can be expressed as:

H =
U(1)s × K

Z
, (2.43)

whereK is a semi-simple and simply connected Lie group of rankr − s. The CSA ofH
is spanned by{Ha : a = 1, . . . , r} whereHa with a ≤ s are the generators of theU(1)

subgroups and{Hb : s < b ≤ r} span the CSA ofK. Any weight ofH can be expressed
asλ = (λ1, λ2) whereλ1 is a weight ofU(1)s andλ2 is a weight ofK. Finally one finds
that a magnetic chargeG0 defined by

G0 =
4π

e
α∗

j · H, (2.44)

whereαj is any of ther − s simple roots ofH , satisfies the quantisation condition.

H H∗

SU(nm)/Zm SU(nm)/Zn

Sp(2n) SO(2n + 1)

Spin(2n + 1) Sp(2n)/Z2

Spin(2n) SO(2n)/Z2

SO(2n) SO(2n)

G2 G2

F4 F4

E6 E6/Z3

E7 E7/Z2

E8 E8

Table 2.1: Langlands or GNO dual pairs for simple Lie groups.

In this section we have identified the magnetic charge lattice of singular monopoles with

18



2.3. Magnetic charge lattices

H H∗

(U(1) × SU(n))/Zn (U(1) × SU(n))/Zn

U(1) × Sp(2n) U(1) × SO(2n + 1)

(U(1) × Spin(2n + 1))/Z2 (U(1) × Sp(2n))/Z2

(U(1) × Spin(2n))Z2 (U(1) × SO(2n))/Z2

Table 2.2: Examples of Langlands or GNO dual pairs for some compact Lie groups.

the weight lattice of the dual groupH∗ of the gauge groupH . In table 2.1 and 2.2 some
examples are given of GNO dual pairs of Lie groups. Table 2.1 is complete up to some
dual pairs related toSpin(4n) that are obtained by modding out non-diagonalZ2 sub-
groups of the centerZ2 × Z2. The GNO dual groups for these cases can be found in [2].
In section 2.3.3 we shall briefly explain how the dual pairingin table 2.2 is determined.

The magnetic charge lattice contains an important subset which we shall need later on:
even if one restrictsG0 to the CSA there is some gauge freedom left which corresponds
to the action of the Weyl group. Modding out this Weyl action gives a set of equivalence
classes of magnetic charges which are naturally labelled bydominant integral weights in
the weight lattice ofH∗.

2.3.2 QUANTISATION CONDITION FOR SMOOTH MONOPOLES

Yang-Mills-Higgs theories have solutions that behave at spatial infinity as singular Dirac
monopoles but which are nonetheless completely smooth at the origin. This is possible
if one starts out with a compact, connected, semi-simple gauge groupG which is sponta-
neously broken to a subgroupH . Since all the fields are smooth, the gauge field defines
a connection of a principalG-bundle over space which we take to beR3. The Higgs
field is a section of a the adjoint bundle. AsR3 is contractible the principalG-bundle is
automatically trivial, soΦ is simply a Lie-algebra valued function. We would like to im-
pose boundary conditions for the Higgs fieldΦ and the magnetic fieldB at spatial infinity
which ensure that the total energy carried by a solution of the Yang-Mills-Higgs equations
is finite. To our knowledge the question of which conditions are necessary and sufficient
has not been answered in general. Below we review some standard arguments, many of
them summarised in [42].

We assume an energy functional for static fields of the usual form

E[Φ, A] =

∫
1

2
|DkΦ|2 +

1

2
|Bk|2 + V (Φ) d3x, (2.45)
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Chapter 2. Classical monopole solutions

whereDk = ∂k−ieAk is the covariant derivative with respect to theG-connectionA, and
the magnetic field is given by−ieBk = − 1

2 ieǫklmFlm = 1
2 ǫklm[Dl, Dm]. The potential

V is aG-invariant function on the Lie algebra ofG whose minimum is attained for non-
vanishing value of|Φ|; the set of minima is called the vacuum manifold. The variational
equations for this functional are

ǫklmDlBm = ie[Φ, DkΦ], DkDkΦ =
∂V

∂Φ
. (2.46)

In order to ensure that solutions of these equations have finite energy we require the fields
Φ andBi to have the following asymptotic form for larger:

Φ = φ(r̂) +
f(r̂)

4πr
+ O

(
r−(1+δ)

)
r ≫ 1

B =
G(r̂)

4πr2
dr + O

(
r−(2+δ)

)
r ≫ 1.

(2.47)

Hereδ > 0 is some constant andφ(r̂), f(r̂), andG(r̂) are smooth functions onS2 taking
values in the Lie algebra of the gauge groupG which have to satisfy various conditions.
First of all, the functionφ has to take values in the vacuum manifold of the potentialV .
It is thus a smooth map from the two-sphere to that vacuum manifold. The homotopy
class of that map defines the monopole’s topological charge [42]. Since the vacuum man-
ifold can be identified with the coset spaceG/H the topological charge takes value in
π2(G/H). Secondly, writing∇ for the induced exterior covariant derivative tangent to
the two-sphere “at infinity” it is easy to check that

∇φ = 0, ∇f = 0 (2.48)

are necessary conditions for the integral defining the energy (2.45) to converge. The first
of these equations implies

[φ(r̂), G(r̂)] = 0. (2.49)

The quickest way to see this is to note that the curvature on the two-sphere at infinity is

F∞ = ∗
(

G(r̂)

4πr2
dr

)
=

G(r̂)

4π
sin θdθ ∧ dϕ. (2.50)

Since[∇,∇] = −ieF∞, it follows that∇φ = 0 implies [F∞, φ] = 0. Finally we also
require that

∇G = 0, (2.51)

and that
[φ(r̂), f(r̂)] = 0. (2.52)

The condition (2.51) is crucial for what follows, and seems to be satisfied for all known
finite energy solutions [42]. The condition (2.52) is required so that the first of the equa-
tions (2.46) is satisfied to lowest order when the expansion (2.47) is inserted. In general
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there will be additional requirements on the functionsφ andf that depend on the precise
form of the potentialV in (2.45). Since we do not specifyV we will not discuss these
further.

The above conditions can be much simplified by changing gauge. The equations (2.48)
and (2.51) imply that for each of the Lie-algebra valued functionsφ, f andG the values
at any two points on the two-sphere at infinity are conjugate to one another (the required
conjugating element being the parallel transport along thepath connecting the points). We
can therefore pick a point̂r0, say the north pole, and gauge transformφ into Φ0 = φ(r̂0),
f into Φ1 = f(r̂0) andG into G0 = G(r̂0). However, sinceS2 is not contractible, we
will, in general, not be able to do this smoothly everywhere on the two-sphere at infinity.
If, instead, we cover the two-sphere with two contractible patches which overlap on the
equator, then there are smooth gauge transformationsg+ andg− defined, respectively, on
the northern and southern hemisphere, so that the followingequations hold where they
are defined:

φ(r̂) = g−1
± (r̂)Φ0g±(r̂) (2.53)

f(r̂) = g−1
± (r̂)Φ1g±(r̂) (2.54)

G(r̂) = g−1
± (r̂)G0g±(r̂). (2.55)

After applying these gauge transformation, our bundle is defined in two patches, with
transition functionG = g+g−1

− defined near the equator. This transition function leaves
Φ0 invariant, and hence lies in the subgroupH of G which stabilisesΦ0. This, by defini-
tion, is the residual or unbroken gauge group referred to in the opening paragraph of this
section. It follows from (2.49), that[Φ0, G0] = 0, so thatG0 lies in the Lie algebra of
H . Similarly, (2.52) implies thatΦ1 lies in the Lie algebra ofH . After applying the local
gauge transformations (2.53), the asymptotic form of the fields is

Φ = Φ0 +
Φ1

4πr
+ O

(
r−(1+δ)

)

B =
G0

4πr2
dr + O

(
r−(2+δ)

)
.

(2.56)

Note that “the Higgs field at infinity” is now constant, takingthe valueΦ0 everywhere.
In particular, it therefore belongs to the trivial homotopyclass of maps from the two-
sphere to the vacuum manifold. The topological charges originally encoded in the map
φ can no longer be computed from the Higgs field. Instead they are now encoded in
transition functionG. Since, in the new gauge, the magnetic field at larger is that of a
Dirac monopole with gauge groupH we can relate the transition function to the magnetic
charge as before:

G(ϕ) = exp

(
ie

2π
G0ϕ

)
(2.57)
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Chapter 2. Classical monopole solutions

We thus obtain a quantisation condition for the magnetic charge of smooth monopoles,
following the same arguments as in the singular case. For each representation ofH the
gauge transformation must be single valued if one goes around the equator, so that

2λ · g ∈ Z, (2.58)

for all chargesλ in the weight lattice ofH .

One observes that the magnetic charge lattice of smooth monopoles lies in the weight
lattice of the GNO dual groupH∗. There is, however, another consistency condition [1].
Note that a single valued gauge transformation on the equator defines a closed curve in
H as well as inG, starting and ending at the unit element. Since the originalG-bundle is
trivial, this closed curve has to be contractible inG. Therefore the monopole’s topological
charge is labelled by an element inπ1(H) which maps to a trivial element inπ1(G). This
is consistent with our earlier remark that the topological charge is an element ofπ2(G/H)

because of the isomorphismπ2(G/H) ≃ ker(π1(H) → π1(G)).

To find the appropriate charge lattice we use the fact that a loop in G is trivial if and
only if its lift to the universal covering group̃G is also a loop (closed path). This implies
that for smooth monopoles the quantisation condition should not be evaluated in the group
H itself but instead in the group̃H ⊂ G̃ defined by the Higgs VEVΦ0. Consequently
equation (2.58) must not only hold for all representations of H but in fact for all repre-
sentations of̃H . Note that ifG is simply connected theñH = H . In the next section we
shall work this topological condition out in more detail.

2.3.3 QUANTISATION CONDITION FOR SMOOTH BPS MONOPOLES

In chapter 3 we will mainly focus on BPS monopoles in spontaneously broken theories.
We shall therefore work out some results of the previous section in somewhat more detail
for the BPS case. We shall also give an explicit description of the magnetic charge lattice.
In addition we introduce terminology that is conveniently used in the remainder of this
thesis.

By BPS monopoles we mean static, finite energy solutions of the BPS equations

Bi = DiΦ (2.59)

in a Yang-Mills-Higgs theory with a compact, connected, semi-simple gauge groupG.
The equations (2.59) imply the second order equations (2.46). In order to obtain finite
energy solutions we again impose the boundary conditions (2.47). As in the previous
section we can gauge transform these into the form (2.56). There are some differences
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2.3. Magnetic charge lattices

with the non-BPS case. The potentialV in (2.45) vanishes in the BPS limit, so does not
furnish any conditions on the functionsφ andf . On the other hand, by substituting (2.56)
in the BPS equation and solving order by order one finds thatf = −G, or, equivalently,
Φ1 = −G0. As before we have[Φ0, G0] = 0, so in the BPS case we automatically
have[Φ0, Φ1] = 0. From now on we shall thus define a BPS monopole to be a smooth
solution of the BPS equations satisfying the boundary condition (2.47) withΦ1 = −G0.
After applying the local gauge transformations discussed in the previous section, these
boundary conditions are equivalent to

Φ = Φ0 −
G0

4πr
+ O

(
r−(1+δ)

)

B =
G0

4πr2
r̂ + O

(
r−(2+δ)

)
,

(2.60)

whereΦ0 andG0 are commuting elements in the Lie algebra ofG. These boundary con-
ditions are sufficient to guarantee that the energy of the BPSmonopole is finite. It is in
general not known what the necessary boundary conditions are to obtain a finite energy
configuration. It is expected though [43, 44], and true forG = SU(2) [45], that the
boundary conditions above follow from the finite energy condition and the BPS equation.

Before we give an explicit description of the magnetic charge lattice let us summarise
some properties of the residual gauge group. Since[Φ0, G0] = 0 there is a gauge trans-
formation that mapsΦ0 andG0 to our chosen CSA ofG. Without loss of generality we
can thus expressΦ0 andG0 in terms of the generators(Ha) of that CSA:

Φ0 = µ · H

G0 =
4π

e
g · H.

(2.61)

The residual gauge group is generated by generatorsL in the Lie algebra ofG satisfying
[L, Φ0] = 0. Since generators in the CSA by definition commute with the Higgs VEV
the residual groupH contains at least the maximal torusU(1)r ⊂ G. For generic values
of the Higgs VEV this is the complete residual gauge symmetry. If the Higgs VEV is
perpendicular to a rootα the residual gauge group becomes non-abelian. This follows
from the action of the corresponding ladder operatorEα in the Cartan-Weyl basis on the
Higgs VEV: [Eα, Φ0] = −µ · α Eα = 0. Accordingly we shall call a root ofG brokenif
it has a non-vanishing inner product withµ and we shall define it to beunbrokenif this
inner product vanishes.
The residual gauge group is locally of the formU(1)s×K, whereK is some semi-simple
Lie group. The root system ofK is derived from the root system ofG by removing the
broken roots. Similarly, the Dynkin diagram ofK is found from the Dynkin diagram of
G by removing the nodes related to broken simple roots. For completeness we finally de-
fine a fundamental weight to be (un)broken if the corresponding simple root is (un)broken.
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Chapter 2. Classical monopole solutions

The magnetic charge lattice for smooth monopoles lies in thedual weight lattice ofH , as
we saw in the previous chapter. For adjoint symmetry breaking the weight lattice ofH is
isomorphic to the weight lattice ofG. Moreover the isomorphism respects the action of
the Weyl groupW(H) ⊂ W(G). The existence of an isomorphism betweenΛ(G) and
Λ(H) is easily understood since the weight lattices ofH andG are determined by the
irreducible representations of their maximal tori which are isomorphic for adjoint sym-
metry breaking. A natural choice for the CSA ofH is to identify it with the CSA ofG. In
this caseΛ(G) andΛ(H) are not just isomorphic but also isometric. Since the roots of H

can be identified with roots ofG and since the Weyl group is generated by the reflections
in the hyperplanes orthogonal to the roots, this isometry obviously respects the action of
W(H). Often the CSA ofH is identified with the CSA ofG only up to normalisation
factors. This leads to rescalings of the weight lattice ofH . Of course one can apply an
overall rescaling without spoiling the invariance of weight lattice under the Weyl reflec-
tions. One can also choose the generators ofU(1)s-factor such that the corresponding
charges are either integral or half-integral. Note that these rescalings again respect the
action ofW(H). To avoid confusion we shall ignore these possible rescalings in the re-
mainder of this thesis and takeΛ(H) to be isometric toΛ(G).
Since the weight latticesΛ(H) andΛ(G) are isometric their dual latticesΛ∗(H) and
Λ∗(G) are isometric too. We thus see that the Dirac quantisation condition (2.58) for
adjoint symmetry breaking can consistently be evaluated interms of eitherH or G.

Remember that for smooth monopoles there is yet another condition: since one starts
out from a trivialG bundle the magnetic charge should define a topologically trivial loop
in G as explained in the previous section. For general symmetry breaking this implies
that the Dirac quantisation condition must be evaluated with respect to weight lattice of
H̃ ⊂ G̃, whereG̃ is the universal covering group ofG. For adjoint symmetry breaking we
can consistently lift the quantisation condition toG; the weight lattice of̃H is isometric to
the weight lattice of̃G. The weight lattice of̃G is generated by the fundamental weights
{λi} and hence the magnetic charge lattice for smooth BPS monopoles is given by the
solutions of:

2λi · g ∈ Z, (2.62)

for all fundamental weightsλi of G̃. The most general solution of this equation is easily
solved in terms of the simple coroots ofG:

g =
∑

i

miα
∗
i mi ∈ Z, (2.63)

with α∗
i = αi/α2

i and{αi} the simple roots ofG.
We thus conclude that the magnetic charge lattice for smoothBPS monopoles is gener-
ated by the simple coroots ofG. The resulting coroot latticeΛ∗(G̃) corresponds precisely
to the weight latticeΛ(G̃∗) of the GNO dual group̃G∗ as mentioned in section 2.3.1.
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2.3. Magnetic charge lattices

Similarly, the dual latticeΛ∗(H̃) can be identified withΛ(H̃∗). With Λ∗(G̃) being iso-
metric toΛ∗(H̃) we now conclude that the weight lattice of̃G∗ can be identified with
the weight lattice ofH̃∗. ForG simply connected we have thus established an isometry
between the root lattice ofG∗ and the weight lattice ofH∗. We have used this isometry
to compute the GNO dual pairs given in table 2.2 which appear in the minimal adjoint
symmetry breaking of the classical Lie groups.

Above we have seen that the magnetic charge lattice for smooth BPS monopoles cor-
responds to the coroot lattice of the gauge groupG. One can split the set of coroots into
broken coroots and unbroken coroots. A coroot is defined to bebroken or unbroken if the
corresponding root is respectively broken or unbroken. Note that the unbroken coroots
are precisely the roots ofH∗. The distinction between broken and unbroken applies in
particular to simple coroots. There is, however, alternative terminology for the compo-
nents of the magnetic charges that reflects these same properties. Broken simple coroots
are identified withtopological chargeswhile unbroken simple coroots are related to so-
calledholomorphic charges.
Remember that the magnetic chargeg = miα

∗
i defines an element inker(π1(H) →

π1(G)). One might hope that every single magnetic chargeg, i.e. every point in the coroot
lattice, defines a unique topological charge. If in that casea static monopole solution does
indeed exist even its stability under smooth deformations is guaranteed. Such a picture
does hold for maximally broken theories where the residual gauge group equals the max-
imal torusU(1)r ⊂ G. If H contains a non-abelian factor the situation is slightly more
complicated because these factors are not detected by the fundamental group. ForG equal
to SU(3) for instance the magnetic charge lattice is 2-dimensional andπ1 (SU(3)) = 0.
In the maximally broken theory we haveπ1(U(1) × U(1)) = Z × Z, while for minimal
symmetry breakingπ1(U(2)) = π1(U(1)) = Z. As a rule of thumb one can say that
the components of the magnetic charges related to theU(1)-factors inH are topological
charges. It should be clear that these components correspond to the broken simple coroots.
We therefore call the coefficientsmi = 2λi · g with λi a broken fundamental weight the
topological charges ofg. The remaining components ofg are often called holomorphic
charges.

2.3.4 MURRAY CONDITION

We have found that magnetic charges of smooth monopoles in a Yang-Mills-Higgs the-
ory lie on the coroot lattice of the gauge group. In the BPS limit there is yet another
consistency condition which was first discovered by Murray for SU(n) [46]. We refer to
this condition asthe Murray conditioneven though its final formulation for general gauge
groups stems from a paper by Murray and Singer [44]. For a derivation of the Murray
condition we refer to these original papers. We shall only briefly review some properties
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Chapter 2. Classical monopole solutions

of roots which are crucial for the Murray condition. Next we shall formulate the results of
Murray and Singer in such a way that the set of magnetic charges for BPS monopoles can
easily be identified. Finally we show that our formulation isequivalent to the condition as
stated in [44]. Both formulations of the Murray condition will show up in later sections.
The set of magnetic charges satisfying the Murray conditionshall be called the Murray
cone. At the end of this section we shall also introduce the fundamental Murray cone.

The Murray condition hinges on the fact that one can split theroot system ofG into posi-
tive and negative roots with respect to the Higgs VEV. If for arootα we haveα · µ > 0 it
is by definition positive and ifα · µ < 0 it is negative. The set of roots is now partitioned
into two mutually exclusive sets, at least if the residual gauge group is abelian. In that
case we can as usual define a simple root to be a positive root that cannot be expressed as
a sum of two other positive roots and it turns out that the Higgs VEV defines a unique set
of simple roots. These form a basis of the root diagram is sucha way that every positive
root is a linear combination of simple roots with positive coefficients and similarly every
negative root is a linear combination with negative coefficients. In the non-abelian case
there exist roots such thatα · µ = 0. Hence there are several choices for a set of simple
roots which are consistent with the Higgs VEV. Again for a fixed choice such simple roots
must by definition have the property that all roots are a linear combination of simple roots
with either only positive or only negative coefficients. In addition the simple roots must
have either a strictly positive or a vanishing inner productwith the Higgs VEV:

αi · µ ≥ 0. (2.64)

This condition implies thatµ must lie in the closure of the fundamental Weyl chamber. In
the remainder of this thesis we shall always choose simple roots so that the inequality in
(2.64) is satisfied.
All choices for a set of simple roots respecting the Higgs VEVare related by the residual
Weyl groupW(H). This is seen as follows. In general all choices of simple roots in the
root system ofG are related by the Weyl groupW(G) of G. Since Weyl transforma-
tions are orthogonal we have for allw ∈ W(G) w(αi) · µ = αi · w−1(µ). Given a set
of positive roots satisfying (2.64) the action ofw ∈ W(G) gives another set of simple
roots satisfying the same condition if and only ifµ andw(µ) lie in the closure of same
Weyl chamber. This is only possible ifµ is actually invariant underw, implying that
w ∈ W(H) ⊂ W(G).

Above we have defined a positivity condition for the roots ofG that is consistent with
the Higgs VEV. This same definition is applicable for corootssince these differ from the
roots by a scaling. We now also extend this definition of positivity in a consistent way to
the complete (co)root lattice. We call an element on the (co)root lattice positive if it is
a linear combination of simple (co)roots with positive integer coefficients. Note that the
intersection of the set of positive elements in the (co)rootlattice with the set of (co)roots
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2.3. Magnetic charge lattices

is precisely the set of positive (co)roots. Finally we see that if the Higgs VEV lies in the
fundamental Weyl chamber then the inner product of any positive element in the (co)root
lattice withµ is non-negative.

Murray and Singer have found that the magnetic charge must bepositive with respect
to all possible choices of simple roots consistent with the Higgs VEV. This means that in
the expansiong =

∑
i miα

∗
i the coefficientsmi should be positive for all possible choices

of simple roots(αi) that satisfyαi · µ ≥ 0. The Murray condition can be summarised as
follows:

2w(λi) · g ≥ 0 ∀w ∈ W(H), ∀λi. (2.65)

This is seen from the fact that the fundamental weights and simple roots satisfy2λi ·α∗
j =

δij and that all allowed choices of positive simple roots and fundamental weights are re-
lated by the residual Weyl groupW(H) ⊂ W(G).

The Murray condition defines a solid cone in the CSA. In combination with the Dirac
quantisation condition this results in a discrete cone of magnetic charges. We shall call
this cone the Murray cone. As an example one can considerSU(3) broken to either
U(1) × U(1) or U(2) as depicted in figure 2.1. In the first case the Weyl group of the
residual gauge group is trivial and the Murray condition simply implies that the topo-
logical charges must be positive. In the second case the residual Weyl group isZ2, the
reflections in the line perpendicular toα1. Consequently there are two possible choices of
positive simple roots which makes the Murray condition morerestrictive. The topologi-
cal charge still has to be positive, just like the holomorphic charge, but the holomorphic
charge is bounded by the topological charge.

We shall finish this section with yet another formulation of the Murray condition originat-
ing from proposition 4.1 in the paper of Murray and Singer [44]. It relies on the fact that
the holomorphic charges can be minimised under the action ofthe residual Weyl group.
For any elementg in the coroot lattice there exists a uniquely determined reduced mag-
netic chargẽg in the Weyl orbit ofg such thatαj · g̃ ≤ 0 for all unbroken simple rootsαj .
The Murray condition can be expressed in terms of this minimised charges. A magnetic
chargeg is positive with respect to any chosen set of simple roots if and only if for a fixed
choice of simple roots its reduced magnetic charge is positive. The reduced magnetic
charge should thus satisfy:

2λi · g̃ ≥ 0 ∀λi. (2.66)

We shall shortly show that̃g does indeed exist and is unique. But already we can see that
this last condition easily follows from (2.65). Sinceg̃ = w̃(g) for somew̃ ∈ W(H) we
havew(λi) · g̃ = w(λi) · w̃(g) = w̃−1 (w(λi)) · g = w′(λi) · g ≥ 0, wherew′ = w̃−1w ∈
W(H). To show equivalence, however, we also have to show that (2.65) follows from
(2.66), which boils down to proving the following proposition:
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Chapter 2. Classical monopole solutions

Proposition 2.1 If the reduced magnetic chargẽg is positive thenw(g̃) is positive for all
w ∈ W(H).

Proof. We take the gauge groupG broken toH . The magnetic charges of BPS monopoles
lie on the coroot lattice ofG or equivalently the root lattice ofG∗. We can assumeG to
be simply-connected since this does not affect the magneticcharge lattice. Under this
assumption there is an isomorphismλ from the coroot latticeΛ∗(G) to the weight lattice
Λ(H∗) of H∗ as discussed in section 2.3.3. Up to discrete factorsH∗ is of the form
U(1)s ×K∗, whereK∗ is some semi-simple Lie group. Similarly, the set of simple roots
of G is split up intos broken roots{αi} with 0 < i ≤ s andr − s unbroken roots{αj}
with s < j ≤ r. The magnetic charges are thus expanded asg =

∑
i miα

∗
i +

∑
j hjα

∗
j .

The linear mapλ is defined by the images of the simple coroots. For the unbroken simple
coroots this is particularly simple. We haveλ(α∗

j ) = α∗
j . More generally the image is

given in terms of the abelian charges and a weight ofK∗. While the abelian charges are
identified with the topological charges{mi} the non-abelian charge can be expanded in
terms of the fundamental weightsλj of K∗. The coefficients, i.e. the Dynkin labels, are
given by the projection on the roots ofK∗: kj = 2α∗

j · g/α∗
j
2. Being sums of multiples

of the entries of the Cartan matrix ofG∗ these labels are indeed integers.

α1

α2

µ

α1

α2

µ

Figure 2.1: The Murray cone forSU(3) as a subset of the Cartan subalgebra. If the residual gauge
group equalsU(1)×U(1) (left) the Higgs VEV determines a unique set of simple roots.The static
BPS monopoles have magnetic charges equal to a positive linear combination of these roots. These
charges are in one-to-one correspondence with the positivetopological charges. If the residual
gauge group isU(2) (right) there are two choices of simple roots. Only those charges that have
a positive expansion for both these choices correspond to non-empty moduli spaces of static BPS
monopoles. There is only a single topological charge which is proportional to the inner product of
the magnetic charge with the Higgs VEVµ. As can been seen from the picture the total magnetic
charge is not uniquely determined by the topological chargealone: non-abelian monopoles may
carry non-trivial holomorphic charges.
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2.3. Magnetic charge lattices

We can now easily prove that the reduced magnetic chargeg̃ exists and is unique. Let
h := λ(g). Any weighth ∈ Λ(H∗) can be mapped to a unique weighth̃ in the anti-
fundamental Weyl chamber via a Weyl transformation. We thushaveh̃ · α ≤ 0. The
reduced magnetic chargeg̃ is fixed byλ(g̃) = h̃. Since2λ(g) ·α∗

j/α∗
j
2 = 2g ·α∗

j/α∗
j
2 we

haveα∗
j · g ≤ 0 for all unbroken roots ofG∗. The same inequality holds for the unbroken

roots ofG itself.
We now return to the proof of the proposition. First we shall use the fact thatλ respects the
residual Weyl group is the sense thatλ (w(g)) = w (λ(g)) for all w ∈ W(H). This can
be proved using the fact that any Weyl transformation is a sequence of Weyl reflections
wj in the hyperplanes perpendicular to the simple corootsα∗

j . It is thus sufficient to prove
thatλ commutes withwj for all unbroken simple roots. We have

λ (wj(g)) = λ

(
g −

2g · α∗
j

α∗
j
2 α∗

j

)
= λ(g) −

2g · α∗
j

α∗
j
2 λ(α∗

j )

= λ(g) −
2λ(g) · α∗

j

α∗
j
2 α∗

j = wj (λ(g)) .

(2.67)

Note that for the unbroken rootsλ(αj) = αj and thatλ is an isometry as discussed in
section 2.3.3 and thus leaves the inner product invariant.
Secondly for the proof of the proposition we use the fact thatfor a lowest weight̃h we
havew(h̃) = h̃ + njα

∗
j with nj ≥ 0 for anyw ∈ W(H∗), see for example chapter 10 to

13 of [47]. Forg̃ and anyw ∈ W(H∗) = W(H) we now get:

λ (w(g̃)) = w (λ(g̃)) = w(h̃)

= h̃ + njα
∗
j = λ(g̃) + njλ(α∗

j )

= λ(g̃ + njα
∗
j ).

(2.68)

Consequently in terms of the unbroken simple coroots ofG we findw(g̃) = g̃ + njα
∗
j

wherenj ≥ 0. Thus for the all fundamental weights ofG we have2λi · w(g̃) ≥ 0 if
2λi · g̃ ≥ 0. �

Note that the set of positive reduced magnetic charges is a subset of the Murray cone
and can be obtained by modding out the residual Weyl group. The set of Weyl orbits in
the Murray cone is a physically important object; it corresponds to the magnetic charge
sectors of the theory. This follows from the fact that a magnetic chargeg is defined only
modulo the action of the residual Weyl group. For this reasonwe shall introduce a set
called the fundamental Murray cone which is bijective to theset of of Weyl orbits in the
Murray cone. The set of positive reduced magnetic charges can of course be identified
with the fundamental Murray cone. However, it would be more appropriate to call this set
the anti-fundamental Murray cone. We recall that a reduced magnetic chargẽg satisfies
αj · g̃ ≤ 0 for all unbroken simple rootsαj . It follows from this condition that̃g can be
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Chapter 2. Classical monopole solutions

identified with a lowest weight ofH∗. Similarly, we can define the subset of the Murray
cone{g : αj · g̃ ≥ 0}. These magnetic charges now map to the fundamental Weyl cham-
ber of H∗, hence we call this set the fundamental Murray cone. We thus find that the
magnetic charge sectors are labelled by dominant integral weights of the residual gauge
group. A similar conclusion was drawn for singular monopoles by Kapustin [48].
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CHAPTER 3

FUSION RULES FOR SMOOTH

BPS MONOPOLES

The magnetic charges carried by smooth BPS monopoles in Yang-Mills-Higgs theory
with arbitrary gauge groupG spontaneously broken to a subgroupH are restricted by
a generalised Dirac quantization condition and by an inequality due to Murray. These
conditions have been discussed in chapter 2. Geometrically, the set of allowed charges
is a solid cone in the coroot lattice ofG, which we call the Murray cone. As argued in
section 2.3.4 magnetic charge sectors correspond to pointsin the Murray cone divided by
the Weyl group ofH .
The goal of this chapter is to determine which charge sectorscontain indecomposable
monopoles and which contain composite monopoles, and to findthe rules according to
which charge sectors are composed or ”fused”. Our success infinding a consistent set of
rules provides an a posteriori justification of the definition of charge sectors. We begin, in
section 3.1, by determining the additive structure of the Murray cone and the fundamental
Murray cone. In both cases this results in a unique set of indecomposable charges which
generate the cone. For Dirac monopoles similar sets of generating charges are introduced.
We show that the generators of the fundamental Murray cone generate a subring in the
representation ring of the residual gauge group. In the appendix A we construct an alge-
braic object whose representation ring is identical to to this special subring.
In order to support the interpretation of the indecomposable magnetic charges as build-
ing blocks of decomposable charges we review basic facts about moduli spaces of BPS
monopoles in section 3.2. By analyzing the dimensions of these spaces we show that the
decomposable charges for smooth BPS monopoles correspond to multi-monopole con-
figurations built up from basic monopoles associated to the generating chargesprovided
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Chapter 3. Fusion rules for smooth BPS monopoles

we work within the fundamental Murray cone. The additive structure of the fundamental
Murray cone thus provides candidate fusion rules for the magnetic charge sectors.
We find further support for these classical fusion rules in section 3.3 by drawing on ex-
isting results regarding the patching of monopoles, in particularly in the work of Dancer
on BPS monopoles in anSU(3) theory broken toU(2). We briefly discuss similar results
for singular BPS monopoles obtained by Kapustin and Witten [18] and speculate on the
implications for the semi-classical fusion rules.

3.1 GENERATING CHARGES

As we have seen in section 2.3 consistency conditions on the charges of magnetic monopoles
give rise to certain discrete sets of magnetic charges. In the case of singular monopoles
this set is nothing but the weight lattice of the dual groupH∗. The set of charges of
smooth monopoles in a theory with adjoint symmetry breakingcorresponds to the root
lattice of the dual groupG∗. Alternatively one can view this set as a subset in the weight
lattice of the residual dual gauge groupH∗ ⊂ G∗. In the BPS limit the minimal energy
configurations satisfy an even stronger condition which gives rise to the so-called Mur-
ray cone in the root lattice ofG∗. Both the weight lattice ofH∗ and the Murray cone
in the root lattice ofG∗ contain an important subset which is obtained by modding out
the Weyl group ofH∗. For singular monopoles one simply obtains the set of dominant
integral weights, i.e. the fundamental Weyl chamber ofH∗. In the case of smooth BPS
monopoles modding out the residual Weyl group is equivalentto restricting the charges
to the fundamental Murray cone.

In each case we want to find a set of minimal charges that generate all remaining charges
via positive integer linear combinations. As it turns out this problem is most easily solved
for the Murray cone. In the latter case the generators can be identified as the coroots with
minimal topological charges. Below we shall prove this for any compact, connected semi-
simple Lie groupG and arbitrary symmetry breaking. For the weight latticeΛ(H∗) one
can give a generic description for a small set of generators.To find a smallest set of gener-
ators one needs to know some detailed properties ofH∗. The generators the fundamental
Weyl chamber and the fundamental Murray cone are not easily identified in general either.
In all these cases we shall therefore restrict ourselves to some clear examples.

The physical interpretation of the generating charges is that the monopoles with these
minimal charges are the building blocks of all monopoles in the theory. We shall there-
fore call monopoles with minimal charges in the weight lattice ofH∗ or in the Murray
cone inG∗ fundamental monopoles. The monopoles corresponding to the generators of
the fundamental Weyl chamber and those related to the fundamental Murray cone both
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3.1. Generating charges

are calledbasic monopoles. In section 3.2 and 3.3 we study to what extent these notions
make sense in the classical theory.

3.1.1 GENERATORS OF THE MURRAY CONE

Given two allowed magnetic chargesg andg′, that is two magnetic charges satisfying
the Dirac condition (2.40) and the Murray condition (2.65),one can easily show that the
linear combinationng + n′g′ with n, n′ ∈ N again is an allowed magnetic charge. This
raises the question whether all allowed magnetic charges can be generated from a certain
minimal set of charges. This would mean that all charges can be decomposed as linear
combinations of these generating charges with positive integer coefficients. The minimal
set of generating charges is precisely the set of indecomposable charges. These inde-
composable charges cannot be expressed as a non-trivial positive linear combination of
charges in the Murray cone. It is obvious that such a set exists. It is also not difficult to
show that such a set is unique. This follows from the fact all negative magnetic charges
are excluded by the Murray condition. Despite its existenceand uniqueness we do not
know a priori what the set of generating charges is, let alonethat we can be sure it is
reasonably small or even finite.

There are some charges which are certainly part of the generating set, namely those for
which the corresponding topological charges are minimal. These are the allowed charges
g such that2λi · g = 1 for one particular broken fundamental weightλi and2λj · g = 0

for all other broken fundamental weights.

Proposition 3.1 Topologically minimal charges are indecomposable.

Proof. If an allowed chargeg with a minimal topological component can be decomposed
into two allowed charges,g = g′ + g′′ then one of these, sayg′, would have a topological
component equal to zero. This means that2λi ·g′ = 0 for all broken fundamental weights
λi, implying thatg′ =

∑
i miα

∗
i with only unbroken rootsαi andmi ≥ 0. If {αi} is a

set of simple roots ofH ⊂ G then so is{α′
i} with α′

i = −αi. Since the Weyl group acts
transitively on the bases of simple roots there exists an element inW(H) that takes all
unbroken rootsαi to α′

i = −αi. With respect to the basis(α′
i) we haveg′ =

∑
i m′

iα
′
i

with m′
i ≤ 0. This implies thatg′ only satisfies the Murray condition ifg′ = 0 showing

thatg is indecomposable. �

We now wish to identify these topologically minimal charges. As a first step we shall
show that some of the coroots, that is roots ofG∗ are contained in the set of topologi-
cally minimal charges. Note that there always exist corootswith topologically minimal
charges, these correspond to the broken simple roots. If theresidual symmetry group is
non-abelian the set of topological minimal coroots is larger than the set of broken simple
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Chapter 3. Fusion rules for smooth BPS monopoles

roots. In any case the whole set of topologically minimal coroots lies in the Murray cone.

Proposition 3.2 Any corootα∗ with 2λj · α∗ = 1 for one of the broken fundamental
weights and which is orthogonal to the other broken fundamental weights, satisfies the
Murray condition.

Proof. We shall first show thatα∗ · µ ≥ 0. As argued in section 2.3.4 we takeµ to lie
in the closure of the fundamental Weyl chamber, i.e.µ = 2

∑
i µiλi with µi ≥ 0. Thus

α∗ · µ = µj ≥ 0. If α∗ · µ = 0, α would be an unbroken root and as such orthogonal
to all broken fundamental weights. This is clearly not the case since2λj · α∗ = 1. We
conclude thatα∗ · µ > 0 and hence thatα∗ is a positive coroot.
It is now easy to show thatα∗ does indeed satisfy Murray’s condition. Since the Weyl
group is the symmetry group of the (co)root system we have forany w ∈ W(H) ⊂
W(G), thatw(α∗) is another coroot. Moreoverw(α∗) is positive since the residual Weyl
group leaves the Higgs VEV invariant:w(α∗) · µ = α∗ ·w−1(µ) = α∗ · µ. We thus have
thatw(α∗) ·µ > 0 for anyw ∈ W(H). Equaling some root ofG∗ the positivity ofw(α∗)

implies that it can be expanded in simple positive coroots with all coefficient greater than
zero:2λj · w(α∗) ≥ 0. We finally find that2w(λi) · α∗ ≥ 0 for all fundamental weights
and for all elements in the residual Weyl group. �

It was easily shown that topologically minimal charges satisfying the Murray condi-

α1

α2 α1+α2α2

Figure 3.1: In the picture above the generators of the Murray cones ofSU(3) are depicted. If
the gauge group is maximally broken (left) toU(1) × U(1), the generators correspond to the
simple roots of SU(3). Both generating charges have distinct unit topological charges. For minimal
symmetry breaking (right) where the gauge group isU(2), the Murray cone is further restricted
by the Murray condition. The generating magnetic charges dohave distinct holomorphic charges
related by the Weyl group. Their topological charges both equal 1.

tion are indecomposable charges within the Murray cone. Furthermore we have seen that
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these topologically minimal charges contain the set of coroots with topologically minimal
charges. We will now prove that these coroots do not only constitute the complete set of
minimal topological charges in the Murray cone, they actually form the full set of inde-
composable charges. ForG = SU(3) these facts are easily verified in figure 3.1 where
the Murray cones and its generators are drawn for the two possible patterns of adjoint
symmetry breaking. Below we prove that the minimal topological charges generate the
full Murray cone. Consequently the set of minimal topological charges must coincide
with the complete set of indecomposable charges.

Proposition 3.3 The coroots with minimal topological charges generate the Murray cone

Proof. The outline of the proof is as follows. We slice up the Murray cone according to the
topological charges in such a way that each layer corresponds to a unique representation of
the dual residual group. For unit topological charges we show that the weights correspond
to the coroots with unit topological charges. Finally we show that the representations for
higher topological charges pop up in the symmetric tensor products of representations
with unit topological charges.
ConsiderG → H whereH is locally of the formU(1)s × K. We split ther roots of the
gauge groupG into s broken roots(αi) with 0 < i ≤ s andr − s unbroken roots(αj)

with s < j ≤ r. The magnetic charges are thus expanded asg =
∑

i miα
∗
i +

∑
j hjα

∗
j .

Without loss of generality we can assumeG to be simply connected just like in the proof
of proposition 2.1. In that same proof we also defined an isomorphismλ from the coroot
latticeΛ∗(G) to the weight latticeΛ(H∗) of H∗. SinceH∗ is locally of the formU(1)l×
K∗ with K semi-simple,λ(g) can be expressed in terms of theU(1) charges and a weight
of K∗. While the abelian charges are identified with the topological chargesmi, the
Dynkin labels of the non-abelian charge are bykj = 2α∗

j ·g/α∗
j
2. Being sums of multiples

of the entries of the Cartan matrix ofG∗ these labels are indeed integers. Moreover for
vanishing holomorphic charges only the off-diagonal entries contribute so thatkj ≤ 0.
Consequently for anyg ∈ Λ∗(G) we have:

λ(g) = λ
(
miα

∗
i + hjα

∗
j

)

= λ (miα
∗
i ) + λ

(
hjα

∗
j

)

= h−(mi) + hjα
∗
j .

(3.1)

whereh−(mi) is a lowest weight that only depends on the topological charges. We shall
prove that for a fixed set of positive topological charges{mi} the magnetic charges in the
Murray cone are in one-to-one relation with the weights of the irreducible representation
of H∗ labelled byh−(mi). To show this we use two important facts. First a weighth

is in the representation defined byh− if and only if for the lowest weight̃h in the Weyl
orbit of h one has̃h = h− + njα

∗
j wherenj ≥ 0. Second, the mapλ commutes with the

residual Weyl group.
First we shall show that for a magnetic chargeg in the Murray coneλ(g) is a weight
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in theh−(mi) representation. As a superficial consistency check we note thatλ(g) and
h−(mi) differ by an integer number of roots ofH∗ given by the holomorphic charges.
The lowest weight in the Weyl orbit ofλ(g) is given by the image of the reduced mag-
netic chargeλ(g̃), as explained in the proof of proposition 2.1. It follows from the Murray
condition (2.65) that̃g is of the formg̃ = miα

∗
i + h′′

j α∗
j whereh′′

j ≥ 0. Consequently
λ(g̃) = h−(mi) + njα

∗
j wherenj ≥ 0.

To prove the converse we take a weighth in the representation definedh−(mi) with
mi ≥ 0. We need to prove thatg with λ(g) = h satisfies the Murray condition. This is
done as follows. The triple(h−(mi), h̃, h) of weights inΛ(H∗) can be mapped to a triple
(g−(mi), g̃, g) of elements in the coroot latticeΛ∗(G) by the inverse ofλ. Next we show
that g−(mi), g̃ andg satisfy the Murray condition. We haveg−(mi) = miα

∗
i so that

λ(g−) = λ−(mi) andmi ≥ 0. The broken simple coroots satisfy the Murray condition
and henceg−(mi) lies in the Murray cone.̃g is given byg̃ = g−(mi) + njα

∗
j so that

λ(g̃) = λ(g−(mi)) + njα
∗
j = h̃. Sinceg̃ maps to the anti-fundamental Weyl chamber

of H∗ and has a positive expansion in simple coroots it satisfies the Murray conditions as
follows from proposition 2.1. Finally sinceλ respects the residual Weyl group andh̃ is in
the Weyl orbit ofh we find thatg is in the Weyl orbit of̃g. With g̃ satisfying the Murray
condition it is easy to show thatg also obeys the condition.
The coroots ofG form the nonzero weights of the adjoint representation ofG∗. Under
symmetry breaking the adjoint representation maps to a reducible representation ofH∗.
We are particularly interested in the irreducible factors corresponding to unit topologi-
cal charges. Coroots with unit topological charge, i.e.mi = δik, equal a broken simple
corootα∗

k up to unbroken roots. We have seen in proposition 3.2 that coroots with unit
topological charge satisfy the Murray condition. Hence theprevious discussion tells us
that such coroots are mapped to the weight space of the representation labelled byλ(α∗

k).
The weightλ(α∗

k) itself corresponds tog = α∗
k. We now see that each weight in the

λ(α∗
k)-representation must not only correspond to a magnetic charge in the coroot lattice

of G but in fact to a coroot, otherwise the coroot system would notconstitute a proper
representation ofH∗.
We can now finish the proof. Each element in the Murray cone is the weight in a rep-
resentation labelled byh−(mi). Such representations only depend on the topological
charges. Moreover the lowest weights are additive with respect to the topological charges:
h−(mi) + h−(m′

i) = h−(mi + m′
i). Consequently every such lowest weight is of the

form
∑

i miλ(α∗
i ). The representation labelled byh−(mi) is obtained by the symmetric

tensor product of representations labelled byλ(αi). A weight in the product representa-
tion equals a sum of weights from theλ(α∗

i ) representations. By identifying the weights
with magnetic charges we find that all charges is the Murray cone equal a sum of coroots
with unit topological charges. �
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3.1. Generating charges

3.1.2 GENERATORS OF THE MAGNETIC WEIGHT LATTICE

In this section we want to describe the generators of the magnetic charge lattice for sin-
gular monopoles in a theory with gauge groupH . This charge lattice can be identified
with the weight latticeΛ(H∗) of the dual groupH∗ as discussed in section 2.3.1. As for
the Murray cone it is obvious that a minimal set of generatingcharges exists such that
all charges are linear combinations of these generating charges with positive integer co-
efficients. The difference with the Murray cone, however, isthat the generating set is not
necessarily unique. We shall give some simple examples below to illustrate this, but we
already note that the underlying reason for this is that the weight lattice ofH∗ is closed
under inversion.

Using some textbook results on Lie group theory is easy to finda relatively small set
of generators: letV be a faithful representation ofH∗ andV ∗ its conjugate representa-
tion. Any irreducible representation ofH∗ is contained in the tensor products ofV and
V ∗, see e.g section VIII of [49] for a proof. Since the weights ofV1 ⊗V2 are given by the
sums of the weights ofV1 andV2 we now find that any weight of an irreducible represen-
tation ofH∗ is a linear combination of weights ofV andV ∗ with positive coefficients.
Since any weight inΛ(H∗) is contained in an irreducible representation ofH∗ we have
found that the weights ofV andV ∗ generate the magnetic weight lattice. Note that if this
faithful representationV is self-conjugate the weight lattice is obviously generated by the
non-zero weights ofV . This happens for example forSO(n) andSp(2n) which have
only self-conjugate representations. To find a small set of generators one should take the
non-zero weights of a smallest faithful representation andits conjugate representation,
i.e. the fundamental representation and its conjugate representation.
The recipe above does not necessarily give a smallest set of generators since there still
might be some double counting. We mention two examples. First V ∗ might be contained
in the tensor products ofV . This happens for example forSU(n): the representation̄n
is given by the(n − 1)th anti-symmetric product ofn. Second some weights ofV may
be decomposable withinV . Consider for exampleSU(n)/Zn. The weight lattice of this
group corresponds to the root lattice ofSU(n) and forV one can take the adjoint repre-
sentation whose weights are the roots ofSU(n). Note that all roots can be expressed as
positive linear combinations of the simple roots and their inverses in the root lattice.
WhenH∗ is a product of groups the defining representation is reducible and falls apart
into irreducible components. Each of these irreducible representations has trivial weights
for all but one of the group factors. This agrees with the factthat in this case the weight
lattice ofH∗ is a product of weight lattices.
In table 3.1 we give the representation or representations whose nonzero weights consti-
tute a minimal generating set of the magnetic weight latticeΛ(H∗). The corresponding
electric groupsH were mentioned in tables 2.1 and 2.2.

37



Chapter 3. Fusion rules for smooth BPS monopoles

H∗ {V }
SU(n) {n}
Sp(2n) {2n}
SO(n) {n}

(U(1) × SU(n))/Zn {n1, n̄−1}
U(1) × SO(2n + 1) {(2n + 1)0, 11, 1−1}
(U(1) × Sp(2n))/Z2 {2n1, 2n−1}
(U(1) × SO(2n))/Z2 {2n1, 2n−1}

Table 3.1: Generators of the magnetic weights latticeΛ(H∗) in terms of representations of the
dual groupH∗. The boldface numbers give the dimensionality of the irreducible representations of
the corresponding simple Lie groups, their conjugate representations are distinguished by an extra
bar. The subscripts denoteU(1)-charges.

3.1.3 GENERATORS OF THE FUNDAMENTAL WEYL CHAMBER

The charges of singular monopoles in a theory with gauge group H take values in the
weight lattice of the dual groupH∗. This weight lattice has a natural subset: the weights
in the fundamental Weyl chamber. IfH is semi-simple and has trivial centerH∗ is semi-
simple and is simply connected. In this particular case the generators of the fundamental
Weyl chamber ofH∗ are immediately identified as the fundamental weights. IfH∗ is
not simply connected or even not semi-simple the generatingweights in the fundamental
Weyl chamber are not that easily identified. The generating charges are, however, closely
related to the generators of the representation ring, whichare computed in chapter 23 of
[50]. We shall explain this relation for the semi-simple, simply connected Lie groups.
Finally we use the obtained intuition to compute the generators of the fundamental Weyl
chamber for the dual groups in table 2.2 which occur in minimal symmetry breaking of
classical groups. In the next section we shall use similar methods to find the generators
of the fundamental Murray cone.

The representation ringR(H∗) is the free abelian group on the isomorphism classes of
irreducible representations ofH∗. In this group one can formally add and subtract repre-
sentations. The tensor product makesR(H∗) into a ring. We shall for now assumeH∗

to be a simple and simply connected Lie group of rankr so that its weight latticeΛ is
generated by ther fundamental weights{λi}.
R(H∗) is isomorphic to a certain ring of Weyl-invariant polynomials. We will review the
proof following [50]. We shall start by introducingZ[Λ], the integral ring onΛ. By this
we mean that any element inZ[Λ] can be written as

∑
Λ nλeλ wherenλ ∈ Z andnλ 6= 0

for a finite set of weights. We thus see thateλ is the basis element inZ[Λ] corresponding
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3.1. Generating charges

to λ. The product inZ[Λ] is defined byeλeλ′ = eλ+λ′ . We thus see thatZ[Λ] is nothing
but a group ring on the abelian groupΛ. Note that the additive and multiplicative unit
are given by0 ande0 while the additive and multiplicative inverses ofeλ are given by
respectively−eλ ande−λ.

There is a homomorphism, denoted by Char, from the representation ring intoZ[Λ] This
map sends a representationV to Char(V ) =

∑
dim(Vλ) eλ, where dim(Vλ) equals the

multiplicity with which the weightλ occurs in the representationV . It is easy to see that
this map does indeed respect the ring structure.
The Weyl groupW of H∗ acts linearly onZ[Λ] and the action is defined byw ∈ W :

eλ 7→ ew(λ). To show that the action ofW respects the multiplication inZ[Λ] one simply
uses the fact thatW acts linearly onΛ.
Z[Λ] contains a subringZ[Λ]W consisting of elements invariant under the Weyl group.
The claim is thatR(H∗) is isomorphic toZ[Λ]W . It is easy to show that the image of
Char is contained inZ[Λ]W . Below we shall also prove surjectivity by using the fact that
there is a basis ofZ[Λ]W that is generated out of certain representation ofH∗. In the end
we are of course interested in these generators.

To each dominant integral weightλ ∈ Λ we associate an elementPλ ∈ Z[Λ]W by choos-
ing Pλ =

∑
nλ′eλ′ with nw(λ′) = nλ′ for all w ∈ W and withnλ = 1. For simplicity

we takePλ so thatnλ′ = 0 if λ− λ′ is not a linear combination of roots. We now restrict
the choice ofPλ so that for any dominant integral weightλ′ > λ, nλ′ vanishes. Note
thatλ is the highest weight ofPλ. One can now prove by induction that any set{Pλ}
satisfying the conditions above forms an additive basis forZ[Λ]W .
We shall now make a rather special choice for the basis{Pλ}. For the fundamental
weightsλi we takePλi

to bePi = Char(Vi) wereVi is the irreducible representation of
H∗ with highest weightλi. For any other dominant integral weightλ =

∑
miλi we take

Pλ = Char(⊗iV
mi

i ) = Πi Pmi

i . Since{Pλ} is a basis forZ[Λ]W any element in this ring
can thus be written as a polynomial in the variablesPi with positive integer coefficients:

Z[Λ] = Z[P1, . . . , Pr]. (3.2)

As promised we have proven thatR(H∗) is isomorphic toZ[Λ]W for H∗ semi-simple
and simply connected. In addition we have found that the generators ofZ[Λ]W corre-
spond precisely to the generators of the fundamental Weyl chamber via the mapλi 7→ Pi.
This is not very surprising because it was input for the proofof the isomorphism. So the
interesting question is if we can really retrieve the generators of the fundamental Weyl
chamber fromR(H∗). This can indeed be done by identifying the generators ofΛ with
the generators ofZ[Λ]. We shall explain this below forSU(n). Before we do so we want
to make an important remark.
In the proof we used the fact that there is a basisPλ where eachPλ can be identified with
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Char(Vλ) and whereVλ is some representation with highest weightλ. Such a choice of
basis always exist since one can takeVλ be the irreducible representation with highest
weightλ. The fact that there is a generating set for the fundamental Weyl chamber is thus
not crucial in the proof of the isomorphism betweenR(H∗) andZ[Λ]W .

We return toZ[Λ], whereΛ is the weight lattice ofSU(n). As discussed in the previ-
ous section the weight lattice ofSU(n) is generated by the weights of then-dimensional
fundamental representation. Let us denote these weights byLi and define

xi = eLi
∈ Z[Λ]. (3.3)

Note that the vectorsLi are not linearly independent since
∑

i Li = 0. We thus have

x1x2 · · ·xn = 1, (3.4)

where1 = e0 is the multiplicative unit ofZ[Λ]. We find that any elementeλ can be
written as monomialΠi xmi

i with positive coefficientsmi. Such monomials are unique
up to factorsx1 · · ·xn. Since{eλ : λ ∈ Λ} forms a basis forZ[Λ] we find:

Z[Λ] = Z[x1, . . . xn]/(x1 · · ·xn − 1). (3.5)

The Weyl group ofSU(n) is the permutation groupSn and obviously permutes the in-
dices of thexis, see also appendix B.1. Consequently

R(SU(n)) = Z[Λ]Sn = Z[x1, . . . xn]S
n

/(x1 · · ·xn − 1). (3.6)

To find the generators ofR(SU(n)) we use the well known fact that any symmetric
polynomial inn variables can be expressed as a polynomial ofak : k = 1, . . . , n where
ak is thekth elementary symmetric function ofxi given by:

ak =
∑

i1<···<ik

xi1 · · ·xik
. (3.7)

Note thatan = x1 · · ·xn is identified with1 in R(SU(n)). We have thus established the
isomorphism:

R(SU(n)) = Z[a1, . . . , an−1]. (3.8)

Our conclusion is that the firstn − 1 elementary symmetric functions form a minimal
set generating the representation ring ofSU(n). It should not be very surprising that for
i < n ai = Pi = Char(Vi) whereVi is the irreducible representation with highest weight
λi. It is nice to note thatVi = ∧iV whereV is the fundamental representation ofSU(n)

and that∧nV = 1 the trivial representation.

For SO(2n + 1), Sp(2n), andSO(2n) the fundamental representation has2n nonzero
weights±Li : i = 1, . . . n. By identifyingx±1

i = e±Li
one finds that the group ring on
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the weight lattice is isomorphic toZ[x1, x
−1
1 , . . . , xn, x−1

n ]. As shown in [50] the repre-
sentation rings are given by polynomial rings of the form:

R(SO(2n + 1)) = Z[b1, · · · , bn] (3.9)

R(Sp(2n)) = Z[c1, · · · , cn] (3.10)

R(SO(2n)) = Z[d1, · · · , dn−1, d
+
n , d−n ]. (3.11)

The polynomialsbk, ck and dk can all be chosen to equal the elementary symmetric
functions in the2n variables{x±

i }. The polynomialsd±n can be expressed as(d±)2. d+

andd− correspond to the two spinor representations ofSO(2n) :

d± = Char(S±) =
∑

s1···sn=±1

√
xs1

1 · · ·xsn
n . (3.12)

It is easy to check thatd±n are indeed polynomials.
To explain whyR(SO(2n)) has an extra generator compared to the other groups we note
that its Weyl group is given bySn ⋉ Z

n−1
2 whereas the Weyl groups ofSO(2n + 1) and

Sp(2n) are given bySn ⋉ Zn
2 . This means that the Weyl groups act on the non-zero

weights of the fundamental representations by permuting the indices and changing the
signs of the weights, but forSO(2n) only an even number of sign changes is allowed,
see also appendix B.1. Consequently the generators ofR(SO(2n)) do not have to be
invariant under for example ofx1 7→ x−

1 and hence the generatordn can be decomposed
into d+

n andd−n .
for completeness we mention that the highest weights ofbk, ck anddk are given by the
highest weights of the anti-symmetric tensor products∧kV of the corresponding funda-
mental representationV . The highest weights ofd±n are given by twice the highest weight
of the spinor representationsS±.

We finally want to identify the generators of the fundamentalWeyl chamber for some
groups that arise in minimal symmetry breaking of classicalgroups. As discussed in sec-
tion 3.1.2 the weight latticeΛ of U(n) is generated by the weights of itsn-dimensional
representationn1 and those of its conjugate representationn̄−1. Let us denote the weights
of n1 by {Li} and definexi = eLi

∈ Z[Λ]. The weights of̄n−1 are given by{−Li}. We
thus immediately find the following isomorphism for the group ring on the weight lattice
of U(n):

Z[Λ] = Z[x1, x−1, . . . , xn, x−1
n ]. (3.13)

To find the generators of the representation ringR(U(n)) = Z[Λ]W we note that the
Weyl groupW = Sn of U(n) permutes the indices of the generators ofZ[Λ] but does not
change any of the signs as happened for the classical groups discussed right above. This
implies thatR(U(n)) is generated by{ak : k = 1, . . . , n} the elementary symmetric
polynomials inxi and{āk : k = 1, . . . , n} the elementary symmetric polynomials in the
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variables{x−1
i }. Note thatan = x1 · · ·xn is invertible in the representation ring and its

inverse is given bȳan = (x1 · · ·xn)−1.
The generators we have found forR(U(n)) are not completely independent since:

aka−1
n =

∑

ij−1<ij<ij+1

xi1 · · ·xik
(x1 · · ·xn)−1 =

∑

ij−1<ij<ij+1

(xi1 · · ·xin−k
)−1 = ān−k. (3.14)

The representation ring ofU(n) can thus be identified with the polynomial ring:

R(U(n)) = Z[a1, . . . , an, a−1
n ]. (3.15)

The generating polynomialsak anda−1
n are indecomposable in the representation ring,

their highest weights thus form a minimal set generating thefundamental Weyl cham-
ber of U(n). We finally mention thatak = Char(∧kV ), whereV is the fundamental
representation ofU(n). Moreover∧nV is the one dimensional representation that acts
by multiplication with det(g) whereg ∈ (U(n)) This representation is invertible and
a−1

n = Char
(
(∧nV )−1)

)
.

SinceU(1)×SO(2n+1) is a product of groups its representation ring is simplyR(U(1))×
R(SO(2n + 1). The representation ring ofU(1) can be identified with the polynomial
ring Z[x0, x

−1
0 ] wherex±1

0 = Char(V ±1) andV the fundamental representation ofU(1).
There is, however, an alternative description of the representation ring which will prove
to be valuable in the next section. Let{L0, L1, L

′
1, . . . , Ln, L′

n} be the weights of the
fundamental representation ofU(1) × SO(2n + 1), i.e. the representation with unit
U(1) charge. Define{x0, x1, x

′
1, . . . xn, x′

n} to be the images of these weights in the
group ringZ[Λ] of the weight lattice. It is not too hard to show thatZ[Λ] is isomor-
phic to Z[x0, x

−1
0 , x1, x

′
1, . . . xn, x′

n]/I whereI is the ideal generated by the relations
xix

′
i = x2

0. Moreover one can prove that

R(U(1) × SO(2n + 1)) = Z[x0, x
−1
0 , b1, . . . , bn], (3.16)

wherebk = Char(∧kV ) is thekth elementary symmetric polynomial in the2n + 1 vari-
ablesx0, x1, x

′
1, . . . , xn, x′

n. The highest weights of these generating polynomials cor-
respond to the minimal set of generating charges in the fundamental Weyl chamber.

By mapping the weights of the fundamental representation and its conjugate represen-
tations toZ[Λ] on finds that group rings on the weight lattices of(U(1) × Sp(2n))/Z2

and(U(1) × SO(2n))/Z2 can be identified with the polynomial ring

Z[x1, x
−1
1 , x′

1, x
′−1
1 , . . . , xn, x−1

n , x′
n, x′

n−1]/I, (3.17)

whereI is the ideal generated by the relationsxix
′
i = xjx

′
j . Note that these relations

imply that x1x
′
1 is invariant under the Weyl group that permutes the indices and swaps
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primed variables with their unprimed counterparts. One cannow show that the represen-
tation ringsR ((U(1) × Sp(2n))/Z2) andR ((U(1) × SO(2n))/Z2) can be identified as
quotient rings of respectively:

Z[x1x
′
1, (x1x

′
1)

−1, c1, . . . , cn, c̄1, . . . , c̄n] (3.18)

and

Z[x1x
′
1, (x1x

′
1)

−1, d1, . . . , dn−1, d
+
n , d−n , d̄1, . . . , d̄n−1, d̄

+
n , d−n ], (3.19)

whereck anddk are the elementary symmetric polynomials in the2n variablesx1, . . . , xn

andx′
1, . . . , x

′
n. The functions̄ck andd̄k are similar elementary symmetric polynomials

expressed in terms of the inverted variables. Explicit expressions ford±n = (d±)2 can
be found from formula (3.12) where the inverted variables should be replaced by the
primed variables. Finallȳd±n is found by substitution of the inverted variables ind±n . The
generating set of polynomials we have found is not the minimal set. This follows from
the fact thatx−1

j = (xjx
′
j)

−1x′
j = (x1x

′
1)

−1x′
j . Consequently one finds:

R ((U(1) × Sp(2n))/Z2) = Z[x1x
′
1, (x1x

′
1)

−1, c1, . . . , cn] (3.20)

R ((U(1) × SO(2))/Z2) = Z[x1x
′
1, (x1x

′
1)

−1, d1, . . . , dn−1, d
+
n , d−n ]. (3.21)

The highest weights of these generating polynomials are thegenerators of the fundamental
Weyl chamber of the two groups.

3.1.4 GENERATORS OF THE FUNDAMENTAL MURRAY CONE

The fundamental Murray cone, just like the Murray cone, contains a unique set of in-
decomposable charges. The uniqueness of this set is a consequence of the fact that the
fundamental Murray cone does not allow for invertible elements. The main difference
with the Murray cone, however, is that the generators for thefundamental Murray cone
are not easily computed. After a general discussion we shalltherefore only determine the
generators for a couple of cases that correspond to minimal symmetry breaking of classi-
cal groups. The approach we use is closely related to the computation of the generators of
the fundamental Weyl chamber as discussed in the previous section and can in principle
be applied to any gauge group and for arbitrary symmetry breaking.

Note that this whole exercise only makes sense if the fundamental Murray cone is closed
under addition. At the beginning of section 3.1.1 we argued that the Murray cone is closed
under this operation by evaluating the defining equations. For the fundamental Murray
cone similar considerations apply. Forg to be in the fundamental Weyl chamber of the
Murray cone we have the extra conditiong · αi ≥ 0 for all unbroken rootsαi. It is now
easily seen that if bothg andg′ satisfy this condition theng + g′ will satisfy it too, as will

43



Chapter 3. Fusion rules for smooth BPS monopoles

any linear combination of these charges with positive integer coefficients. This proves
that the fundamental Murray is closed under addition of charges.

Instead of computing the generators of the fundamental Murray cone directly by evaluat-
ing the Murray condition we shall determine the indecomposable generators of a certain
representation ring. We shall start by describing this ring. Let G be a compact, semi-
simple group broken toH via an adjoint Higgs field. Without loss of generality we can
assumeG to be simply connected since this does not change the set of magnetic charges.
Under this condition the magnetic weight latticeΛ := Λ(H∗) is isomorphic to the root
lattice ofG∗. The ring we want to consider is the free abelian group on the irreducible
representations ofH∗ with weights in the Murray cone. These irreducible representations
of H∗ are labelled by dominant integral weights inΛ+ ⊂ Λ and can be identified with
the fundamental Murray cone as a set. Note that since the Murray cone is closed under
addition this set of representations is closed under the tensor product. As we prove in
the appendix there exists an algebraic object, but not a group, having a complete set of
irreducible representations labelled by the magnetic charges in the Murray cone. Let us
denote this object byH∗

+. The representation ring we are discussing here is thus precisely
the representation ringR(H∗

+).

Just as in the previous section we now introduce a second ringZ[Λ+] that turns out to
be quite useful.Z[Λ+] has a basis{eλ : λ ∈ Λ+}. SinceΛ+ is closed under addi-
tion Z[Λ+] is indeed closed under multiplication. The multiplicativeidentity is given by
1 = e0. The basis elementseλ of Z[Λ+] are not invertible under multiplication sincee−λ

is not contained inZ[Λ+]. Finally we introduce the ringZ[Λ+]W consisting of the Weyl
invariant elements inZ[Λ+]. Note thatZ[Λ+] ⊂ Z[Λ] andZ[Λ+]W ⊂ Z[Λ]W . By using
arguments almost identical to arguments mentioned in the previous section one can show
thatR(H∗

+) is isomorphic toZ[Λ+]W . This last ring can be identified with a polynomial
ring. The highest weights of the indecomposable polynomials can be identified with the
generators of the fundamental Murray cone.

We shall identify the generators of the fundamental Murray cone for the classical simply-
connected groupsSU(n + 1), Sp(2n + 2), Spin(2n + 3), andSpin(2n + 2) and for
minimal symmetry breaking. The relevant residual electricgroups and their magnetic
dual groups are listed in table 2.2. One can show that the Murray cone in these cases is
generated by the weights of the fundamental representationof H∗ which are respectively
n, 2n + 1, 2n and2n dimensional.

Let us denote the weights of the fundamental representationof U(n) by Li wherei =

1, . . . , n. We definexi = eLi
. Since the weightsLi freely generate the Murray cone we

immediately find

Z[Λ+] = Z[x1, . . . , xn]. (3.22)
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The Weyl group ofU(n) permutes the indices of the generators. Copying our resultsof
the previous section we thus find the following isomorphism:

Z[Λ+]W = Z[a1, . . . , an]. (3.23)

whereak are the elementary symmetric polynomials in the variablesxi. The highest
weights of these indecomposable polynomials are the generators of the fundamental Mur-
ray cone forSU(n+1) broken down toU(n). Note thatZ[Λ+]W is obtained fromZ[Λ]W

as given in formula (3.15) by removing the generatora−1
n .

Let{L0, L1, L
′
1, . . . , Ln, L′

n} be the weights of the fundamental representation ofU(1)×
SO(2n+1). Define{x0, x1, x

′
1, . . . xn, x′

n} to be the images of these weights in the ring
Z[Λ+]. Z[Λ+] is isomorphic to

Z[x0, x1, x
′
1, . . . xn, x′

n]/I, (3.24)

whereI is the ideal generated by the relationsxix
′
i = x2

0. Moreover one can now prove
that

Z[Λ+]W = Z[x0, b1, . . . , bn], (3.25)

wherebk = Char(∧kV ) is thekth elementary symmetric polynomial in the2n + 1 vari-
ablesx0, x1, x

′
1, . . . , xn, x′

n. The highest weights of these generating polynomials cor-
respond to the minimal set of generating charges in the fundamental Murray cone.

By mapping the weights of the fundamental representation toZ[Λ+] for G equalsSp(2n+

2) or SO(2n + 2) the ringZ[Λ+] can be identified with the polynomial ring

Z[x1, x
′
1, . . . , xn, x′

n]/I, (3.26)

whereI is the ideal generated by the relationsxix
′
i = xjx

′
j . One can now show that the

representation rings can be identified as respectively:

Z[x1x
′
1, c1, . . . , cn] (3.27)

and

Z[x1x
′
1, d1, . . . , dn−1, d

+
n , d−n ], (3.28)

whereck anddk are both elementary symmetric polynomials in the variablesx1, . . . , xn

andx′
1, . . . , x

′
n. Explicit expressions ford±n = (d±)2 are the same as the corresponding

generating polynomials forZ[Λ]W . The generators of the fundamental Murray cone can
be found by computing the highest weights of the polynomials.
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3.2 MODULI SPACES FOR SMOOTH BPS MONOPOLES

For both singular and smooth monopoles we have identified theset of magnetic charges.
This set always contains a subset closed under addition thatarises by modding out Weyl
transformations. On top of this we have seen that these sets are generated by a finite set
of magnetic charges. This suggest that these generating charges correspond to a distin-
guished collection of basic monopoles and that all remaining magnetic charges give rise
to multi-monopole solutions. By studying the dimensions ofmoduli spaces of solutions
we can try to confirm this picture. In this section we shall only be concerned with smooth
BPS monopoles. For such monopoles the magnetic charges satisfy the Murray condition.

3.2.1 FRAMED MODULI SPACES

The moduli spaces we shall discuss in this section are so-called framed moduli spaces.
Such spaces are commonly used in the mathematically oriented literature on monopoles,
see, for example, the book [51]. We shall discuss these spaces presently. In the next sec-
tions we review the counting of dimensions.

The moduli spaces we are considering correspond to a set of BPS solutions modded out
by gauge transformations. The set of BPS solutions is restricted by the boundary condi-
tion we use, as discussed in section 2.3.3. Beside the finite energy condition one can use
additional framing conditions, hence the terminology framed moduli spaces.

Recall from our discussion following (2.47) that the valueφ(r̂0) of the asymptotic Higgs
field at an arbitrarily chosen point̂r0 on the two-sphere at infinity determines the residual
gauge group. It is therefore natural to restrict the configuration space to BPS solutions
with φ(r̂0) = Φ0 for a fixed value ofΦ0. The resulting space has multiple connected com-
ponents labelled by the topological charge of the BPS solutions. This topological charge
is given by the topological componentsmi of G0 = G(r̂0) as explained in section 2.3.
We shall thus consider the finite energy configurations satisfying the framing condition

Φ(tr̂0) = Φ0 −
G0

4πt
+ O

(
t−(1+δ)

)
t ≫ 1, (3.29)

wherer̂0, Φ0 and the topological componentsmi of G0 are completely fixed. The framed
moduli spaceM(r̂0, Φ0, mi) is now obtained from the configuration space by modding
out certain gauge transformations that respect the framingcondition. The full group of
gauge transformationsG : R3 → G that respect this condition satisfyG(tr̂0) = h as
t → ∞ whereh ∈ H . However, for the moduli space to be a smooth manifold one can
only mod out a group of gauge transformations that acts freely on the configuration space.
For example the configurationΦ = Φ0 andB = 0 is left invariant by all constant gauge
transformations given byh ∈ H . The framed moduli space is thus appropriately defined
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3.2. Moduli spaces for smooth BPS monopoles

as the space of BPS solutions satisfying the boundary conditions (2.47) and (3.29), mod-
ded out by the gauge transformations that become trivial at the chosen base pointr̂0 on
the sphere at infinity.

The moduli spaceM(r̂0, Φ0, mi) has several interesting subspaces which will play an
important role in what is to come. These subspaces are related to the fact that there is a
mapf from the moduli space to the Lie algebra ofG. This map is defined by assigning
G0 to each configuration. As explained in section 2.3.3 and 2.3.4, up to a residual gauge
transformationG0 is given byG0 = 4π

e g ·H with g an element in the fundamental Murray
cone. The topological components ofg are of course fixed while the holomorphic charges
are restricted by the topological charges. The image off in the Lie algebra ofG is thus a
disjoint union ofH orbits

C(g1) ∪ · · · ∪ C(gn), (3.30)

wheregi is the intersection of each orbit with the fundamental Murray cone. The mapf
defines a stratification ofM(r̂0, Φ0, mi). Each stratumMgi

is mapped to a correspond-
ing orbitC(gi) in the Lie algebra.
The remarkable thing about the stratification is that for a fixed topological charge the strata
are disjoint but connected even though the images of the strata are disconnected sets in the
Lie algebra ofG. This follows from the fact that all BPS configurations inM(r̂0, Φ0, mi)

are topologically equivalent and can be smoothly deformed into each other. Under such
smooth deformations the holomorphic charges can thus jump.
If the residual gauge group is abelian the stratification is trivial. Since the topological
charges completely fixg there is only a single stratumMg = M(r̂0, Φ0, mi).

There is another interesting moduli space we want to introduce. This so-called fully
framed moduli spaceM(r̂0, Φ0, G0) ⊂ M(r̂0, Φ0, mi) arises by imposing even stronger
framing conditions. The points in the fully framed moduli spaceM(r̂0, Φ0, G0) corre-
spond to BPS configurations obeying the usual boundary conditions (2.47) and (3.29) but
instead of only fixingΦ0 we also choose a completely fixed magnetic chargeG0. Again
the gauge transformations that become trivial at the chosenbase point are modded out.
The fully framed moduli spaces have a special property in relation to the strata. Monopoles
with magnetic chargesG′

0 andG0 related byh in residual gauge groupH ⊂ G lie in the
same stratum of the framed moduli space. Moreover, the action of h ∈ H ⊂ G on
the magnetic charges can be lifted to a gauge transformationG : S2 → G [44]. Since
π2(G) = 0 this gauge transformation can in turn be extended to a gauge transformation
in R3 acting on the complete BPS solution. In other words the action of h ∈ H on the
Lie algebra can be lifted to an action on the framed moduli space such that each point in
M(r̂0, Φ0, G0) is mapped to a point inM(r̂0, Φ0, G0). We thus see that all fully framed
moduli spaces in a single stratum are isomorphic. In addition we also have that a stratum
is nothing but a space of fully framed moduli spaces. Finallywe conclude that locally we
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Chapter 3. Fusion rules for smooth BPS monopoles

must have thatMi = C(gi) × M(r̂0, Φ0, G0) whereG0 is defined bygi.
If the residual gauge group is abelian the action ofH on the magnetic charges is trivial. In
this particular case the fully framed moduli space equals the single stratum and we have
M(r̂0, Φ0, G0) = M(r̂0, Φ0, mi).

3.2.2 PARAMETER COUNTING FOR ABELIAN MONOPOLES

The dimensions of the framed moduli spaces for maximal symmetry breaking have been
computed by Erick Weinberg [22]. From his index computationWeinberg concluded that
there must be certain fundamental monopoles and that the remaining monopoles should
be interpreted as multi-monopole solutions. The magnetic charges of these fundamen-
tal monopoles are precisely the generators of the Murray cone. Note that since there is
no distinction between the Murray cone and the fundamental Murray cone in the abelian
case we may also call these fundamental monopoles basic. Ourconclusion is thus that the
moduli space dimensions are consistent with the structure of the (fundamental) Murray
cone. This result also holds in the non-abelian case albeit in a much less obvious way. To
get some feeling for this general case we shall first briefly review Weinberg’s results.

As before we consider a Yang-Mills theory with a gauge groupG. The adjoint Higgs
VEV µ is taken such that the gauge group is broken to its maximal torusU(1)r, r is the
rank of the group. In this abelian case the structure of the framed moduli as well as the
structure of the Murray cone is relatively simple. Since there is no residual non-abelian
symmetry there are no holomorphic charges. Consequently the magnetic charge is fully
determined by the topological charges and the action of the residual gauge group on the
magnetic charges is trivial. The fully framed moduli spacesthus coincide with the framed
moduli spaces while the fundamental Weyl chamber of the Murray cone is identical to
the complete cone. From the Murray-Singer analysis it follows that the stable magnetic
charges are of the form:

g =
r∑

i=1

miα
∗
i , mi ∈ N. (3.31)

Ther simple corootsα∗
i obviously generate the Murray cone and the positive expansion

coefficientsmi can be identified with the topological charges as explained in section 2.3.3.
According to the index calculations of Weinberg the dimensions of the moduli spaces are
proportional to the topological charge:

dimMg =

r∑

i=1

4mi. (3.32)

As an illustration the Murray cone is depicted forSU(3) → U(1)2 in figure 3.2. For
each charge the dimension of the moduli space is given. In general there arer indecom-
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3.2. Moduli spaces for smooth BPS monopoles

posable charges, one for eachU(1) factor. These basic monopoles all have unit topolog-
ical charge. Thus we see that the dimension of the moduli space is proportional to the
numberN =

∑
mi of indecomposable charges constituting the total charge. As Wein-

berg concluded this is precisely what one would expect forN non-interacting monopoles,
and hence is seems consistent to view the higher topologicalcharge solutions as multi-
monopole solutions.

α1

α2 4

4 8 12

8 12 16

8

20

Figure 3.2: The Murray cone forSU(3) broken toU(1)×U(1). The generators of the cone
are precisely the simple (co)rootsα1 and α2 of SU(3). Both these charges correspond to unit
topological charge inπ1(U(1)2) = Z×Z. All charges can be decomposed into the generating
charges. The dimensions of the moduli spaces are proportional to the number of components.
These dimensions are obviously additive.

Before we continue with general symmetry breaking let us pause for moment to discuss
the nature of the moduli space dimensions. These dimensionscorrespond to certain pa-
rameters of the BPS solutions. For the basic monopoles with chargeα∗

i the obvious can-
didates for three of these are their spatial coordinates, i.e. the position of the monopole.
The fourth is related to electric action byHαi

which keeps the magnetic charge fixed but
nevertheless acts non-trivially on the monopole solutions. This can be seen by consid-
ering exact solutions for the basic monopoles obtained by embeddingSU(2) monopoles
[40, 22].
If the multi-monopole picture is correct the nature of the moduli space dimensions for
higher topological charge is easy to guess.3N correspond to the positions of theN con-
stituents, while the remainingN dimensions arise from the action of the gauge group on
the constituents. It has been shown by Taubes [52] that if

∑
mi = N there exists an exact

BPS solutions corresponding toN monopoles with unit topological charges. A similar re-
sult was obtained by Manton for two ’t Hooft-Polyakov monopoles [53]. The positions of
the individual monopoles can be chosen arbitrarily as long as the monopoles are well sep-

49



Chapter 3. Fusion rules for smooth BPS monopoles

arated. This immediately confirms the given interpretationof the3N parameters. Further
evidence for this interpretation of the moduli space parameters can be found by study-
ing the geodesic motion on the moduli space. ForN widely separated monopoles the
geodesic motion on the asymptotic moduli space correspondsto the motion ofN dyons,
considered as point-particles inR3, interacting via Coulomb-like forces. The conserved
electricU(1) charges appear in the geodesic approximation on the asymptotic moduli
space because the metric hasU(1) symmetries. The correspondence between the clas-
sical theory on the asymptotic moduli space and the effective theory of classical dyons
in space has up till now only been demonstrated for an arbitrary topological charge in a
SU(n) theory broken toU(1)n [54, 55, 56, 57, 58] and for topological charge 2 in an
arbitrary theory with maximal symmetry breaking [59].

3.2.3 PARAMETER COUNTING FOR NON-ABELIAN MONOPOLES

Just as in the abelian case the dimensions of the framed moduli spaces for non-abelian
monopoles are proportional to the topological charges. Hence the dimensions of the mod-
uli spaces respect the addition of charges in the Murray cone. In that sense one could once
more interpret monopoles with higher topological charges as multi-monopole solutions
built out of monopoles with unit topological charges. This analysis would however ig-
nore the fact that both the framed moduli space and the Murraycone have extra structure.
The framed moduli space has a stratification while the magnetic charges have topological
and holomorphic components. The holomorphic charges and thereby the strata are physi-
cally very important because they are directly related to the electric symmetry that can be
realized in the monopole background as we shall discuss later in the section. Therefore
one should wonder if these structures are compatible and if so how they will affect the
multi-monopole interpretation.

The dimensions for the framed moduli spaces of monopoles have been computed by Mur-
ray and Singer for any possible residual gauge symmetry, either abelian or non-abelian
[44]. Their computation does not rely on index methods but instead it is based on the
fact that framed moduli spaces can be identified with certainsets of rational maps. Such
a bijection was first proved by Donaldson forG = SU(2) [60] and later generalized
by Hurtubise and Murray for maximal symmetry breaking [61, 62, 63]. Finally the cor-
respondence between framed moduli spaces and rational mapswas proved for general
gauge groups and general symmetry breaking by Jarvis [43, 64]. Murray and Singer have
computed the dimensions of these spaces of rational maps. For further details we refer to
the original paper. TheSU(n) case can also be found in [46].

One of the results of the calculations in [44] is that the dimension of the framed mod-
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uli spaceM(r̂0, Φ0, mi) is given by:

dimM(r̂0, Φ0, mi) = 4

s∑

i=1

(1 − 2ρ · α∗
i )mi, (3.33)

whereρ is the Weyl vector of the residual group and thus equals half the sum of the
unbroken roots:

ρ =
1

2

r∑

j=s+1

αj . (3.34)

In equation (3.33) one sums over the broken roots and thus also over the topological
charges.The dimensions of the framed moduli spaces have twoimportant properties. First
for g = g′ + g′′ with topological chargesmi = m′

i + m′′
i we have

dimM(r̂0, Φ0, mi) = dimM(r̂0, Φ0, m
′
i) + dimM(r̂0, Φ0, m

′′
i ). (3.35)

Second if the residual gauge group equals the maximal torusU(1)r in G so that there are
no holomorphic charges the dimension formula above reducesto Weinberg’s formula

dimM(r̂0, Φ0, mi) = 4

r∑

i=1

mi. (3.36)

We thus see that equation (3.33) for the dimension of the framed moduli space is a gen-
eralization of Weinberg’s result. More importantly we find that dimensions of the framed
moduli spaces respect the addition of charges in the Murray cone.

The dimensions of the framed moduli spaces are compatible with the addition of charges
in the Murray cone. These dimensions do not depend on the holomorphic components.
Naively it thus seems we can safely ignore these components.Nevertheless, from a phys-
ical perspective one is forced to take the holomorphic charge into account because it
determines the allowed electric charge of a monopole as we shall discuss in a moment. It
is thus very interesting to know how the holomorphic chargesaffects the fusion of single
monopoles into multi-monopole configurations.

If we want to take the holomorphic charges into account we should consider the strata
within the framed moduli spaces. These strata were introduced in section 3.2.1. For a
given stratumG0 is fixed up to the action of the residual gauge group and hence the holo-
morphic components ofg are given up to Weyl transformations. The dimensionality of
the stratum corresponding tog can be expressed in terms of the reduced magnetic charge
as was shown by Murray and Singer [44].
Let g be any charge in the Murray cone andg̃ its reduced magnetic charge. Remember
that g̃ is simply the lowest charge in the orbit ofg under the action of the residual Weyl
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group. The reduced magnetic charge can thus be expressed as:

g̃ =

s∑

i=1

miα
∗
i +

r∑

j=s+1

hjα
∗
j . (3.37)

The dimensionality of the corresponding stratumMg in the framed moduli spaceM(r̂0, Φ0, mi)

is given by:

dimMg =

s∑

i=1

4mi +

r∑

j=s+1

4hj + dim C(Φ0) − dim C(Φ0) ∩ C(G0). (3.38)

C(Φ0) ∈ G is the centralizer subgroup of the Higgs VEV, i.e. it is simply the residual
gauge groupH . Similarly, C(G0) ∈ G is the centralizer of the magnetic charge. Hence
the fourth term in the equation above equals the dimensionality of the subgroup inH that
leavesG0 invariant. So the last two terms in equation (3.38) express the dimension of the
orbit of the magnetic chargeG0 under the action of the residual gauge group.
In figure 3.3 we have worked out formula (3.38) forSU(3) → U(2) for each charge in
the Murray cone. In this particular case theH orbits of the magnetic charges are either
2-spheres or they are trivial.

α1

α26 6

10 12 10

14 18 18 14

Figure 3.3: Dimensions for the strata of the framed moduli spaces forSU(3) broken toU(2).

The next goal is to relate the dimensions of the strata to the generators of the Murray cone
found in section 3.1.1, the monopoles with unit topologicalcharges. In the abelian case
discussed previously such a relation is obvious. Since there are no stratifications the mod-
uli space dimensions are proportional to the topological charges. In the true non-abelian
case such a simple relation is distorted by the centralizer terms in formula (3.38). This is
easy to see in theSU(3) example in figure 3.3. Therefore we shall have to leave these
centralizer terms out in our analysis. Since the centralizer terms correspond to the orbit of
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the magnetic charges under the action of residual gauge group, discarding the centralizer
terms amounts to restricting to the fully framed moduli spaces introduced in section 3.2.1.

There are good arguments to discard the centralizer terms inthe present discussion or
at least to treat them on a different footing than the remaining terms in (3.38). The cen-
tralizer terms count the dimensions of the orbit of the magnetic charge under the action of
the electric group. Naively one would thus expect that this orbit is related to the electrical
properties of the monopoles. Such a picture is flawed becausealready at the classical level
there is a topological obstruction for implementing the full residual electric groupH ⊂ G

globally as has been proven by various authors [24, 26, 25, 27, 28]. This obstruction is
directly related to the fact that a magnetic monopole definesa non-trivialH bundle on a
sphere at infinity. A subgroupH ′ ⊂ H ⊂ G is implementable as a global symmetry in
the background of a monopole if the transition function (2.57)

G(ϕ) = exp

(
ie

2π
G0ϕ

)
(3.39)

is homotopic to a loop in

ZH(H ′) = {h ∈ H : hh′ = h′h ∀h′ ∈ H} (3.40)

the centralizer ofH ′ ⊂ H . Note that the maximal torusU(1)r ⊂ H is always imple-
mentable. As as rule of thumb one finds thatH ′ can be non-abelian if up to unbroken
coroots the magnetic charge has one or more vanishing weights with respect to the non-
abelian component ofH . This follows from the fact that the holomorphic componentsof
the magnetic charge are not conserved under smooth deformations.
There is an even stronger condition on the electric symmetrythat can be realized in the
monopole background. One can show [26] that the action of theresidual electric group
maps finite energy configurations to monopole configurationswith infinite energy if the
magnetic charge is not invariant. The interpretation is that all BPS configurations with
finite energy whose magnetic charges lie on the same electricorbit are separated by an
infinite energy barrier.
Classically one thus finds that only if the generators of the residual gauge group H com-
mute with the magnetic charge one can define a global rigid action of H. In other words
the monopole effectively breaks the symmetry further down so that only the centralizer
group can be realized as a symmetry group. For example in the case thatSU(3) is broken
to U(2) monopoles with magnetic chargeg = 2α2 can only carry electric charges under
U(1)2, while monopoles in the same framed moduli space withg = 2α2 + α1 might
carry charges under the full residualU(2) group. These obstructions persist at the semi-
classical level [23, 24, 65].

The dimensions of the fully framed moduli spaces have a simple expression in terms
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of the topological and holomorphic components of the reduced magnetic chargẽg [44]:

dimM(µ, Φ0, G0) =

s∑

i=1

4mi +

r∑

j=s+1

4hj. (3.41)

4 4

8 12 8

12 16 16 12

Figure 3.4: Dimensions for the fully framed moduli spaces forSU(3) broken toU(2), and the
generators of the Murray cone. The dimensions are only additive if one moves along the central
axis of the cone or away from it.

4

12

8

16 12

Figure 3.5: The fundamental Murray cone forSU(3) broken toU(2). In this example the magnetic
charge lattice is interpreted as the weight lattice ofU(2). The fundamental Murray cone is the
intersection of the full cone with the fundamental Weyl chamber of theU(2) weight lattice. The
dimensions of the fully framed moduli spaces are additive under the composition of the generators
depicted by the arrows.

Previously we have found that the Murray cone is spanned by the magnetic charges with
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unit topological charges. We might hope that the dimensionsof the fully framed moduli
spaces behave additively with respect to the expansion intothese indecomposable charges
as was the case for the framed moduli space. Such additive behaviour does indeed occur,
but only partially. For instance the case ofSU(3) → U(2) is worked out in figure 3.4.
The additivity of the moduli space dimensions still holds aslong as we stick to one of the
Weyl chambers of the cone, defined with respect to the residual Weyl action.
Apparently the dimensions of the fully framed moduli spacesare not compatible with the
Murray cone in general. However, as we will prove below thesedimensions are compati-
ble with the fundamental Murray cone.
In the abelian case this is obviously true. The Weyl group of the residual group is now
trivial and there is no additional identification within thecone. Therefore we can refer
back to the previous sections where we found that the generating charges have unit topo-
logical charge and that the dimensionality of the moduli space is proportional to the total
topological charge. Our favourite example in the truly non-abelian caseSU(3) → U(2)

is worked out in figure 3.5. The generators of the fundamentalMurray cone are easily
recognized and the additivity of dimensions is easily confirmed.
We claim that the additivity of the moduli space dimensions with respect to a decomposi-
tion in generating charges of the fundamental Murray cone holds in general. Without an
explicit set of generators it seems we cannot prove this directly. However, it suffices to
check the additivity for every pair of charges in the fundamental cone.

Proposition 3.4 For any pair of magnetic chargesg andg′ in the fundamental Murray
cone we have for the fully framed moduli spacesdimMg + dimMg′ = dimMg+g′ .

Proof. Recall from equation (3.41) that the dimensions of the fullyframed moduli space
are proportional to the topological and holomorphic charges of the reduced magnetic
charge. We thus have to show that the topological and holomorphic charges add. These
charges are given by the inner product of the reduced magnetic charge with respec-
tively the broken and unbroken fundamental weights as explained in section 2.3.3 and
2.3.4. For examplemi = λi · g̃. Next we note that there exists a Weyl transformation
w ∈ W (H) ⊂ W (G) that maps the fundamental Weyl chamber to the anti-fundamental
Weyl chamber. Thus ifg, g′, g′′ lie in the fundamental Murray cone andg′′ = g + g′

the reduced magnetic charges satisfyg̃′′ = w(g′′) = w(g) + w(g′) = g̃ + g̃′. As a last
step we find thatm′′

i = λi · g̃′′ = λi · (g̃ + g̃′) = mi + m′
i. Similar results hold for the

holomorphic charges. �

The dimensions of the fully framed moduli spaces only respect the addition of charges
in the Murray cone if the charges are restricted to one Weyl chamber, for example the
fundamental Weyl chamber. This is consistent with our conclusion at the end of section
2.3.4 that the magnetic charge sectors are labelled by weights in the fundamental Weyl
chamber of the residual dual group.
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In this section we have established a non-abelian generalization of Weinberg’s analysis
for abelian monopoles: we have shown that the dimensions of the fully framed moduli
spaces respect the addition of magnetic charges within the fundamental Murray cone.
Just as Weinberg we are now led to the conclusion that there isa distinguished set of basic
monopoles. The charges of these basic monopoles correspondto the generators of the
fundamental Murray cone. The remaining charges in the fundamental Murray cone are
then associated with multi-monopole solutions.
For maximal symmetry breaking the set of basic monopoles coincides with the monopoles
with unit topological charge. In our proposal this is not true in the general case. There can
be basic monopoles with non-minimal topological charges. In the next section we shall
discuss additional evidence to support our conclusion thatbasic monopoles are always
indecomposable, even if they have non-minimal topologicalcharges.
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3.3 FUSION PROPERTIES OF NON-ABELIAN MONOPOLES

In the previous sections we argued that smooth BPS monopoleswith non-trivial charges
can consistently be viewed as multi-monopole solutions built out of BPS configurations
with minimal charges. These classical fusion rules cannot always be verified directly be-
cause of the complexity of the BPS equations. In this chapterwe have therefore gathered
all available circumstantial evidence. These consistencychecks can be organized into four
different themes: the existence of generating charges and the consistent counting of mod-
uli space parameters have been discussed in the previous sections. Below in section 3.3.1
and 3.3.2 we shall study some examples where one can verify the classical fusion rules
directly. For singular BPS monopoles there is a similar set of generating charges, a con-
sistent counting of parameters and a consistent way to patchclassical solutions together
as we discuss in section 3.3.3. These analogies form a remarkable hint suggesting that
the classical fusion rules we have found for smooth BPS monopoles are indeed correct.
Finally in section 3.3.4 we look ahead and discuss how this analogy between singular
and smooth BPS monopoles might help us to derive the semi-classical fusion rules of
smooth BPS monopoles and conversely how to get a better understanding of the general-
ized electric-magnetic fusion rules in the singular case.

3.3.1 PATCHING SMOOTH BPS SOLUTIONS

The first hint revealing the existence of multi-monopole solutions built out of certain min-
imal monopoles comes from the fact that there is a small set ofindecomposable charges
generating the full set of magnetic charges. In this sectionwe use results of Taubes ob-
tained in [52] to show that certain monopoles with non-trivial charges are indeed multi-
monopole solutions respecting the decomposition of the magnetic charge into generating
charges. We shall first discuss maximal symmetry breaking. In this case all monopoles
with higher topological charges are manifestly seen to be multi-monopoles. Second we
shall deal with non-abelian residual gauge groups. In this case Taubes’ result gives a con-
sistency check for the classical fusion rules.

For maximal symmetry breaking the set of magnetic charges corresponds to the Mur-
ray cone and is generated by the broken simple coroots. For each of these coroots an
exact solution is known. These are spherically symmetricSU(2) monopoles [40, 22, 65].
For G equal toSU(2) one has the usual ’t Hooft-Polyakov monopole [6, 7], while for
higher rank gauge groups one can embed ’t Hooft-Polyakov monopoles via the broken
simple roots. Since these monopoles have unit topological charges they are manifestly
indecomposable.
Exact solutions are also known in other cases. It was shown byTaubes [52] that there
are solutions to the BPS equation for any chargeg = miα

∗
i with mi > 0. Hence for all
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charges in the Murray cone solutions exist. These solutionsare constructed out of su-
perpositions of embeddedSU(2) monopoles. The constituents are chosen such that the
sum of the individual charges matches the total charge. These solutions become smooth
solutions of the BPS equations if the constituents are sufficiently separated. This proves
that for all magnetic charges with higher topological charges multi-monopole solutions
exist.
One might wonder if all solutions with higher topological charges are indeed multi-
monopole solutions. For any given topological charge the framed moduli space is con-
nected. Thus any point in this moduli space is connected to another point corresponding
to a widely separated superposition as described by Taubes.Any monopole configuration
can thus be smoothly deformed so that the individual components are manifest. This does
indeed show that any smooth abelian BPS monopole can consistently be viewed as multi-
monopole configuration built out of indecomposable monopoles.

The multi-monopole picture above for maximal symmetry breaking can be generalized
to arbitrary symmetry breaking. For any given topological charge there exist smooth so-
lutions of widely separated monopoles. According to Taubesthe building blocks of these
smooth solutions correspond to theSU(2) monopoles embedded via the broken simple
roots. The framed moduli space does not depend on the full magnetic charge, but only
on the topological components. Moreover the framed moduli space is always connected.
We now find that any solution of the BPS equation with higher topological charges can
be deformed to a configuration which is manifestly a multi-monopole solution.
However, this decomposition via widely separated multi-monopole solutions does not
respect the additive structure of the Murray cone unless we completely ignore the holo-
morphic charges. In the previous section we argued that thisdoes not make sense from a
physical perspective because the allowed electric excitations depend on the holomorphic
charges. Moreover we have found that if we take these holomorphic charges into account
we should restrict the magnetic charges to lie in the fundamental Murray cone. The ap-
propriate moduli spaces to consider in this situation are the fully framed moduli spaces.
The question now is if these fully framed moduli spaces contain configurations which can
be interpreted as widely separated monopoles.
With the results of Taubes we can answer this question unambiguously for one of the fully
framed moduli spaces in the set of spaces defined by the topological charge. We start out
with a magnetic charge that is equal to a sum of unbroken simple coroots. Such a charge
does not lie in the fundamental Murray cone, but instead in the anti-fundamental Weyl
chamber of the Murray cone. This implies that there is a Weyl transformation that maps
such a magnetic charge to the fundamental Murray cone. Similarly, there is a related large
gauge transformation that maps Taubes’ multi-monopole configurations to new solutions
of the BPS equation. These transformed configurations are again widely separated super-
positions, but now the buildings blocks correspond toSU(2) monopoles embedded via
the Weyl transformed broken roots. Note that magnetic charges of these constituents are
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precisely the generators of the fundamental Murray cone with unit topological charges.
We thus obtain the following result: letg equal a sum of generators of the fundamental
Murray cone with unit topological charges. The fully framedmoduli space corresponding
tog has a subset of configurations that are manifestly multi-monopole solutions. Since the
fully framed moduli space is connected any monopole with chargeg can be interpreted as
a multi-monopole solution.

The considerations above only involved indecomposable charges corresponding to simple
coroots. For a maximally broken gauge group this is sufficient to provide convincing evi-
dence for the multi-monopole picture. In the non-abelian case one should also take other
generators into account. We will come back to this in the nextsection.

3.3.2 MURRAY CONE VS FUNDAMENTAL MURRAY CONE

One problem we encounter in this thesis is that it is not completely clear what the full set
of magnetic charges is supposed to be, either the Murray coneor the fundamental Murray
cone. By the same token it is a priori not clear what the truly indecomposable monopoles
are, the fundamental monopoles or the basic monopoles. The fundamental Murray cone
is slightly favoured because the large gauge transformations have been modded out. On
the other hand not all generating charges of the fundamentalMurray cone have unit topo-
logical charges, while the fundamental monopoles generating the Murray cone do. This
suggest that the monopoles corresponding to the generatorsof the fundamental Murray
cone, the basic monopoles might be decomposable into fundamental monopoles related
to the generators of the Murray cone. What seems to settle this issue though is that
there is only a consistent counting of moduli space parameters if we restrict to the funda-
mental Murray cone. The indecomposability for the basic monopoles with non-minimal
topological charges can be understood from the existence ofso-called cloud parameters.
These clouds emerge as soon as one attempts to split a basic monopole into fundamental
monopoles. Below we explain this for the case thatG = SU(3) is broken toU(2).

The caseSU(3) → U(2) is an interesting example to discuss issues regarding com-
position and decomposition because some of the corresponding non-trivial moduli spaces
have been thoroughly investigated. Specifically forg = 2α2 + α1, one of the generators
of the fundamental Murray cone, the 12 dimensional fully framed moduli space and its
metric have been found Dancer [66]. Determining the isometries of the metric reveals the
nature of almost all of the 12 parameters. Three parameters are related toR3, the center
of mass position in space. The action ofU(2)× SO(3) shows the presence of three rota-
tional degrees of freedom and four large gauge modes. After the removal of translations,
gauge freedom and rotations one is left with a two-dimensional space. This space turns
out to be parameterized byk andD with 0 ≤ k ≤ 1 and0 ≤ D < 2

3K(k), where
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K(k) denotes the first complete elliptic integralK(k)=
∫ π

2

0
(1 − k2 sin2(θ))−1/2dθ [66].

The interpretation of these two parameters seems somewhat mysterious. To understand
their significance, the behaviour of the BPS solutions have been studied numerically for
various values of these parameters [67, 68, 69]. See section8 of [70] and section III.B of
[71] for a review.
There is a subset of solutions where the energy density has two maxima symmetrically po-
sitioned about the center of mass. If the parameterD is increased the peaks of the energy
density becomes more pronounced and move further from the center of mass. This seems
to indicate that certain solutions can be viewed as a pair of widely separated particles.
The question that comes to mind now is the following: do thesewidely spaced lumps cor-
respond to a pair of monopoles with unit topological charge?In this particular case there
is only one broken simple root, and hence there is only one class of embeddedSU(2)

monopoles with unit topological charge giving rise to a 4 dimensional fully framed mod-
uli space. Taubes has shown that such solutions can be patched together yielding widely
separated solutions with higher topological charges [52].A pair of these patched solu-
tions with magnetic chargẽg = α2 + α1 would give a configuration with total charge
2α2 + 2α1. We thus see that these solutions do not lie in the 12 dimensional Dancer
moduli space but in the neighbouring 8 dimensional fully framed moduli space. Before
drawing any conclusions we recall one subtle point. All monopoles of equal topological
charge lie in one connected moduli space, which is divided upinto strata. By dividing
out large gauge transformations these strata reduce to the fully framed moduli spaces we
discussed here. To be more precise the 8 dimensional fully framed moduli space related
to g = 2α2 + 2α1 lies in a 10 dimensional stratum which is the boundary of the Dancer
moduli space. A measure for the distance to the boundary of the Dancer moduli space
is given by1/a wherea = D/(K(k) − 3

2D). The widely separated monopoles in the
Dancer moduli space, and as a matter of fact any configurationin the Dancer moduli space
can be deformed into widely separated monopoles discussed by Taubes. As we explained
in section 3.3.1 this decomposition does not respect the additive structure of the Murray
cone nor the addition of charges in the fundamental Murray cone. What is even more
striking is that this deformation will give rise to highly non-localized degrees of freedom
in the form of a non-abelian cloud.

A rather insightful computation to illustrate the appearance of the non-abelian cloud as
one moves to the boundary of the Dancer moduli space is discussed by Irwin [69]. In his
paper Irwin computes the asymptotic behaviour for the magnetic field of axially symmet-
ric trigonometric monopoles (k = 0) in the Dancer moduli space asa → ∞. In the string
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gauge the asymptotic fields in this limit are given by:

Φ =Φ0 −
1

er
t0 −

1

er(1 + r/a)
t3

∗F =
1

er2
t0dr +

1 + 2r/a

er2(1 + r/a)2
t3dr +

1

ear2(1 + r/a)2
(t1dθ − sin θt2dϕ)

A = − 1

e
cos θ (t0 + t3) dϕ − 1

e(1 + a/r)
(t2dθ + sin θt1dϕ) .

(3.42)

The expectation valueΦ0 is proportional tot0. The matricesti are the generators of
the residual gauge groupU(2) ⊂ SU(3): t0 = (α1 + 2α2) · H =

√
3H2, t1 =

1
2 (Eα1 + E−α1), t2 = − i

2 (Eα1 − E−α1) andt3 = α1 · H = H1. With these conven-
tions the commutation relations for theSU(2) generators are given by[ti, tj ] = iǫijktk.
Obviously we also have[t0, ti] = 0. As a side remark we note that (3.42) gives an exact
solution of the BPS equations forU(2) which is singular at r=0.
The behaviour of the solution above shows that the non-abelian fields penetrate outside the
core of the monopoles up to some finite distance determined bythe parametera. Beyond
this distance the magnetic field becomes abelian, which is inagreement with the bound-
ary condition at infinity. The interpretation of this observation is that the monopoles are
surrounded by a non-abelian cloud screening the non-abelian charge. As one moves all
the way to the boundary of the Dancer moduli space anda becomes infinite the cloud gets
diluted so that the non-abelian field yields to infinity resulting in non-vanishing holomor-
phic charges.

This whole exposition does lead us to an important conclusion: the behaviour of the
Dancer monopoles shows us that these configurations can indeed be split up into sepa-
rate lumps. At the same time this separation yields a non-localized degree of freedom.
Since this cloud parameter does not correspond to one monopole or the other, the two
widely spaced lumps are not the same as they would be on their own. Therefore the
Dancer monopoles cannot be decomposed. In this particular example we thus see that
basic monopoles are indeed indecomposable. We expect that similar arguments should
hold in general.

3.3.3 PATCHING SINGULAR BPS SOLUTIONS

There are striking similarities between the results obtained in this thesis for smooth BPS
monopoles and results obtained by Kapustin and Witten regarding singular BPS monopoles
[18]. In the context of singular monopoles we shall discuss the existence of fundamental
and basic monopoles, consistent counting of moduli space parameters, patching of classi-
cal solutions and the indecomposability of basic monopoleswith non-trivial topological
charges.
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The magnetic charge lattice for singular monopoles in a gauge theory with gauge group
H is determined by the Dirac quantization condition. As we reviewed in section 2.3.1
this lattice can be identified with the weight latticeΛ(H∗) of the GNO or Langlands dual
group. The magnetic weight lattice contains an important subset, the set of magnetic
charge sectors, which is obtained by modding out the Weyl group ofH∗. This subset can
thus be identified with the fundamental Weyl chamber inΛ(H∗). Modding out the Weyl
group ofH∗ is natural because a magnetic chargeλ ∈ Λ(H∗) is only defined up to Weyl
transformations. Note that these Weyl transformations acts as large gauge transformations
on the BPS solutions.

The existence of generating charges within the weight lattice Λ(H∗) of the dual gauge
group and within its fundamental Weyl chamber has been discussed in sections 3.1.2 and
3.1.3. These generating charges correspond to what we defineas respectively fundamental
monopoles and basic monopoles. The basic monopoles, not thefundamental monopoles,
form the building blocks of singular multi-monopole solutions of the BPS equations just
as we concluded for smooth BPS solutions. This is seen indirectly by analyzing the mod-
uli space parameters.

The moduli spaces for singular BPS monopoles introduced by Kapustin and Witten are
spaces of so-called Hecke modifications and correspond to orbits in the affine Grassman-
nian. For further details we refer to [18] and references therein. It is important that these
moduli spaces are labelled by a dominant integral weight in the weight lattice of the dual
gauge groupH∗. We also note that these moduli spaces are closed under largegauge
transformations, hence magnetic charges on one Weyl orbit correspond to the same mod-
uli space. For completeness we mention that the compactifications of these moduli spaces
are singular. The singular subspaces inMλ correspond to the moduli spacesMλ′ where
λ′ < λ.

The dimensionality of an orbitMλ in the affine Grassmannian labelled by a dominant
integral weightλ ∈ Λ(H∗) is given by [72]:

dimMλ = 2λ · ρ, (3.43)

whereρ is the Weyl vector ofH and thus equals half the sum of the simple roots ofH , see
e.g. [73] for a brief summary. We now immediately find for a pair of dominant integral
weightsλ andλ′:

dimMλ + dimMλ′ = dimMλ+λ′ . (3.44)

Here we use the fact that sum of two dominant integral weightsis again a dominant inte-
gral weight. We thus see that the moduli space dimensions respect the addition of charges
in the fundamental Weyl chamber ofH∗. It is not difficult to see that these dimensions are
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not consistent with the addition of charges in the complete weight lattice ofH∗. Similar
results where obtained in section 3.2.3 for the Murray cone and the fundamental Murray
cone.

The formalism in which Kapustin and Witten work is so powerful that one can quite ex-
plicitly see that all singular monopoles with non-basic charges are indeed multi-monopole
solutions. This is related to the fact that the singularities of the compactified moduli spaces
can be blown-up in a very specific way. We briefly sketch how this works. Singular BPS
monopoles correspond to ’t Hooft operators which create theflux of a Dirac monopole
with a singularity at a pointp ∈ R3. These ’t Hooft operators can in turn be identified
with Hecke operators. The Hecke operators act on vector bundles overC in this case in
such a way that the trivialization outside a preferred pointon C is respected. To achieve
this relationR3 is identified withC × R. For a non-zero magnetic charge the Hecke
operator maps a trivial bundle to a non-trivial bundle. These two bundles overC are iden-
tified with pullback bundles of the non-trivial bundle overR3 \ {p} corresponding to the
singular BPS configuration. The two embeddings ofC are chosen at opposite sides of
p ∈ C × R. Note that the isomorphism class of the resulting modified bundle does not
only depend on the magnetic charge but also in a certain way onthe trivialization of the
trivial bundle one started out with. This why one Hecke operator gives rise to a space of
Hecke modifications.
A relevant but actually not very deep observation is that allHecke operators can be de-
composed as a sequence of basic Hecke operators and thus all ’t Hooft operators can be
decomposed as sequence of basic ’t Hooft operators. These basic operators create the
flux of a Dirac monopole associated to a basic charge in the fundamental Weyl chamber
of H∗. An important as well as deep consequence of the identification of ’t Hooft oper-
ators and Hecke operators is that the resulting sequence of basic ’t Hooft operators can
be separated in space. Each basic ’t Hooft operator is positioned between two copies of
C ⊂ R3 and the associated Hecke operators map one bundle overC to the other bundle
at the reverse side of the singularity. The resulting bundles overC can be considered as
a series of pullback bundles in a bundle overR3 corresponding to a series of smoothly
patched BPS solutions.

Singular BPS solutions corresponding to basic monopoles may have non-trivial topo-
logical charges just as we have seen for smooth BPS solutions. One might again wonder
if such basic monopoles can be split up into fundamental monopoles which do have unit
topological charges. Intuitively this does not seem difficult. One would expect that there
exists an exact multi-monopole solution of widely separated fundamental monopoles in
the same topological sector. Because all spaces of Hecke modifications in one topological
sector are connected one can now deform the original monopole into a manifest multi-
monopole solution. Just as for smooth monopoles this deformation does not respect the
holomorphic charges. There is also a more subtle way to look at this holomorphic ob-
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struction.
As an example we considerH∗ = U(2). This case has been worked out in quite some
detail by Kapustin and Witten. The basic monopole with unit topological charge cor-
responds to the highest weightλ of the fundamental representation ofU(2). The basic
monopole with topological charge equal to 2 has a magnetic charge given by2λ − α,
whereα is the simple root ofSU(2). The compactification ofM2λ is given by the
singular spaceWCP2(1, 1, 2). The singularity corresponds to the0-dimensional space
M2λ−α. The singularity ofWCP2(1, 1, 2) can be blown-up to obtainCP1 ×CP1. Since
CP1 = Mλ the blow-up obviously gives the moduli space of two separated fundamen-
tal monopoles. On thus sees that the a basic monopole with topological charge 2 can
be deformed into two separate monopoles only if one attributes extra degrees of free-
dom by embedding the moduli space as a singularity in a largerspace and only if these
degrees of freedom are changed in a non-trivial way by blowing-up the singularity. It fol-
lows for U(2) that classically basic monopoles are not truly separable into fundamental
monopoles. For general monopoles similar arguments shouldhold.
Note that for smooth monopoles we used the emergence of non-localized degrees of free-
dom to show that the basicU(2)-monopoles are indeed indecomposable. Though the
motivation via clouds is quite different from the argument used right above in the singular
case the result is the same: the charges of the indecomposable monopoles in the smooth
theory are subset of the indecomposable charges for singular monopoles. In that sense the
classical fusion rules for smooth BPS monopoles are consistent with those for singular
BPS monopoles.

3.3.4 TOWARDS SEMI-CLASSICAL FUSION RULES

In the literature it has often been assumed that the BPS solutions corresponding to weights
of the fundamental representation ofH∗ give rise to a singleH∗-multiplet [40, 74, 75,
76, 77, 70, 78] as would be favourable to the conjecture that these monopoles can be re-
garded as massive gauge particles of the dual theory. This proposal runs into trouble in
particularly for non-simply laced gauge groups because theelectric action on the classical
solutions does clearly not commute with the magnetic actionof the residual dual group on
the magnetic charges. From the classical fusion rules we findthat smooth BPS solutions,
and actually also singular BPS solutions, are labelled by dominant integral weights in the
weight lattice of the residual dual groupH∗. This suggest that each electric orbit in the
magnetic charge lattice ofH∗ thus gives rise to a uniqueH∗-multiplet. This form of the
GNO duality conjecture has been proven by Kapustin and Witten in the case of singular
BPS monopoles [18]. They show that the semi-classical fusion rules for singular BPS
monopoles are indeed the fusion rules ofH∗. Since the classical fusion rules for singu-
lar and smooth BPS monopoles are completely analogous and because the semi-classical
fusion rules must also agree one can expect that a similar approach can be used to derive
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the semi-classical fusion rules in the smooth case. It is notimmediately clear though how
such a program can be realized and some major hurdles have to be overcome. We shall
discuss this shortly.

In the Kapustin-Witten approach the semi-classical fusionrules are found from the quan-
tum mechanics on the moduli spaces. A similar strategy but with a less ambitious goal in
mind was adopted in the case of smooth monopoles by Dorey et al. in [77]. These authors
tried to give a consistent counting of states, an attempt that turned out not to be completely
successful. In hindsight we can understand that the problemwas caused by the fact Dorey
et al. did not use the same moduli spaces as Kapustin and Witten. The moduli spaces used
by Kapustin and Witten can be identified with orbits in the affine Grassmannian labelled
by the magnetic charges in the weight lattice ofH∗. These orbits do contain the orbits of
the magnetic charge inh, the Lie algebra ofH , under the action of the gauge groupH

as used in [77]. Only if the magnetic charge labels a so-called minuscule representation
the orbit in the affine Grassmannian is isomorphic to the orbit in the Lie algebra ofH .
In these cases the number of ground states of the quantum mechanics on the orbit in the
Lie algebra agrees with the dimension of the irreducible representation labelled by the
magnetic charge. In other cases the orbit inh is a non-trivial subspace within the orbit in
the affine Grassmannian. The degeneracy of the ground state of the quantum mechanics
on the orbit inh under-estimates the dimension of the magnetic representations.

If one wants to retrieve a counting of states consistent withthe irreducible representa-
tions ofH∗ as well as the fusion rules ofH∗ one is forced to consider the orbits in the
affine Grassmannian. The problem is that it is only partiallyclear how these magnetic
moduli spaces are to appear within the full moduli spaces of smooth BPS monopoles.
What is consistent though is that the orbits of the magnetic charges under the electric ac-
tion, which are part of the related orbits in the affine Grassmannian, have to be treated on
a different footing within the framed moduli spaces as we discussed in section 3.2.3.
Another hint that shows the relevance of the affine Grassmannian for smooth monopoles
comes from considering non-abelian vortex solutions. In particular the moduli space of
axially symmetric vortices with winding number 2 in a certain U(2) gauge theory equals
WCP2(1, 1, 2) [79]. These vortex solutions can be identified with a co-axial composite
of two fundamental vortices and the moduli space reduces toCP1 × CP1 in the widely
separated situation. Each of theseCP1-factors corresponds to the moduli space of a fun-
damental vortex. As the vortex and monopole moduli are related by a homotopy matching
argument [80] it seems natural to assume that theWCP2(1, 1, 2) is the appropriate moduli
space for smooth monopoles with topological charge 2 in a theory where the gauge group
SU(3) is broken down toU(2).

One of the drawbacks of the approach used by Kapustin and Witten is that it is not clear
how to deal with electric excitations of magnetic monopoleseven though one can in-
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troduce general Wilson-’t Hooft operators in for example certainN = 2 gauge theories
[81]. If one manages for smooth monopoles to introduce the appropriate magnetic moduli
spaces in combination with the fully framed moduli spaces then one obtains an interest-
ing model to study electric-magnetic symmetry. This would be an important achievement
because it is not known what this unified electric-magnetic symmetry is. It is clear though
that this symmetry is not the groupH × H∗ as originally proposed in [2] because the
magnetic charge effectively breaks the electric group as wediscussed in section 3.2.3. In
[78] a unified electric-magnetic group was introduced forH = U(n) which does respect
this interaction between electric representations and magnetic charges. We will eleborate
on this in chapter 4.
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CHAPTER 4

FUSION RULES FOR DYONS

In this chapter we try to find an answer to the question what theelectric-magnetic symme-
try in a non-abelian gauge theory amounts to. This question may be paraphrased in many
ways, varying in physical content and mathematical sophistication. Our main goal is to
find a consistent large distance description of the electric, magnetic and dyonic degrees
of freedom. We would like to uncover the hidden algebraic structure which governs the
labelling and the fusion rules of the charge sectors in general gauge theories.

Even though electric degrees fall into irreducible representations of the groupG and
magnetic sectors correspond to irredicible representations of the dual groupG∗, dyonic
charge sectors are not labelled by aG × G∗ representation. Since in a give monopole
background the electric symmetry is restricted to the centraliser inG of the magnetic
charge as discussed in the previous chapter, dyonic sectorsare instead characterised (up
to gauge transformations) by a magnetic charge and an electric centraliser representation.
As we review in section 4.2 there is an equivalent labelling of dyonic charge sectors by
elements in the set(Λ × Λ∗)/W , whereW is the Weyl group which isomorphic forG
andG∗ andΛ andΛ∗ are the weight lattices of respectivelyG andG∗.
In section 4.3 we introduce a candidate for a unified electric-magnetic symmetry group
in Yang-Mills theory, which we call the skeleton group. A substantial part of this section
is taken up by a detailed exposition of various aspects of theskeleton group which are
needed in subsequent sections. The first important result ofthis chapter is that in section
4.4 we provide evidence for the relevance of the skeleton group by relating the represen-
tation theory of the skeleton group to the labelling and fusion rules of charge sectors. In
particular we show that the labels of electric, magnetic anddyonic sectors in a non-abelian
Yang-Mills theory can be interpreted in terms of irreducible representations of the skele-
ton group. Decomposing tensor products of irreducible representations of the skeleton
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group thus gives candidate fusion rules for these charge sectors. We demonstrate consis-
tency of these fusion rules with the known fusion rules of thepurely electric or magnetic
sectors, and extract new predictions for the fusion rules ofdyonic sectors in particular
cases.
One should expect the dyonic sectors and fusion rules to be robust and in particular in-
dependent on the dynamical details of the particular model.Hence, in this chapter we
will not focus on special models. Nonetheless our results must be consistent with what is
known for example about S-duality ofN = 4 super Yang-Mills theories. After giving a
brief review of S-duality and its action on dyonic charge sectors in section 4.5 we there-
fore show that the fusion rules obtained from the skeleton group commute with S-duality.
In section 4.6 we come to a final piece of evidence for the relevance of the skeleton group
which goes beyond the consistency checks of the preceding sections. For this purpose
we introduce the skeleton gauge which is a minimal generalisation of ’t Hooft’s abelian
gauge [29]. We argue that the skeleton group plays the role ofan effective symmetry
in the skeleton gauge. Moreover we proof that the skeleton gauge incorporates intrinsi-
cally non-abelian configurations, so-called Alice fluxes, which are excluded in the abelian
gauge. Hence, compared to the abelian gauge, the skeleton gauge is particularly useful
for exploring non-abelian phases of the theory which generalise Alice electrodynamics
[30, 31, 32] and phases, as listed at the end of the section, that emerge from generalised
Alice phases by condensation or confinement. The skeleton gauge is thus necessary to
reveil certain phases of the theory which get “out of view” inthe abelian gauge. An im-
portant example is a peculiar phase we find where particles have “lost” their charges.

4.1 LIE ALGEBRA CONVENTIONS

As explained in e.g. chaper 6 of [82], the Lie algebrag of the gauge groupG of rankr

can be written as a sum of vector spaces

g =
⊕

α

gα. (4.1)

The Cartan subalgebra (CSA)g0 is r-dimensional and from here on we shall denote it by
t. The remaining one dimensional subspacesgα are defined by:

[H, X ] = α(H)X (4.2)

for all H ∈ t and allX ∈ gα. In the Cartan-Weyl basis ofg we have:

[Hi, Eα] = αiEα [Eα, E−α] =
2α · H

α2
(4.3)
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where for eachα the eigenvalueαi := α(Hi) is non-vanishing for at least one value ofi.
Ther-dimensional vectorsα = (αi)i=1,...,r are nothing but the roots ofg and each root
α can thus thus be naturally interpreted as an element int∗:

α : t → C. (4.4)

Intstead of the basis(Hi) for t as used in equation (4.3) one can choose a basis for the
CSA via

Hα = 2α∗ · H (4.5)

whereα∗ = α/α2. We now find

[Hα, Eβ ] = 2α∗ · βEβ [Eα, E−α] = Hα. (4.6)

The corootsHα span the coroot latticeΛcr ⊂ t and the roots span the root latticeΛr ⊂ t∗.
The dual lattice of the coroot lattice is the weight latticeΛw ⊂ t∗ of g generated by the
fundamental weights. The dual lattice of the root lattice isthe so-called magnetic weight
latticeΛmw ⊂ t. Note that the weight latticeΛ(G) of G satisfiesΛr ⊂ Λ(G) ⊂ Λw,
while the dual weight latticeΛ∗(G) of G satisfiesΛcr ⊂ Λ∗(G) ⊂ Λmw. It turns out [2]
thatΛ∗(G) can be identified with the weight latticeΛ(G∗) of GNO dual groupG∗. The
roots ofG∗ correspond to the coroot ofG while the fundamental weights ofG∗ spanΛmw.

4.2 CHARGE SECTORS OF THE THEORY

One of the key features of the skeleton group is that it reproduces the dyonic charge
sectors of a Yang-Mills theory. To appreciate this one needssome basic understanding of
the electric and magnetic charge lattices and the set of dyonic charge sectors.

4.2.1 ELECTRIC CHARGE LATTICES

To define the electric content of a gauge theory one starts by choosing an appropriate
electric charge latticeΛ. Choosing an electric charge lattice corresponds to choosing a
gauge groupG such thatΛ equals the weight latticeΛ(G) of G. The electric charge lattice
Λ can vary from the root latticeΛr to the weight latticeΛw of g. This corresponds to the
fact that for a fixed the Lie algebrag one can vary the Lie groupG from G all the way
to G̃, whereG̃ is the universal covering group ofG andG is the so-called adjoint group,
which is the covering group divided by the centerZ(G̃). Note that the possible electric
gauge groups are are not related as subgroups but rather by taking quotients.
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4.2.2 MAGNETIC CHARGE LATTICES

Once the electric groupG is chosen one is free to choose the magnetic content as long as
the generalised Dirac quantisation condition [1, 2] is respected. The magnetic content is
defined by fixing a magnetic charge latticeΛ∗. Just like on the electric side a choice for
the magnetic charge lattice corresponds to a unique choice of a magnetic groupG∗ whose
weight latticeΛ(G∗) equalsΛ∗. AgainG∗ can vary all the way fromG

∗
, the universal

cover ofG∗, to G̃∗ which is the adjoint ofG∗. This variation amounts to taking the mag-
netic charge lattice from the weight latticeΛmw to the root latticeΛcr of the fixed Lie
algebrag∗ of G∗.
Even thoughG does neither completely fixG∗ nor vice versa, the generalised quantisa-
tion condition as reviewed in section 2.3.1, does put some strong condition on the pair
(G, G∗). First of all the Lie algebrag of G uniquely fixes the Lie algebrag∗ of G∗ and
vice versa. Hence the universal covering groupsG̃ andG

∗
are uniquely related. More-

over, onceG is fixed, the quantisation condition defines a maximal sublattice inΛmw, the
weight lattice ofG

∗
. This special weight lattice equals the dual weight latticeΛ∗(G) of

G. TakingΛ∗ equal toΛ∗(G) amount to choosingG∗ to be the GNO dual group ofG.
We thus see that onceG is fixedG∗ can vary between the adjoint group̃G∗ and the GNO
dual group ofG. Analogously, ifG∗ is fixedG can vary between the GNO dual ofG∗

and the adjoint groupG without violating the generalised Dirac quantisation condition.

Unless stated otherwise we shall takeG andG∗ to be their respective GNO duals. Note
that if the fields present in the Lagrangian are only adjoint fields and one only wants to
consider smooth monopoles it is natural to restrictG andG∗ to be adjoint groups.

4.2.3 DYONIC CHARGE SECTORS

It was observed in [23, 24, 25, 26, 27, 28] that in a monopole background the global gauge
symmetry is restricted to the centraliserCg of the magnetic chargeg. This implies that
the charges of dyons are given by a pair(g, Rλ) whereg is the usual magnetic charge
corresponding to an element in the Lie algebra ofG andRλ is an irreducible representa-
tion of Cg ⊂ G. It is explained in [48] how these dyonic sectors can be relabelled in a
convenient way. We shall give a brief review.

Since the magnetic charge is an element of the Lie algebra onecan effectively viewCg as
the residual gauge group that arises from adjoint symmetry breaking where the Lie alge-
bra valued Higgs VEV is replaced by the magnetic charge. The Lie algebra ofgg of Cg is
easily determined. One can choose a gauge where the magneticcharge lies in the CSA of
G. Note that this not fixg uniquely since the intersection of its gauge orbit and the CSA
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corresponds to a complete Weyl orbit. Now since the generatorsHα of the CSA commute
one immediately finds that the complete CSA ofG is contained in the Lie algebra ofCg.
The remaining basis elements ofgg are given byEα whith α perpendicular tog. This
follows from the fact that[Eα, Hβ ] = 2(α · β)/β2Eα. We thus see that the weight lattice
of Cg is identical to the weight lattice ofG, whereas the roots ofCg are a subset of the
roots ofG. Consequently the Weyl groupWg of Cg is the subgroup in the Weyl groupW
of G generated by the reflections in the hyperplanes perpendicular to the roots ofCg.
An irreducible representationRλ of Cg is uniquely labelled by a Weyl orbit[λ] in the
weight lattice ofCg. Hence such a representation is fixed by aWg orbit in the weight lat-
tice ofG. Now rememberg itself is fixed up to Weyl transformations. SinceCg

∼= Cw(g)

for all w ∈ W we find that(Rλ, g) is uniquely fixed by an equivalence class[λ, g] under
the diagonal action ofW .

The ultimate goal of this paper is to find the fusion rules of dyons. We have explained
that dyons are classified by an equivalence class of pairs(λ, g) ∈ Λ(G) × Λ(G∗) under
the action ofW . By fusion rules we mean a set of rules of the form:

(Rλ1 , g1) ⊗ (Rλ2 , g2) =
⊕

[λ,g]

Nλ,g
λ1,λ2,g1,g2

(Rλ, g) (4.7)

where the coefficientsNλ,g
λ1,λ2,g1,g2

are positive or vanishing integers. Only for a finite
number of terms these integers do not vanish. One may also expect that the product
in equation (4.7) to be commutative and associative. Finally one should expect that the
fusion rules ofG andG∗ are respected for at least the purely electric and respectively the
purely magnetic cases.

4.3 SKELETON GROUP

In an abelian gauge theory with gauge groupT the global electric symmetry is not re-
stricted by any monopole background. The electric-magnetic symmetry is in that case
thus described byT × T ∗. The global electric symmetry that can be realised in any
monopole background is the maximal torusT generated by the CSA ofG. The magnetic
charges can be identified with representations of the dual torusT ∗. Hence the electric-
magnetic symmetry governing the gauge theory must containT ×T ∗. In the abelian case
T × T ∗ is the complete symmetry group whereas in the non-abelian case there must exist
some extension ofT × T ∗ that respects the dyonic charge sectors. The simplest non-
abelian extension ofT × T ∗ respecting the dyonic charge sectors is the proto skeleton
groupW ⋉ (T × T ∗). Since the proto skeleton group contains the maximal tori ofG and
G∗ while its product depends on the Weyl group action on these tori, its irreducible repre-
sentations are labelled by the dyonic charge sectors of the Yang-Mills theory with gauge
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groupG, as we shall explain in detail in section 4.4. However, the irreducible representa-
tions are only fixed once the so-called centraliser charges are given. It might be possible to
assign some physical significance to these centraliser charges if the proto skeleton group
is contained in the unified electric-magnetic symmetry of the theory. However, in that
case one should expect that the electric partW ⋉ T is a subgroup of the electric groupG.

Weyl group W∗ =W ≃ fW ∗/ eD∗ ≃ W ∗/D∗ ≃ W
∗

/D
∗

↑ ↑ ↑

Lift Weyl group fW ∗ ⊂ eG∗ ← W ∗ ⊂ G∗ ← W
∗

⊂ G
∗

Dual torus eT ∗ = R
r/Λw ← T ∗ = R

r/Λ ← T
∗

= R
r/Λr

∩ ∩ ∩

Dual group eG∗ = G
∗

/Z∗ ← G∗ ← G
∗

l l l

Dual weight latt. eΛ∗ = Λcr ⊂ Λ∗ ⊂ Λ
∗

= Λcw

⇑ Magnetic ⇑
− −−−−−−− l − −− l − −− l

⇓ Electric ⇓

Weigt lattice eΛ = Λw ⊃ Λ ⊃ Λ = Λr

l l l

Gauge Group eG → G → G = eG/Z

∪ ∪ ∪

Maximal torus eT = R
r/Λcr → T = R

r/Λ∗ → T = R
r/Λmw

Lift Weyl group fW ⊂ eG → W ⊂ G → W ⊂ G

↓ ↓ ↓

Weyl groupW ≃ fW/ eD ≃ W/D ≃ W/D
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Usually this does not hold. In fact even the Weyl groupW itself is usually not a subgroup
of G. Nonetheless some important features of the proto skeletongroup are shared with
the skeleton group whose electric subgroup does indeed lie within G. We shall thus build
up the construction of the skeleton group from the definitionof the proto skeleton group
and take advantage of the simplicity of the latter to explainsome relevant properties of
the skeleton group throughout the remainder of this paper.

4.3.1 SEMI-DIRECT PRODUCTS

The proto skeleton group and the skeleton group itself are both a semi-direct product.
Here we shall recapitulate the definition of a semi-direct product.

One of several equivalent definitions is that ifH is a subgroup ofG andN a normal
subgroup such thatG = NH andH ∩N = {e} thenG is a semi-direct product ofH and
N . Note that in contrast to the case with the direct product, a semi-direct product of two
groups is in general not unique; ifG andG′ are both semi-direct products ofH andN

then it does not follow thatG andG′ are isomorphic. However,G is fixed up to isomor-
phism by the action ofH onN . Let us denoteh ∈ H : n ∈ N 7→ h ⊲ n = hnh−1 ∈ N .
Note that sinceN is a normal subgroup ofG this action is well defined. Now define
H ⋉ N as the group whose elements are given by the setH × N and whose product is
given by:

(h1, n1)(h2, n2) = (h1h2, n1h2 ⊲ n2). (4.8)

The inverse of(h, n) is given by(h−1, h−1 ⊲ n−1). H × {eN} is a subgroup isomorphic
to H while {eH} × N is a normal subgroup isomorphic toN since

(h, eN )(eH , n)(h, eN )−1 = (eH , h ⊲ n). (4.9)

The intersectionH∩N equals{(eH , en)}. Finally each element(h, n) ∈ H ⋉N satisfies

(h, n) = (eH , n)(h, en) ∈ NH. (4.10)

Hence, the full groupH ⋉ N is a semi-direct product ofH andN in the sense above.

4.3.2 MAXIMAL TORUS AND ITS DUAL

The relevant normal group in the (proto) skeleton group is the product of the maximal
torus of the gauge group and its dual. We shall describe thesetori below.
Consider a particular gauge groupG, and its Cartan subalgebrat. The weight latticeΛ(G)

of G is defined as follows: first define the latticeΛ∗(G) ⊂ t as the kernel of the map

H ∈ t 7→ exp(2πiH) ∈ G. (4.11)
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The weight latticeΛ(G) ⊂ t∗ is the dual lattice ofΛ∗(G). Also note that

Λr ⊂ Λ(G) ⊂ Λw ⊂ t∗ (4.12)

and
Λcr ⊂ Λ∗(G) ⊂ Λmw ⊂ t. (4.13)

So far, all vector spaces where considered overC. However, by declaring the basis{Hα}
of t real and considering its real span we obtain a real vector spacetR. Similarly, the real
span of the rootsα is a real vector space, denoted byt∗

R
in the following. We then define

the maximal torus ofG via:
T = tR/(2πΛ∗(G)) (4.14)

and the dual torus via
T ∗ = t∗R/(2πΛ(G)). (4.15)

A convenient way to representT is as follows. LetG̃ be the universal cover ofG. The
dual weight latticeΛ∗(G̃) for G̃ equals the coroot latticeΛcr(G̃). The generators of this
lattice are the corootsHαi

with αi a simple root. One thus finds thatT eG is explicitly
parametrised byH =

∑r
i=1 θiHαi

wherer = rank(g) with θi ∈ [0, 2π). Note that the
image ofT eG in G̃ defined byH 7→ exp(2πiH) is isomorphic toT eG. The set of irreducible
representations of the abelian groupT eG ⊂ G̃ is given by the weight latticeΛw of G̃.
Let us return toG which is isomorphic tõG/Z, whereZ is the groupΛ∗(G)/Λcr ⊂ T eG.
Similarly TG = T eG/Z. The irreducible representations ofTG are given by those ofT eG
which representZ trivially. This set of representations corresponds toΛ(G).

The dual torusT ∗ is isomorphic to the maximal torus of the GNO dual groupG∗ of
G. The roots ofG∗ are precisely the corootsα∗ of G and the corootsHα∗ of G∗ corre-
spond to the rootsα of G. Using analogous arguments we thus find that any elementT ∗

can be uniquely represented asH∗ =
∑r

i=1 θ∗i Hα∗

i
up to an element inZ∗ = Λ(G)/Λr.

Note that the irreducible representations ofT ∗ correspond to the setΛ∗(G) = Λ(G∗).
If we take the magnetic groupG∗ not equal to the GNO dual ofG but instead to some
quotient then we defineT ∗ to be the maximal torus ofG∗. T ∗ is then found from the
maximal torus of the GNO dual group by using the same discretegroup that relatesG∗

itself to the GNO dual group ofG.

4.3.3 WEYL GROUP ACTION

The semi-direct product that plays a role in the definition ofthe (proto) skeleton group is
defined with respect to the action of the Weyl group on the maximal torus ofG and its
dual torus. We shall briefly discuss this action.
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The Weyl group is a subgroup of the automorphism group of the root system generated
by the Weyl reflections

wα : β 7→ β − 2α · β
α2

α. (4.16)

By linearity the action of the Weyl group can be extended to the whole root lattice, the
weight lattice andt∗.

wα : λ 7→ λ − 2α · λ
α2

α. (4.17)

Note thatwα simply corresponds to the reflection in the hyperplane int∗ orthonormal to
the rootα.

Remember thatt∗ is the dual space oft, the CSA ofG. The action ofw ∈ W on H ∈ t

is defined byα(w(H)) = w−1(α)(H). From this relation one finds

wα(H) = H − 2 〈H, Hα〉
〈Hα, Hα〉

Hα. (4.18)

In particular one finds

wα(β∗) = β∗ − 2β∗ · α∗

(α∗)2
α∗ (4.19)

and
w−1(Hα) = w−1(2α∗ · H) = 2w(α∗) · H = Hw(α). (4.20)

Remember that the maximal torus ofG is, up to discrete identifications, isomorphic to
U(1)r where eachU(1) factor is generated by oneHα. Consequently there is a natural
action of the Weyl group on the maximal torus given by

w ∈ W : exp (iθiHαi
) ∈ T 7→ exp

(
iθiHw(αi)

)
∈ T. (4.21)

Analogously one can define the action of the Weyl group on the dual torus

w ∈ W : exp
(
iθ∗i Hα∗

i

)
∈ T ∗ 7→ exp

(
iθ∗i Hw(α∗

i
)

)
∈ T ∗. (4.22)

4.3.4 PROTO SKELETON GROUP

The proto skeleton group associated toG is defined as

W ⋉ (T × T ∗), (4.23)

whereW is the Weyl group ofG. T andT ∗ are the maximal torus ofG andG∗ as
discussed in section 4.3.2. The semi-direct product which appears in the definiion of the
proto skeleton group is given by:

w ∈ W : (t, t∗) ∈ T × T ∗ 7→ (w(t), w(t∗)) ∈ T × T ∗ (4.24)
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wherew(t) andw(t∗) are defined as in equation (4.21) and (4.22). Equivalently, the
proto skeleton group equals(W ⋉ T ) ⋉ T ∗ if one defines the action ofW ⋉ T on T ∗

by (w, t) ⊲ t∗ 7→ w(t∗), where the action ofW on T ∗ is again defined as above. Note
that the definition of the proto skeleton group is completelysymmetric with respect to the
interchange of electric and magnetic groups.

4.3.5 DEFINITION OF THE SKELETON GROUP

The proto skeleton group contains the maximal tori ofG andG∗ while the group product
depends on the Weyl group action on these tori. Hence, its irreducible representations are
labelled by the dyonic charge sectors of the Yang-Mills theory with gauge groupG, as
we shall explain in detail in section 4.4. However, the irreducible representations are only
fixed up to so-called centraliser charges. It might be possible to assign some physical sig-
nificance to these centraliser charges if the proto skeletongroup could be argued to be a
subgroup of the full symmetry of the theory. However, in thatcase one should expect that
the electric partW ⋉ T is a subgroup of the electric groupG. We might also require that
the magnetic partW ⋉ T ∗ to be a subgroup of the magnetic groupG∗. Usually neither
of these requirements is fulfilled. In fact even the Weyl group W itself is usually not a
subgroup ofG or G∗. However, recall that the Weyl group is isomorphic to the normaliser
of T in G moduli the centraliser ofT . This implies that the Weyl group can be lifted to
G and, since the Weyl group only depends on the Lie algebra, it can actually be lifted to
any Lie group with this fixed algebra. We will use this fact to show that we can define the
skeleton group such that its electric part is indeed a subgroup ofG.

According to [83], a natural finite liftW of W into the group of automorphisms ofg

is defined as follows. For any simple rootα of G, we define a liftwα of the Weyl reflec-
tion wα by

wα = Ad(xα) (4.25)

with

xα = exp

(
iπ

2
(Eα + E−α)

)
. (4.26)

Thewα generateW , which is a finite subgroup of the automorphism group ofg. Note that
W is a also a subgroup of the adjoint groupG of G. W has an abelian normal subgroup
D generated by the elementsw2

α and we haveW = W/D.
If one wants to liftW into the groupG itself, rather than into its adjoint representation,
one can do this by liftingW ⊂ G/ZG into G. Such a liftW ′ of W can be defined as
the preimage ofW under the projection fromG to its adjoint groupG/ZG. Alternatively,
one can define a liftW of W into G as the group generated by the elementsxα of G. In
general, we might haveW 6= W ′, although it is clear thatW ⊂ W ′. In the remainder
of this paper we shall ignore this possible subtlety and onlyconsider the liftW . We shall
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also use the abelian normal subgroupD ⊂ W defined byD = W ∩ T .

We now introduce the skeleton groupS as

S = W ⋉ (T × T ∗)/D, (4.27)

where the action ofd ∈ D is by simultaneous left multiplication onW ⋉T . The action of
W on the two maximal tori is the usual conjugation action and itfactors over the quotient
W of W , i.e. every elementw ∈ W acts just like the corresponding element of the Weyl
groupW . Note that equivalently we can write:

S =
W ⋉ T

D
⋉ T ∗. (4.28)

We define the electric subgroupSel of S as

Sel = {s ∈ S | s = (w, t, 1)D, w ∈ W, t ∈ T } . (4.29)

One may now defineφ : W ⋉ T → G by

φ(w, t) = wt−1. (4.30)

It is easy to check thatφ is a homomorphism intoNT ⊂ G, the normaliser ofT . The
kernel ofφ is precisely the set of elements(d, d) ∈ W ⋉ T , with necessarilyd ∈ D. As
a result,Sel is isomorphic to the image ofφ, which is in turn a subgroup ofNT ⊂ G and
we have achieved our goal to make the electric part of the skeleton group a subgroup of
the electric group.
With the definition above one should not expect the magnetic subgroupSmag defined as

Smag = {s ∈ S | s = (w, 1, t∗)D, w ∈ W, t∗ ∈ T ∗} (4.31)

to be a subgroup ofG∗ sinceSmag = W ⋉ T ∗ and the Weyl groupW of G andG∗ is in
general not a subgroup ofG∗. However, one can introduce the dual groupS∗ and define
it to be the skeleton group ofG∗. The electric subgroupS∗

el is then of course a subgroup
of G∗.

4.4 REPRESENTATION THEORY OF THE SKELETON GROUP

In this section we discuss some general properties of the representations of the (proto)
skeleton group and its fusion rules. We focus in particular on SU(2) as an example.
Further detailed examples are worked out in appendix C and D.

77



Chapter 4. Fusion rules for Dyons

4.4.1 REPRESENTATION THEORY FOR SEMI-DIRECT PRODUCTS

The classification of the irreducible representations of a semi-direct product involving an
abelian normal subgroup is well known, see e.g. [84]. A (finite dimensional) irreducible
representation ofH ⋉ N , whereN is abelian, is up to unitary equivalence determined
by an irreducible representation ofN and a so-called centraliser representation. This
centraliser representation is defined as follows: sinceN is abelian each of its irreducible
representations is given by a functionλ : N → C that respects the group product, i.e.
each irreducible representation is a character ofN . The action ofH onN with respect to
which the semi-direct product is defined can be lifted to an action on the characters:

h ∈ H : λ 7→ h(λ) (4.32)

where
h(λ) : n ∈ N 7→ λ(h−1 ⊲ n) ∈ C. (4.33)

Let Hλ ⊂ H be the centraliser group ofλ such that for allh ∈ Hλ h(λ) = λ. For any
irreducible representationγ of Hλ one can easily check that

Πλ
γ : (h, n) 7→ λ(n)γ(h) (4.34)

defines an irreducible representation ofHλ ⋉ N .

A representation ofH ⋉ N can now be constructed as an induced representation, see
e.g. section 3.3 of [50]. For a general groupG one starts with a matrix representationγ of
a subgroupH ⊂ G acting on a vector spaceV . We shall assume thatG/H is a finite set.
One can now construct a unique finite dimensional representation Π

G/H
γ of G by intro-

ducing the vector space⊕µ∈G/HVµ, whereVµ is a copy ofV for each cosetµ ∈ G/H .
While H simply acts on each copyVµ simultaneously, all elementsg outsideH also mix
up these copies by their action on the cosets.
By choosing a representativegµ for each cosetµ one can construct the induced representa-
tion explicitly. Giveng in G one hasggµ = gνh for some cosetν and someh ∈ H . Hence
g mapsVµ to Vν with an additional action ofh. Consequently the matrix corresponding
to g only has diagonal elements if for some cosetg(σ) = σ, i.e. g−1

σ ggσ ∈ H . Therefore
the characterχG of the induced representation can be computed from the characterχH of
the representation one started out with:

χG(g) =
∑

g(σ)=σ

χH(g−1
σ ggσ). (4.35)

As a first step we can use the method described above to construct the induced representa-
tion of the centraliser representationγ. Note thatH/Hλ is precisely theH-orbit [λ] in the
set of characters ofN . Let V be the vector space on which the centraliser representation

78



4.4. Representation theory of the skeleton group

γ of Hλ acts. We denote the elements ofVµ by |µ, v 〉 where we understandµ ∈ [λ] and
v ∈ V . For each coset inH/Hλ and hence for eachµ ∈ [λ] we choose a representative
hµ ∈ H such thathµ(λ) = µ. Givenh ∈ H we havehhµ = hνh′ with ν = h(µ) ∈ [λ]

andh′ ∈ Hλ. We can now define the induced representationΠ
[λ]
γ for H by

Π[λ]
γ (h)|µ, v 〉 = | ν, γ(h−1

ν hhµ)v 〉. (4.36)

A representation ofH ⋉N is found just as easily. Note thatH ⋉N/Hλ ⋉N = H/Hλ =

[λ]. This implies that one can choose the representants of the cosets in the semi-direct
product to be of the form(hµ, e) with µ ∈ [λ]. From the semi-direct product (4.8) we
now find

(h, n)(hµ, e) = (hνh′, n) = (hν , e)(h′, h−1
ν ⊲ n) (4.37)

whereh′ = h−1
ν hhµ. We thus find and induced representationΠ

[λ]
γ of Πλ

γ defined by

Π[λ]
γ (h, n)|µ, v 〉 = | ν, Πλ

γ(h−1
ν hhµ, h−1

ν ⊲ n)v 〉 = ν(n)| ν, γ(h−1
ν hhµ)v 〉. (4.38)

Note that we used equation (4.33) to rewriteλ(h−1
ν n) = hν(λ)(n) = ν(n). We thus see

that eachVµ defines a representation ofN since

Π[λ]
γ (e, n)|µ, v 〉 = µ(n)|µ, v 〉. (4.39)

It is easily seen that⊕µ∈[λ]Vµ does not contain any invariant subspaces and thus that

Π
[λ]
γ is an irreducible representation ofH ⋉ N . Equation (4.38) clearly shows that this

representation only depends on the orbit[λ] and the centraliser representationγ but not
on the initial choice for the representantλ of [λ]. One can also check that up to unitary
transformationsΠ[λ]

γ does not depend on the choice of representants for the elements in
H/Hλ. Finally, it turns out that all irreducible representations ofH ⋉ N can be obtained
in this way.

The decomposition of a tensor product representation into irreducible representations can
be computed with the inner product of the characters. The characters for an irreducible
representationsΠ[λ]

γ of H ⋉ N can be found from equation (4.35):

χ[λ]
γ (h, n) =

∑

µ∈[λ]

δh(µ),µχλ
γ((h−1

µ , e)(h, n)(hµ, n))

=
∑

µ∈[λ]

δh(µ),µχλ
γ(h−1

µ hhµ, h−1
µ n)

=
∑

µ∈[λ]

δh(µ),µχγ(h−1
µ hhµ)λ(h−1

µ n)

=
∑

µ∈[λ]

δh(µ),µχγ(h−1
µ hhµ)µ(n).

(4.40)
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One can check that these characters are orthogonal:

〈
χ[ρ]

γ , χ[σ]
α

〉
=

∫

H×N

χ[ρ]
γ (h, n)χ∗[σ]

α (h, n)dhdn

∫

H×N

∑

µ∈[ρ]

δh(µ),µχγ(h−1
µ hhµ)µ(n)

∑

ν∈[σ]

δh(ν),νχ∗
α(h−1

ν hhν)ν∗(n)dhdn

=
∑

µ∈[ρ]

∑

ν∈[σ]

∫

N

µ(n)ν∗(n)dn

∫

H

δh(µ),µδh(ν),νχγ(h−1
µ hhµ)χ∗

α(h−1
ν hhν)dh

=
∑

µ∈[ρ]

∑

ν∈[σ]

δµν

∫

N

dn

∫

H

δh(µ),µχγ(h−1
µ hhµ)χ∗

α(h−1
µ hhµ)dh (4.41)

= δ[ρ][σ]

∑

µ∈[ρ]

∫

N

dn

∫

Hρ

χγ(h′)χ∗
α(h′)dh

= δ[ρ][σ]δγα

∑

µ∈[ρ]

∫

Hρ×N

dhdn

= δ[ρ][σ]δγα dim(H × N).

Fora = Π
[σ]
α , b = Π

[η]
β andc = Π

[ρ]
γ we find:

〈χc, χa⊗b〉 =

∫

H×N

χc(h, n))χ∗
a(h, n)χ∗

b(h, n)dhdn

=

∫

H×N

∑

µ∈[ρ]

δh(µ),µχγ(h−1
µ hhµ)µ(n)×

∑

ν∈[σ]

δh(ν),νχ∗
α(h−1

ν hhν)ν∗(n)
∑

ζ∈[η]

δh(ζ),ζχ
∗
β(h−1

ζ hhζ)ζ
∗(n)dhdn

=
∑

µ∈[ρ]

∑

ν∈[σ]

∑

ζ∈[η]

∫

N

µ(n)ν∗(n)ζ∗(n)dn

∫

H

δh(µ),µδh(ν),νδh(ζ),ζ×

χγ(h−1
µ hhµ)χ∗

α(h−1
ν hhν)χ∗

β(h−1
ζ hhζ)dh

=
∑

µ∈[ρ]

∑

ν∈[σ]

∑

ζ∈[η]

δµ,νζ

∫

H×N

δh(µ),µδh(ν),νδh(ζ),ζ×

χγ(h−1
µ hhµ)χ∗

α(h−1
ν hhν)χ∗

β(h−1
ζ hhζ)dhdn.

(4.42)

We thus see that the fusion rules ofH ⋉ N can be expressed in terms of the multiplica-
tion in the character group ofN and integrals involving the characters of the centraliser
representations.
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4.4.2 WEYL ORBITS AND CENTRALISER REPRESENTATIONS

Since the maximal tori ofG andG∗ are abelian and the Weyl group ofG is a finite group,
the results of section 4.4.1 can be applied directly to the proto skeleton group. Below we
shall work out some general properties of its irreducible representations and prove our
claim that these representations reproduce the charge sectors of the gauge theory with
gauge groupG. For explicit examples we refer to section C.

An irreducible representation ofW⋉(T×T ∗) is labelled by an orbit in character group of
T ×T ∗ and by a centraliser representation. The character group, i.e. the set of irreducible
representations ofT × T ∗ is precisely given byΛ(G) × Λ(G∗) as follows from the dis-
cussion in section 4.3.2. The diagonal action of the Weyl group defining the semi-direct
product of the proto skeleton group induces a diagonal action in the character group:

w ∈ W : (λ, g) ∈ Λ(G) × Λ∗(G) 7→ (w(λ), w(g)) ∈ Λ(G) × Λ∗(G) (4.43)

where

(w(λ), w(g)) : (t, t∗) ∈ T × T ∗ → λ(w−1(t))g(w−1(t∗)) ∈ C (4.44)
(
exp(iθiHαi

), exp(iθ∗i Hα∗

i
)
)

7→ exp(iθi2w(λ) · α∗
i + iθ∗i 2w(g) · αi).

Here we used equations (4.21) and (4.22) together with

Hw(α)|λ 〉 = 2λ · w(α∗)|λ 〉 = 2w−1(λ) · α∗|λ 〉, (4.45)

and similarly
Hw(α∗)| g 〉 = 2g · w(α)| g 〉 = 2w−1(g) · α| g 〉. (4.46)

We thus see that an irreducible representation of the proto skeleton group carries a label
that corresponds to an orbit[λ, g] in Λ(G)×Λ(G∗). These labels are precisely the dyonic
charge sectors of Kapustin [48] as discussed in section 4.2.3.

Let us discuss the centraliser representations in some moredetail. These representations
are irreducible representations of the centraliserW(λ,g) ⊂ W of the dyonic charge(λ, g).
Sincew(λ, g) is (w(λ), w(g)) we see thatW(λ,g) = Wλ ∩ Wg ⊂ Wg. Wg is the Weyl
group of the centraliser groupCg ⊂ G introduced in section 4.2.3. SimilarlyW(λ,g) is
the Weyl group of some Lie groupC(λ,g) ⊂ Cg. Since the dyonic charge sector[λ, g] cor-
responds to a unique pair(Rλ, g), whereRλ is an irreducible representation ofCg, one
would now expect that the allowed centraliser representations forW(λ,g) ⊂ W⋉(T×T ∗)

fit into an irreducible representationRλ of Cg ⊂ G. Unfortunately, such a relation be-
tween representations is in principle absent since in generalW is not a subgroup ofG and
Wg is not a subgroup ofCg. However, the skeleton group is constructed in such a way
that this relation with the centraliser group inG can be established, as we shall discuss in
the next section.
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4.4.3 REPRESENTATIONS OF THE SKELETON GROUP

Important features of the skeleton groupS are that it is an extension ofT ×T ∗ respecting
the dyonic charge sectors and moreover that its electric factorSel is a subgroup ofG. This
implies that representations ofG decompose into irreducible representations of the skele-
ton group with trivial magnetic charges. In this section we describe the representations of
the skeleton group in general terms and clarify the relationwith G-representations. The
SU(2)-case is worked out explicitly in section 4.4.5. More examples can be found in
appendix D.

The representations ofS correspond precisely to the representations ofW ⋉ (T × T ∗)

whose kernel contain the normal subgroupD. SinceW ⋉ (T × T ∗) is a semidirect prod-
uct and the liftW acts in the same way onT × T ∗ as the Weyl groupW , its irreducible
representations are labelled by aW-orbit in the weight lattice ofT × T ∗ and by an irre-
ducible representation of the centraliser inW of this orbit. Explicitely, let[λ, g] denote the
W-orbit containing(λ, g) and letγ denote an irreducible representation of the centraliser
N(λ,g) ⊂ W of (λ, g). Now for any(µ, h) ∈ [λ, g], choose somex(µ,h) ∈ W ′ such that

x(µ,h)(λ, g) = (µ, h) and defineV [λ,g]
γ to be the vector space spanned by{|µ, h, eγ

i 〉},
where{eγ

i } is a basis for the vector spaceVγ on whichγ acts. If we apply equation
(4.38) for the induced representation of a semi-direct product we find that the irreducible
representationΠ[λ,g]

γ of W ⋉ (T × T ∗) acts onV [λ,g]
γ as follows:

Π[λ,g]
γ (w, t, t∗)|µ, h, v 〉 = w(µ)(t)w(h)(t∗)|w(µ), γ(x−1

w(µ)wxµ)v 〉. (4.47)

The irreducible representations ofW ⋉ (T × T ∗) with trivial centraliser labels are in
one-to-one relation with the electric-magnetic charge sectors, just as is the case for the
irreducible representations of the proto skeleton group. However, in general not all of
these representations are representations ofS. The allowed representations satisfy

Π[λ,g]
γ (d, d, 1)|µ, h, v 〉 = |µ, h, v 〉, (4.48)

which implies

d(µ)(d)d(h)(1)| d(µ), d(h), γ(x−1
d(µ)dxµ)v 〉 = |µ, h, v 〉. (4.49)

Sinced ∈ T we haved(µ) = µ and we find thatΠ[λ,g]
γ is a representation ofS if

µ(d)|µ, h, γ(x−1
µ dxµ)v 〉 = |µ, h, v 〉 ∀ |µ, h, v 〉 ∈ V [λ,g]

γ . (4.50)

This condition is satisfied ifD acts trivially on all vectors of the form|λ, v 〉. To show
this we note thatµ(t) = xµ(λ)(t) = λ(x−1

µ ⊲ t) = λ(x−1
µ txµ). As mentioned in section

4.3.5D is a normal subgroup ofW , i.e. x−1
µ dxµ = d′ ∈ D. Hence for the action ofD

on |µ, v 〉 we thus have

µ(d)|µ, γ(x−1
µ dxmu)v 〉 = λ(d′)|µ, γ(d′)v 〉 = |µ 〉λ(d′)γ(d′)| v 〉. (4.51)
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Now if

λ(d)|λ, γ(d)v 〉 = |λ 〉λ(d)γ(d)| v 〉 = |λ 〉| v 〉 (4.52)

for all d ∈ D we find thatD acts trivially onV
[λ,g]
γ . The question that remains is if there

always exists centraliser representationγ of W(λ,g) ⊂ W that satisfies this constaint.
Note that equation (4.52) is precisely the constraint one would obtain for representations
of the electric part(W ⋉T )/D of the skeleton group except thatγ would be an irreducible
representation of a possible larger subgroupWλ ⊂ W , i.e. W(λ,g) ⊂ Wλ. This means
however that the restrictionγ|W(λ,g)

of an allowed electric centraliser representationγ of
Wλ automatically satisfies (4.52). Consequently there existsan irreducible represention
of S for a given orbit[λ, g] if there exists an irreducible representation ofSel for a given
orbit [λ].
It is easily seen that an irreducible representation ofSel labelled by[λ] exists ifλ lies in
the weight lattice ofG. As proven in section 4.3.5Sel is a subgroup ofG and thus all
representations of the gauge group fall apart into representations ofSel. Moreover both
the gauge group and the skeleton group contain the maximal torusT . Hence all repre-
sentations ofT that appear in the restriction ofG-representations must also appear in the
restriction of a representation ofSel to T . From the representation theory ofG we know
that all irreducible representations ofT come up in this way and hence all Weyl orbits
in the weight lattice ofG give rise to a representation of the skeleton group. We finally
note that an irreducible representation ofG with highest weightλ leads to a representa-
tion of Sel which has a one-dimensional centraliser representation. If a represention ofG
has a weight with multiplicity greater than one it may give rise to an allowed centraliser
representation acting on a space which has more dimensions.

4.4.4 FUSION RULES

Here we discuss some general properties of the fusion rules of the (proto) skeleton group.
We shall restrict our discussion to the electric-magnetic charges and ignore the centraliser
representation for the most part. The fusion rules of the dyonic charges are found by
combining the Weyl orbits of the representations. An elegant way do deal with this com-
binatorics is the use a group ring.
Below we define a homomorphism, denoted by “Char” from the representation ring of
the (proto) skeleton group to the Weyl invariant partZ[Λ]W of the group ringZ[Λ × Λ∗]

whereΛ×Λ∗ is the weight lattice ofT ×T ∗. This group ring has an additive basis given
by the elementse(λ,g) with (λ, g) ∈ Λ × Λ∗. The multiplication of the group ring is
defined bye(λ1,g1)e(λ2,g2) = e(λ1+λ2,g1+g2). Finally the action of the Weyl group on the
weight lattice induces an action on the group ring given by

w ∈ W : e(λ,g) 7→ ew(λ),w(g). (4.53)
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A natural basis for the ringZ[Λ × Λ∗]W is the set of elements of the form

e[λ,g] :=
∑

(µ,h)∈[λ,g]

e(µ,h), (4.54)

where[λ, g] is a Weyl orbit in the weight lattice.
The homomorphism Char of the representation ring of the (proto) skeleton group toZ[Λ×
Λ∗] is defined by mapping|µ, h, v 〉 ∈ V

[λ,g]
γ to e(µ,h) ∈ Z[Λ × Λ∗]. Consequently

for an irreducible representationΠ[λ,g]
γ of the (proto) skeleton group we havee[λ,g] in

Z[Λ × Λ∗]W

Char: Π[λ,g]
γ 7→ dim(Vγ)e[λ,g]. (4.55)

Note that ifγ is a trivial centraliser representation or at least 1-dimensional then Char
maps to a basis element of the group algebra.
Char respects the addition and multiplication in the representation ring since

Char : Π[λ1,g1]
γ1

⊕ Π[λ2,g2]
γ2

7→ dim(Vγ1)e[λ1,g1] + dim(Vγ2)e[λ2,g2] (4.56)

Char : Π[λ1,g1]
γ1

⊗ Π[λ2,g2]
γ2

7→ dim(Vγ1)dim(Vγ2)e[λ1,g1]e[λ2,g2]. (4.57)

We can use this to retrieve the fusion rules for the dyonic charge sectors since the ex-
pansion of skeleton group representations in irreducible representations corresponds to
expanding products in the Weyl invariant group ring into basis elements:

e[λ1,g1]e[λ2,g2] =
∑

[λ,g]

Nλ,g
λ1,λ2,g1,g2

e[λ,g]. (4.58)

If one restricts to the purely electric sector, i.e.g = 0, such that the centraliserCg ⊂ G

equalsG itself, one should expect to retrieve the fusion rules ofG. As was noticed by
Kapustin in [81] equation (4.58) does not correspond to the decoposition of tensor prod-
ucts ofG representations. However, the fusion rules of the (proto) skeleton group does
also involve the centraliser representations. In particular the dimensions of the centraliser
representations satisfy

Π[λ1,g1]
γ1

⊗ Π[λ2,g2]
γ2

=
⊕

[λ,g],γ

Ñλ,g,γ
λ1,λ2,g1,g2,γ1,γ2

Π[λ,g]
γ (4.59)

such that
∑

γ

Ñλ,g,γ
λ1,λ2,g1,g2,γ1,γ2

dim(Vγ) = dim(Vγ1)dim(Vγ2)N
λ,g
λ1,λ2,g1,g2

. (4.60)

If we restrict to the purely electric sector whereg = 0 we still do not have an immediate
agreement with the fusion rules forG. However as far as it concerns the skeleton group
the restriction to trivial magnetic charge gives rise to representations ofSel, which is a
subgroup ofG. This relation will be reflected on the fusion rules as we shall see for
G = SU(2) in section 4.4.5.
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4.4.5 FUSION RULES FOR THE SKELETON GROUP OF SU(2)

We shall compute the complete set of irreducible representations and their fusion rules
for the skeleton group ofSU(2). From these fusion rules we shall find that the skeleton
group is the maximal electric-magnetic symmetry group thatcan realised simultaneously
in all dyonic charge sectors of the theory. Finally we compare our computations with
similar results obtained by Kapustin and Saulina [85].

The skeleton group can be expressed asW ⋉ (T × T ∗) modded out by a normal sub-
groupD ⊂ W ⋉ T as explained in section 4.3.5. For theSU(n)-caseW andD are
computed in appendix D.1 and forSU(2) they equal respectivelyZ4 andZ2. The latter
group is precisely the centre ofSU(2).

The irreducible representations ofS for SU(2) correspond to a subset of irreducible rep-
resentations ofZ4 ⋉ (T × T ∗) which representD trivially. This leads to a constraint on
the centraliser charges and the electric charge as given by equation (4.52).
If both the electric charge and magnetic charge vanishe the centraliser isZ4 which is
generated by

x =

(
0 i

i 0

)
. (4.61)

The allowed centraliser representations are the two irreducible representations that send
x2 to 1. One of these representations is the trivial representation. This leads to the triv-
ial representation of the skeleton group which we denote by(+, [0, 0]). The remaining
non-trivial centraliser representations mapsx to−1 and gives a 1-dimensional irreducible
representation of the skeleton group which we shall denote by (−, [0, 0]).
If either the electric or the magnetic charge does not vanishthe orbit under theZ4 action
has two elements and the centraliser group isZ2 ⊂ Z4 generated byx2. The irreducible
representations ofZ2 that satisfies equation (4.52) is uniquely fixed by the electric charge
λ labelling the equivalence class[λ, g]. It is the trivial representation if the electric charge
is even and it is the non-trivial representation if the electric charge is odd. We can thus
denote the resulting irreducible skeleton group representation by[λ, g] with λ or g non-
vanishing. Note that these representations are 2-dimensional.

The electric-magnetic charge sectors appearing in decomposition of a tensor product of
irreducible representations of the skeleton group can be found from the fusion rules of
Z[Λ × Λ∗] as discussed in section 4.4.4. Ignoring the centraliser charges this gives the
following fusion rules:

[0, 0]⊗ [0, 0] = [0, 0] (4.62)

[0, 0]⊗ [λ, g] = [λ, g] (4.63)

[λ1, g1] ⊗ [λ2, g2] = [λ1 + λ2, g1 + g2] ⊕ [λ1 − λ2, g1 − g2]. (4.64)
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To retrieve the fusion rules of the skeleton group itself oneshould take into account the
centraliser representations. However for all charges except [0, 0] the centraliser represen-
tations is uniquely determined. If we restrict to[0, 0] charges we obviously obtainZ4

fusion rules. This leads to:

(s1, [0, 0])⊗ (s2, [0, 0]) = (s1s2, [0, 0]) (4.65)

(s, [0, 0]) ⊗ [λ, g] = [λ, g] (4.66)

[λ1, g1] ⊗ [λ2, g2] = [λ1 + λ2, g1 + g2] ⊕ [λ1 − λ2, g1 − g2]. (4.67)

If in the last line the electric-magnetic charges are parallel so that[0, 0] appears at the
right hand side we have to interpret this as a 2-dimensional reducible representation. Its
decomposition into irreducible representations can be computed using equation (4.42):

〈
χ(s,[0,0]), χ[λ,g]⊗[λ,g]

〉
= dim(Z4 × T × T ∗). (4.68)

Hence we get

[λ, g] ⊗ [λ, g] = [2λ, 2g] ⊕ (−, [0, 0])⊕ (+, [0, 0]). (4.69)

An important question is if the fusion rules obtained here provide a hint about an extended
electric-magnetic symmetry. The representations of such asymmetry should be uniquely
labelled by the dyonic charges and do not carry additional quantum numbers. Moreover
the representations with vanishing magnetic charge correspond to representations of the
electric group. From this perspective the skeleton group representations(±, [0, 0]) are
part of odd dimensional representations ofSU(2). In this way one can at least reconstruct
the fusion rules ofSU(2) in the magnetically neutral sector. As an example we consider
equation (4.69) withλ equal the the fundamental weight ofSU(2) andg = 0:

[λ, 0] ⊗ [λ, 0] = [2λ, 0]⊕ (−, [0, 0]) ⊕ (+, [0, 0]). (4.70)

First we identify all representations with representations of Sel by “forgetting” the mag-
netic charge. Second we note that sinceSel ⊂ SU(2) as proven in section 4.3.5 the
representation of the latter fall apart into irreducible representations of the former. In par-
ticular the trivial representations ofSU(2) can be identified with the trivial representation
of Sel while the triplet falls apart into[2λ]⊕ (−, [0]), with 2λ equal to the highest weight
of the triplet representation. Equation (4.70) is thus a simple consequence of the fact that

2 ⊗ 2 = 3 ⊕ 1. (4.71)

One could try to push this line of thought through forg 6= 0. Unfortunately in this
case[2λ, 0] does not appear in equation (4.69). Adding this term by hand readily leads
to problems since this forces one to add corresponding termson left hand side. In this
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case one should replace[λ, g] by [λ, g] ⊕ [λ,−g]. This implies that[λ, g] could never be
an irreducible representation for an extended electric-magnetic symmetry containing the
skeleton group since it would have to be paired with[λ,−g] which labels an inequivalent
charge sector as discussed in section 4.2.3. Consequently the skeleton group should be
interpreted as the maximal electric-magnetic symmetry group that can be realised in all
dyonic charge sectors. In a set of dyonic charge sectors thatis closed under fusion, such
as for example the magnetically neutral sectors, the electric part of skeleton group can
be extended to the centraliser group inG of the magnetic charges of that particular set of
sectors. One might wonder if this implies that the skeleton group does not respect gauge
invariance. We shall come back to that discussion in section4.6

Another approach to give a unified description of an electricgroupG and a magnetic
groupG∗ is to consider the OPE algebra of mixed Wilson-’t Hooft operators. Such oper-
ators are labelled by the dyonic charge sectors as explainedby Kapustin in [48]. Moreover
the OPE’s of Wilson operators are given by the fusion rules ofG while the OPE’s for ’t
Hooft operators correspond to the fusion rules ofG∗. These facts were used by Kapustin
and Witten [18] to prove that magnetic monopoles transform asG∗-representations. It is
thus natural to ask what controls the product of mixed Wilson-’t Hooft operators. The
answer must somehow unify the represntation theory ofG andG∗. Consequently one
might also expect it sheds some light one the fusion rules of dyons.
For a twistedN = 4 SYM with gauge groupS0(3) products of Wilson-’t Hooft operators
have been computed by Kapustin and Saulina [85]. In terms of dyonic charge sectors they
found for example:

[n, 0] · [0, 1] =
n∑

j=0

[n − 2j, 1]. (4.72)

This rule can easily be understood from the fusion rules of the skeleton group forSO(3)

or SU(2). First we note that forG = SO(3) Λ can be identified with the even integers.
Th magnetic weight latticeΛ∗ for theG∗ = SU(2) is then given byZ. The[n, 0] corre-
sponds to the magnetically neutral sector and thus to then + 1-dimensional irreducible
representation ofSO(3) or SU(2). This representation falls apart into a sum irreducible
representations ofSel. In terms of magnetically neutral representations of the skeleton
group this sum of irreducibel representations is given by

n−1⊕

j=0

[n − 2j, 0] + (s, [0, 0]). (4.73)

Note that the centralizer labels in (4.73) depends uniquely onn. The ’t Hooft operator
labelled by[0, 1] can be uniquely related to the irreducible representation[0, 1] of the
skeleton group. Simalarly for the Wilson-’t Hooft operators appearing at the right hand
side of equation (4.72) there is also a unique identificationwith skeleton group represen-
tations. Finally we note that the decomposition of the tensor products of[0, 1] with the
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reducible representations (4.73) into irreducible representation of the skeleton group is
given by the right hand side of equation (4.72).
A second product rule obtained in [85] which is consitent with the results [18] can be
written in terms of electrially nuetral charge sectors as:

[0, 1] · [0, 1] = [0, 2] + [0, 0] (4.74)

This product rule cannot be understood from the fuson rules of the skelton groupS of
SO(3). It is however consistent with the fusion rules of the dual skeleton groupS∗

introduced in section 4.3.5. In this particular caseS∗ is the skeleton group ofSU(2). The
product rule (4.74) can be identified with theSU(2) tensor product decomposition given
in (4.71). It is explained above that this fusion rule is consisent with the fsuion rules of
the skeleton group ofSU(2).
The last OPE product rule found in [85] can be represented as

[2n, 1] · [0, 1] = [2n, 2] + [2n, 0] − [0, 0]− [2n − 2, 0], (4.75)

while from equation (4.67) we find for the related tensor product decompostion of skele-
ton group representations;

[2n, 1] · [0, 1] = [2n, 2]⊕ [2n, 0], (4.76)

One observes that the terms missing in this last equation correspond to the terms in (4.75)
with a minus sign. However, such negative terms can occur naturally in theK-theory
approach as used in [85] but can never occur in a tensor product decomposition.
We conclude that fusion rules of the skeleton group are to some extent consistent with the
OPE algebra discussed by Kapustin and Saulina. The advantage of their appraoch is first
that there is never need to restrict the gauge groups to certian subgroups as we effectively
do with the skeleton group. Also, the OPE’s of Wilson-’t hooft operators do indeed give
a unified electric-magnetic algebra, whereas in the skeleton group approach one does still
needs the dual skeleton group. Nonetheless, because of the occurence of negative terms
the OPE algebra cannot be interpreted as a set of physical fusion rules for dyons like we
can with the tensor product decompostion of the skeleton group and its dual.

4.5 S-DUALITY

To check the validity of the skeleton group we shall show thatthe standard S-duality
action on the complex coupling of the gauge theory and the electric-magnetic charges
is respected by the skeleton group. We shall first recapitulate some details ofS-duality.
Second, we discuss its action on the dyonic charge sectors and finally we prove that there
is a well-definedS-duality action on the skeleton group representations.
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4.5.1 S-DUALITY FOR SIMPLE LIE GROUPS

In for exampleN = 4 SYM theoryS-duality leaves by definition the BPS mass invariant.
The universal mass formula for BPS saturated states [3] in a theory with gauge groupG
can be written as:

M(λ,g) =

√
4π

Imτ
|v · (λ + τg)|. (4.77)

The electric chargeλ takes value in the weight latticeΛ(G) ⊂ t∗ while g is an element in
the weight latticeΛ(G∗) ⊂ t of the GNO dual group. The complex couplingτ is defined
as

τ =
θ

2π
+

4πi

e2
. (4.78)

A discussion of the action of S-duality groups on the electric-magnetic charges is dis-
cussed by Kapustin in [48], see also [86, 87]. First we choosethe short coroots to have
length

√
2, i.e.

〈Hα, Hα〉 = 2. (4.79)

Now define a mapℓ acting on the CSA ofG and its dual

ℓ : Hα ∈ t 7→ H⋆
α =

〈Hα, Hα〉
2

α ∈ t∗

ℓ−1 : α ∈ t∗ 7→ α⋆ =
2Hα

〈Hα, Hα〉
∈ t.

(4.80)

This map is implicitly used in the definition of the BPS mass formula since

v · Hα ≡ 〈Hα, Hα〉
2

v · α (4.81)

which indeed leads to the usual degeneracy in the BPS mass spectrum.
Now consider the following actions of the generators:

C : τ 7→ τ (λ, g) 7→ (−λ,−g) (4.82)

T : τ 7→ τ + 1 (λ, g) 7→ (λ − g⋆, g) (4.83)

S : τ 7→ −1

τ
(λ, g) 7→ (g⋆,−λ⋆). (4.84)

One can easily check that the action of these generators leave the BPS mass formula (4.77)
invariant. Moreover it should be clear from the action on thecomplex coupling thatC, T

andS are the familiar generators ofSL(2, Z). Unfortunately the electric-magnetic charge
latticeΛ(G) × Λ(G∗) is in general not invariant under the action ofSL(2, Z). However
As explained in section 4.2 it is very natural in for example aN = 4 gauge theory with
smooth monopoles to take bothG andG∗ to be adjoint groups and thereby restrict the
electric charges to the root lattice and the magnetic charges to the coroot lattice. One can
show that latticeΛr × Λcr is invariant under some subgroup ofSL(2, Z).
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A long corootHα is mapped to a multiple ofα since the length-squared of a long coroot
is an integral multiple of the length-squared for a short coroot. Consequently, the image
of Λcr underℓ is contained in the root latticeΛr and hence also in the weight latticeΛ(G)

of G.
We want to check ifℓ−1 maps the root lattice ofG into the coroot lattice. Note that the
long roots are mapped on the short coroots. This means that the length-squared of the
image of a short roots has length-squared smaller than2. Hence the root lattice is mapped
into the coroot lattice byl−1 only if G is simply-laced.
One finds that the action of the generatorS does not leaveΛr × Λcr invariant in the non-
simply laced case, but even then one can still consider the transformationST qS which
acts as

ST qS : (λ, g) → (−λ,−qλ⋆ − g). (4.85)

For q sufficiently largeqλ⋆ is always an element of the coroot lattice, hence there is a
subgroupΓ0(q) ⊂ SL(2, Z) that generated byC, T andST qS that leavesΛr × Λcr

invariant. The largest possible duality group for e.g.SO(2n + 1), Sp(2n) andF4 is
Γ0(2) while for G2 it is Γ0(3).

4.5.2 S-DUALITY ON CHARGE SECTORS

We have seen above that there is an action ofSL(2, Z) or at least an action of a subgroup
Γ0(q) if we restrict the electric-magnetic charge lattice toΛr ×Λcr. The restriction of the
charge lattice also defines a restriction of the dyonic charges sectors to(Λr × Λcr)/W .
Here we shall show that the duality transformations give a well defined action on these
charge sectors.

The generators of the duality group may map(λ, g) to a different equivalence class under
the action of the Weyl group and hence to a different charge sector. However the duality
transformation maps all charges in one Weyl orbit to yet a single Weyl orbit as follows
from the fact that the action of the generators ofSL(2, Z) commute with the diagonal
action of the Weyl group [48]. This is obvious forC sincewC(λ, g) = w(−λ,−g) =

(−w(λ),−w(g)) = Cw(λ, g). ForT andw ∈ W we have:wT (λ, g) = w(λ + g⋆, g) =

(w(λ) + w(g⋆), w(g)) = (w(λ) + w(g)⋆, w(g)) = T (w(λ), w(g)) = Tw(λ, g). Finally
for S we havewS(λ, g) = w(−g⋆, λ⋆) = (−w(g)⋆, w(λ)⋆) = Sw(λ, g).

4.5.3 S-DUALITY AND SKELETON GROUP REPRESENTATIONS

Since there is a consistent action of the duality group on thedyonic charge sectors on
may also try to extend this action to the set of representations of the skeleton group which
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are labelled by the dyonic charge sectors and by centraliserrepresentations of the lifted
Weyl groupW . We shall assume that the duality action does not affect the centraliser
labels. This is consistent if, one, it maps an irreducible representation to another irre-
ducible representation and, two, if the action respects thefusion rules. Note that we are
not considering all representations of the skeleton group but only those that correspond to
the root and coroot lattice. Effectively we thus have moddedthe skeleton group out by a
discrete group.

To prove the consistency of the duality group action we shalluse the following ingre-
dients. First, the action ofC, T andS, and hence also the action of the duality group
commutes with the action of the lifted Weyl group. This follows immediately from the
fact that the duality group commutes with the Weyl group as wehave shown in the pre-
vious section. Second, the centraliser subgroup inW is invariant under the action of the
duality group on the electric and magnetic charge.
Since the action ofW and thus alsoW on the electric-magnetic charges is linear it should
be clear that charge conjugation does not change the centraliser.
The fact thatT does leave the centraliser groupW(λ,g) ⊂ W invariant is seen a follows:
let Wg ⊂ W be the centraliser ofg so that for everyw ∈ Wg w(g) = g. The cen-
traliser of (λ, g) consists of elements inw ∈ Wg satisfyingw(λ) = λ. Similarly the
elementsw ∈ W(λ+g⋆,g) satisfyw(g) = g and thusw(g⋆) = g⋆. Finally one should
havew(λ + g⋆) = λ + g⋆. But sincew(λ + g⋆) = w(λ) + w(g⋆) one finds thatw must
leaveλ invariant. HenceW(λ+g⋆,g) = Wλ ∩ Wg = W(λ,g). Similarly the action ofS
is seen to leave the leaveW(λ,g) invariant sinceWλ⋆ = Wλ andW−g⋆ = Wg so that
W−g⋆ ∩ Wλ⋆ = Wλ ∩ Wg.

An irreducible representation of the skeleton group is defined by an orbit in the electric-
magnetic charge lattice and an irreducible representationof the centraliser inW of an
element in the orbit. Since theSL(2, Z)-action commutes with the action of the lifted
Weyl group aW -orbit is mapped to anotherW -orbit. We define the centraliser repre-
sentation to be invariant under the duality transformation, this is consistent because the
centraliser subgroup itself is invariant underSL(2, Z). We thus find that an irreducible
representation of the skeleton group is mapped to another irreducible representation under
the duality transformations.

Finally we prove that S-duality transformations respect the fusion rules of the skeleton
group. The claim is that if for irreducible representationsΠa of the skeleton group one
has

Πa ⊗ Πb = nc
abΠc, (4.86)

then for any elements in the duality group one should have

Πs(a) ⊗ Πs(b) = nc
abΠs(c). (4.87)
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By inspecting equation (4.42) we can proof this equality. First we note that sinces com-
mutes with the lifted Weyl group we have for any(µ′, h′) ∈ [s(λ, g)] (µ′, h′) = s(µ, h)

for a unique(µ, h) ∈ [λ, g]. In that sense the summation over the orbits[λ, g] and[s(λ, g)]

is equivalent. Next we see that sinces is an invertible linear map on the dyonic charges
s(µ3, g3) = s(µ1, g1) + s(µ2, g2) if and only if (µ3, g3) = (µ1, g1) + (µ2, g2). Similarly
we findhs(µ, g) = s(µ, g) if and only if h(µ, g) = (µ, g). Finally we note that if one de-
finesx(µ,h) ∈ W byx(µ,h)(λ, g) = (µ, h) thenx(µ,h)s(λ, g) = s(x(µ,h)(λ, g)) = s(µ, h)

and hencexs(µ,h) = x(µ,h). Under the assumption that theS-duality action does not af-
fect the centraliser charges we now find

〈χc, χa⊗b〉 =
〈
χs(c), χs(a)⊗s(b)

〉
. (4.88)

This proves (4.87).

4.6 GAUGE FIXING AND NON-ABELIAN PHASES

One of the basic motivations to find fusion rules that comprises both the electric, magnetic
and dyonic charge sectors, is to obtain tools to understand the phase structure of gauge
theories and possible transitions between these phases. Aswe shall argue below dyonic
phases correspond togeneralised Alice phases. The appearance of such Alice phases may
be understood from a beautiful idea of ’t Hooft [29]. The philosophy is that the physically
relevant parameters in a particular phase can be isolated bygauge fixing with so-called
non-propagatinggauge conditions. A well known example of such a phase-gaugerela-
tion is the Coulomb phase and the abelian gauge. In this gaugethe non-abelian theory
is effectively described by an abelian theory. We shall generalise this idea and argue that
there is a non-propagating gauge particularly suitable to describe dyonic phases in which
at long range the manifest symmetry is neither purely electric nor purely magnetic. The
effective description of the non-abelian theory in this skeleton gauge is very similar to the
theory in the abelian gauge except for an additional discrete symmetry generalising the
charge conjugation symmetry from Alice electrodynamics [30, 31, 32].

4.6.1 THE COULOMB PHASE AND THE ABELIAN GAUGE

In this subsection we recall some well known facts about the relation between the Coulomb
phase and the non-propagating abelian gauge for anSU(2) or SO(3) theory.

In a gauge theory we are confronted with an infinite (local) gauge symmetry which im-
plies that the description of the true physical degrees of freedom can be done in different
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formulations, by employing different choices of gauge. What matters is that the physical
observables are gauge invariant. The physically distinct phases of gauge theories there-
fore all respect the full local gauge invariance, in spite ofthe fact that their spectra may
differ as well as their topological structure. As we mentioned before, to study a particular
phase it can be advantageous to choose a gauge which stays close to the physics of that
phase. In particular the expected low energy effective description of that phase usually
suggests what this parametrisation should be. Yet, since itis only a gauge choice, it also
allows one to study the other phases from this particular point of view. These gauges may
offer new perspectives on some of the elusive features of gauge theories.

Important results in this direction were obtained for pure gauge theories by ’t Hooft [29]
by introducing the notion of a so-called non-propagating gauge, in particular theabelian
gauge. He showed that by choosing a particular gauge fixing he couldrewrite the non-
abelian theory as an effective abelian theory with magneticmonopoles corresponding
to the singularities in the gauge. The abelian gauge is therefore particularly suitable to
study the Coulomb phase where the long-range forces are indeed abelian. Nonetheless,
approximate models of this sort have been successfully implemented in certain lattice for-
mulations to investigate the confining phase, exploiting the fact that a strongly coupled
U(1) with monopoles does indeed confine, through a dual Higgs effect [88].

Let us discuss the unified electric-magnetic symmetry in theabelian gauge. An abelian
gauge theory with monopoles has a manifest electric gauge groupT = U(1) and a topo-
logical conservation law for the magnetic charge. To account for the magnetic part of the
spectrum we can assume the theory to have a hidden globalT ∗ = U(1). One can also in-
troduce a second gauge potential makingT ∗ local, but then one has to impose a constraint
to ensure that the second gauge field does not carry physical degrees of freedom, as the
theory has only a single photon. This can be done and was formulated in e.g. [89] in an
attempt to make a consistent quantum field theory involving both electrically charged par-
ticles and magnetic monopoles. So the conclusion is that thetheory in the abelian gauge
has in fact aT × T ∗ symmetry. However let us make an observation at this point. Even
accepting the hiddenT ∗ symmetry the spectrum of states has still a symmetry between
particles with electric-magnetic charges equal up to an overall sign. This is obvious from
in the original gauge theory with gauge groupG as discussed in section 4.2.3. From the
T × T ∗ perspective on the other hand the degeneracy signals the potential presence of a
hidden symmetry. This symmetry is nothing but a (local) charge conjugation symmetry
common from Alice phases.
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4.6.2 THE ALICE PHASE AND THE SKELETON GAUGE

We briefly discuss the prototype Alice phase in a theory with gauge groupG = SO(3)

and explain how it is related to the skeleton group. Furthermore we explain how the Alice
phase is related to a particular non-propagating gauge condition for SO(3). Finally we
generalise these concepts to a theory with an arbitrary non-abelian gauge group. Along
the way we classify the singularities that can arise by gaugefixing with a non-propagating
gauge condition and argue when such singularties obstruct the implementation a particluar
non-propagating gauge condition in anSU(2) or SO(3) gauge theory.

The Alice phase can be described as a Higgs phase with a condensate in the 5-dimensional
irreducible representation ofSO(3) [30, 31, 32]. The expectation value of the Higgs field
can be identified with the traceless symmetric tensor:

〈Φij〉 = ηiηj −
1

3
δijηkηk, (4.89)

whereη = ηiσi and(σi)i=1,...,3 the Pauli matrices. Ifη is nonzero theU(1)-group of
rotations around the vectorη leave by definitionη invariant and hence the Higgs VEV
invariant. The latter is also invariant under the reflectionη 7→ −η. These two parts of
the residual symmetry for nonvanishingη do not commute and the full residual symmetry
groupH is Z2 ⋉ U(1), the electric subgroupSel of the skeleton group forSO(3).

The topology of the model allows for monopoles just like theU(1) phase becauseπ2(G/H) =

Z, but also allows a non-trivialZ2 flux solution becauseπ1(G/H) = Z2. Such a
smooth flux solution has been constructed in [90], see also [91]. The ansatz for this
solution is due to Schwarz [31]. In cylindrical coordinatesthe asymptotic Higgs field
Φ(r, θ, z) = φ(r̂) + O(r−1) is determined in terms ofη via equation (4.89) by

ηi(θ) ∼ Rij(θ/2)ηj(0), (4.90)

whereη(0) ∼ σ3 andRij(ϕ) corresponds to a rotation around thex-axis over an angleϕ.
TheU(1)-factor of the residual gauge group at some point on an infinitely large cylinder
is generated byη(θ). If one goes around the flux this generator is transformed by aZ2-
action sinceη(2π) = −η(0). It is important to note that the flux solution itself is perfectly
smooth atθ = 0, i.e. the Higgs field, and actually also the gauge field, is a single valued
function.

In general one can associate to every flux solution a specific elementh in the residual
gauge group defined by a Wilson loop around the flux:

h = Pe
H

Aµdxµ

. (4.91)

The elementh can in principle be any element inH , but the flux is topologically stable
if it lies in a subset ofH which does not contain the unit. In this particular case we thus
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find that up to aU(1) element this so-called Alice fluxh equals the generator ofZ2. This
implies that if an electrically charged particle is moved around the Alice flux, its charge
is conjugated by theZ2 action. The important conclusion is that it is not possible to give
a single valued definition for the electricU(1) charges in the presence of an Alice flux.
In other words theU(1) generator is not single valued and changes sign if one takes it
around theZ2 flux as we have seen in the example above. In that sense the Alice phase
is an abelian theory with a local charge conjugation symmetry. Similarly, in the presence
of an Alice flux the sign of the magnetic charge is not uniquelydefined. The heuristic
argument for this is that the magnetic charge is defined in terms of theU(1) generator and
thus its sign flips if we take it around theZ2-flux. More precise arguments for this are
based on topology [92].
Because there is only one type ofZ2 flux it should be clear that if we take a dyon around
it the electric as well as the magnetic charge changes sign and the charge conjugation acts
diagonally on dyonic charges. Finally note that if underZ2 gauge transformations the
charges change sign, also the magnetic and electric fields change sign so that (locally) the
physics remains unaffected by the gauge transformations. This means that there must be
two distinct one-dimensional neutral representations, one for the vacuum sector and one
for the photon.

The degeneracies of the Alice phase are accurately reflectedin the representation the-
ory of the skeleton group. For non-vanishing charges the irreducible representations are
2-dimensional and the electric-magnetic charges of the states constituting such a repre-
sentation are related by aZ2 reflection. In the neutral sector there are two irreducible
representations, the trivial representation(+, [0, 0]) corresponding to the vacuum and the
non-trivial representation(−, [0, 0]) related to the photon. This is important in our view,
because in the abelian phase this is not the case.
Finally note that locally the physics in Alice electrodynamics is not different from ordi-
nary electrodynamics. Nonetheless on a global level these theories are profoundly differ-
ent because the Alice fluxes mediate topological interactions, see e.g. [92].

To understand the relevance of the skeleton gauge one needs some understanding of the
abelian gauge. In ’t Hooft’s proposal a non-propagating gauge is introduced by means of
some tensorX transforming in the adjoint of the gauge group. The order parameterX can
either be a fundamental field of the theory or be constructed out of a composit field. In a
pure Yang-Mills theory one can take for exampleX to be contained in the tensor product
Fµν ⊗ Fµν . Note though that in the case thatG equalsSU(2) or SO(3) the decompo-
sition of the symmetric tensor product of the adjoint into irreducible representations does
not contain the adjoint represention and one needs some other field to defineX .
One can now fix a gauge by requiringX to be a diagonal matrix, i.e. by takingX in the
CSA. However, to obtain the abelian gauge where the residualgauge group equals the
maximal torusT one also has to fix the order of the eigenvalues. In the case ofSU(n)
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we can restrictX to be of the form diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn). Since the
eigenvalues ofX are gauge invariant the abelian gauge is the strongest non-propagating
gauge condition that can be implemented. If we leave out the additional constraint we
obtain a non-propagating gauge condition where the eigenvalues are ordered up to Weyl
transformations. In this gauge the residual symmetry ofSO(3) is thus the electric sub-
group of the skeleton groupZ2 ⋉ U(1), i.e. it is a minimal non-abelian extension of the
maximal torusU(1).

An important aspect of the abelian gauge is that is gives riseto singularities. To see
this one can start out from a configuration ofX that for the sake of simplicity is smooth
overR3, i.e. X defines a trivial adjoint bundle associated to a trivial principalG-bundle
overR3. One may now wonder if for such a configuration there always isa smooth or at
least continuous gauge transformation that rotatesX into the CSA with a fixed order of
eigenvalues. If this can be done one ends up with trivialT -bundle overR3 and in partic-
ular with a trivialT -bundle over any sphereS2 ⊂ R3. We know already that there are
configurations corresponding to a trivialG-bundle overR3 for which such a gauge trans-
formation does not exist. These are related to a non-trivialT -bundles over a 2-sphere.
An example forG = SU(2) (or G = SO(3)) directly related to the ’t Hooft-Polyakov
monopole [6, 7] is ifX equals the “hedgehog” configurationriσih(r) with h(r) ap-
proaching some constant value for small values ofr. Note that the stabiliser ofX at
each point inR3 is a subgroupU(1) ⊂ SU(2) generated bŷriσi, except at the origin
whereX vanishes and the residual gauge group is restored toSU(2). There is a gauge
transformation that maps the hedgehog configuration toσ3rh(r) which is discontinuous
along the negativez-axis (including the origin). This Dirac string is just a gauge artifact
as can be seen by adopting the Wu-Yang description [37]: there also exists another gauge
transformation mappinĝriσi to σ3 which is discontinuous on the positivez-axis. These
two SU(2) gauge transformations are related by a non-trivialU(1) gauge transformation
which is well-defined onR3 except for thez-axis. Consequently the hedgehog configura-
tion defines a non-trivialU(1) bundle one eachS2 centred around the origin. The Dirac
strings are now accounted for by using a separate gauge transformation on the two hemi-
spheres ofS2. Nonetheless the patched gauge transformation onR3 is still singular at the
origin where the full gauge group is restored.
In general there exist smooth configurations ofX which define a non-trivial winding
numbers inπ2(SU(2)/U(1)) ∼ π1(U(1)) and can therefore not be rotated into the CSA
without introducing point-like singularities whereSU(2) is restored. All these singular-
ities have to be added as extra degrees of freedom to the effective theory in the abelian
gauge.

It is reasonable to ask if there are not any other types of singularities which one has
to add to the effective theory. We have already seen that there are string-like objects such
as the Dirac string which are merely gauge artifacts. The state of any particle in the the-
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ory remains unchanged if the particle is moved around a Diracstring. Alice fluxes on the
other hand are string-like objects which are truly physical. The state is transformed by a
Z2-transformation if the particle is moved around it. Say we now start out from a smooth
configuration corresponding to an Alice flux so thatX = ηi(r, θ)σiα(r) with, for large
valuesr, ηi as defined in equation (4.90). There certainly exists a gaugetransformation
that rotatesX into the CSA. This gauge transformation, which is essentially given by the
the rotation matrixR(θ/2), is discontinuous atθ = 0 and thus gives rise to a plane-like
singularity bounded by thez-axis. Again this singularity is just a gauge artifact that can
be circumvented by using a two-patched gauge transformation. One now obtains a non-
trivial bundle on each cylinder centred around thez-axis which is essentially a Möbius
strip. But even in this description the singularity at thez-axis itself remains and hence the
Alice flux has to be added to to effective theory in the non-propagating gauge just as is
the case with monopoles. The appearance of such a string-like object was in some sense
already foreseen by ’t Hooft, see section 3 of [29].

It is nice to note that at the string singularity the fullSU(2) group is not restored. Instead
the stabiliser ofX equals theU(1) group generated byσ1 [91]. What is crucial, however,
is thatX is not single valued as we already noted earlier. This means that though in an
Alice flux configurationX can be rotated into the CSA, its eigenvalues cannot be ordered
since they are permuted as one goes around the flux. Both orderings appear simultane-
ously. Consequently the abelian gauge cannot be implemented in the the background of an
Alice flux, the strongest gauge condition that can be used is the skeleton gauge in which
the ordering condition is left out and the gauge is fixed only by takingX to be diagonal.
If one insists on using the abelian gauge this means one has todisregard Alice flux con-
figurations thereby ignoring a relevant sector of the theoryin which its non-abelian nature
is manifest.
Another way to implement the skeleton gauge is not to use an order parameter in the
adjoint representation but instead an order parameter in the 5-dimensional irreducible
representation. As follows from the discussion earlier in this section such an order pa-
rameter is single valued in an Alice flux background. Moreover this order parameter can
also be used in a pureSU(2) or SO(3) Yang-Mills theory because, as opposed to the
adjoint representation, the 5-dimensional representation appears in the decomposition of
the symmetric part of3 ⊗ 3. Also note that for non-zero values ofX the residual gauge
symmetry equals the electric part of the skeleton group which isZ2 ⋉ U(1) in theSO(3)

case. General smooth configurations of such anX in the5-dimensional representations
which correspond to a non-trivial equivalence class inπ1(SO(3)/(Z2 ×U(1)) = π0(Z2)

give rise to string-like singularities which have to be added to the effective theory in the
skeleton gauge. Also point-like singularities appearing in the skeleton gauge have to be
taken into account. The smooth configurations from which these singularities arise define
non-trivial elements inπ2(S0(3)/(Z2 ×U(1)) = π1(Z2)× π1(U(1)). Sinceπ1((Z2)) is
trivial such point-like singularties are directly relatedto the monopole singularities in the
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abelian gauge with the difference that the sign of the monopole charge is only defined up
to a sign in an Alice flux background.

Besides point-like and string-like singularities there might also be plane-like singulari-
ties in the skeleton gauge or in the abelian gauge. We have already seen such singularities
in the skeleton gauge which correspond to a discontinuity ofthe U(1)-generator in the
flux background. Such singularties can only be truly physical if they arise from a smooth
configuration defining a non-trivial element inπ0(G/H). SinceG is connected in the
case we consider here, this homotopy group vanishes. That tells us that all plane-like
singularities must be gauge artifacts.

Just as the abelian gauge cannot always implemented for Alice flux configurations there
may be configurations which obstruct the implementation of the skeleton gauge. Such
configurations do indeed exist and correspond to topologically stable flux solutions in
theories where the gauge group is broken a discrete (non-abelian) subgroup ofSO(3)

which is not a subgroup ofZ2 ⋉ U(1). If one goes around such a flux,η = ηiσi is
transformed to Ad(h)(η) with h /∈ Z2 ⋉ U(1) andη ∼ σ3 is mapped out of the CSA.
Note however that a suitabale gauge fixing parameter that is single valued in the presence
of such a flux, transforms in some higher dimensional representations and can in general
thus be not constructed as a composite field in a pure Yang-Mills theory. Moreover, even
if a suitable parameterX can be constructed or ifX corresponds to a fundamental field,
monopoles will be confined in such a flux sector because the fluxconfiguration corre-
sponds to an electric condensate that manifestly breaksU(1) ⊂ SO(3). We thus have to
conclude that even though the skeleton gauge does not probe all sectors of the theory and
thereby does not show its complete non-abelian symmetry, itis sufficient to describe all
dyonic charge sectors.

The question is what theory is effectively described by theSO(3) Yang-Mills theory
in the skeleton gauge. The skeleton gauge is related to the skeleton phase as the abelian
gauge is related to the Coulomb phase. Hence the obvious candidate is Alice electrody-
namics. So it is an abelian theory together with a local conjugation symmetry. But just as
in the abelian gauge the theory contains extra degrees of freedom corresponding to mag-
netic monopoles. In the skeleton gauge the effective theoryalso involves an Alice flux.
We thus see that even though the residual gauge group is non-abelian the effective theory
should still be “manageable” since the non-abelian factor is only manifest via topological
interactions mediated by the Alice flux.

The Alice phase ofSO(3) as well as the skeleton gauge are easily generalised to other
gauge groups. A generalised Alice phase is per definition a gauge theory with gauge
groupG broken to its electric skeleton groupSel. It has an abelian subgroup correspond-
ing to the maximal torusT but in addition features non-trivial (non-abelian) topological
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interactions. These topological interactions are inducedby discrete Alice fluxes which
correspond to the disconnected components of the skeleton group. Note that two ele-
ments in the lift of the Weyl groupW ⊂ Sel are connected if they differ by an element in
T . Hence the Alice fluxes can be labelled by elements in the WeylgroupW = W/D of
G, whereD = W ∩ T .
The appropriate Higgs field which generalises the symmetrictraceless Higgs used in the
SO(3) case is described as follows. Ifλ is the highest weight of the adjoint representation
of G then the Higgs should transform in the irreducible representation with highest weight
2λ. The connection with theSO(3) case is seen from the fact that the2λ representation
is part of the symmetric tensor product Sym(λ ⊗ λ). Moreover to prove that this Higgs
does indeed breakG to Sel one can use the fact that eachSU(2) or SO(3) subgroup
corresponding to a simple root is broken down to(Z4 ⋉ U(1))/Z2 or Z2 ⋉ U(1).
The set of monopoles in the generalised Alice phase is identical to the set of monopoles
in the Coulomb phase where the residual symmetry equalsT . The difference with the
Coulomb case lies in the fact that because of the presence of Alice fluxes, monopoles
with charges related by Weyl transformations should be identified. We thus find that the
unified electric-magnetic symmetry in a generalised Alice phase corresponds to the skele-
ton group ofG.

To introduce the generalised skeleton gauge one starts justas in theSO(3)-case with an
adjoint tensorX and imposes the non-propagating gauge condition that this tensor should
be diagonal. As opposed to ’t Hooft’s proposal we do not give any additional ordering
conditions. This implies that the eigenvalues ofX are ordered up to transformations given
by the Weyl groupW . Consequently the residual gauge symmetry in the skeleton gauge is
given by the maximal torus and in addition some discrete group which does not commute
with T . The elements of this discrete group are elements inG acting on the eigenvalues
of X as the Weyl group, i.e. they are elements in the liftW of W . The total residual
gauge group coincides with(W ⋉ T )/D, the electric subgroup of the skeleton group. A
more suitable gauge fixing parameter to define the skeleton gauge would be to takeX in
the same representation as the Higgs field used to introduce the generalised Alice phase,
since this order parameter is invariant under the action of the Weyl group.

We now claim that the effective theory for the Yang-Mills theory with gauge groupG in
the skeleton gauge is a gauge theory generalising the Alice theory described above. This
theory is up to (lifted) Weyl transformations an abelian theory with additional monopoles.
The non-abelian character of the theory is locally invisible and can only be observed in
topological interactions mediated by the expected Alice strings.
From a fundamental point of view, where we want to uncover thedual electric magnetic
structure of non-abelian gauge theories it now becomes clear that compared to the abelian
gauge the skeleton gauge offers a richer perspective on all dyonic charge sectors of the
theory. It explicitly reflects the non-abelian nature of theoriginal theory by organising the
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spectrum of magnetically and electrically charged fields incomplete Weyl orbits which
as we know are indeed degenerate. Also the neutral sectors acquire distinctive quantum
numbers corresponding to irreducible representations of the Weyl groupW . Since it is
merely just a gauge choice the skeleton gauge may in principle also be used to study other
phases than generalised Alice phases.

4.6.3 PHASE TRANSITIONS: CONDENSATES AND CONFINEMENT

In this subsection we want to determine phases of anSO(3) gauge theory related to an
Alice phase and study the effect of condensates in sectors labelled by the representations
of the skeleton group. Here we encounter an interesting interplay between group breaking
and topological features, leading to an understanding why certain parts of the spectrum
are “swallowed” by the vacuum, while others become confined.In the remainder of this
section we systematically analyse a number of conceivable condensates and describe the
phases associated with them.

Starting from the generalised Alice phase, let us consider the case where the neutral
vector particle condenses, i.e. a condensate in the sector(−, [0, 0]). Such a conden-
sate breaksS to T ⊗ T ∗ . This phase is indeed different from the original Alice phase
because the Alice string is confined. This means that possible closed loops of Alice
string, which had an energy proportional to length in the skeleton phase, become pan-
cakes with energy proportional to the minimal area spanned by the loop. The topological
argument is simple: in the new phase topological domain walls form, these are labelled
by π0(G/H) = π0(S/(T × T ∗)) = π0(Z2) = Z2, and the Alice loops will become the
boundaries of these walls. Since the Alice fluxes disappear from the bulk opposite electric
and magnetic charges are no longer equivalent and thereforethe skeleton representations
split into T × T ∗ representations. This is the Coulomb phase, and as such indeed noth-
ing but the abelian gauge description of theSU(2) theory given by ’t Hooft as discussed
above.

Let us now assume that in addition a charged vector boson in the representation(2, 0)

condenses. Note that this consenstate breaksT ⊂ S completely and hence we end up in a
Higgs phase. The residual symmetry group is given byT ∗ and topology is changed since
now one has a spectrum of magnetic fluxes corresponding to

π1((T × T ∗)/T ∗) = π1(T ) = Z. (4.92)

This implies that the theory is in a phase where magnetic fluxes are forced into magnetic
flux-tubes. These flux tubes match the allowed magnetic charges in the theory and one
should expect all monopoles to become confined. More precisely: the minimal confined
flux equals one fundamental flux quantum corresponding to thefundamental weight of the
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magnetic dual groupSU(2). The derivation of this fact is closely related to the deriva-
tion of the Dirac quantisation condition for the allowed magnetic charges as discussed in
section 2.3.1. If we move a particle with electric chargeλ ∈ Z around a flux tube with
flux eigπ ∈ U(1) the state of the system picks up a phase factoreiλgπ . Hence if we move
the charged vector boson around a fundamental flux tube withg = 1, the state of the
system is single valued and one can consistently think of thevector boson a absorbed by
the vacuum. This observation about single-valuedness holds of course for any particle
whose electric-magnetic charge is an integer multiple of(2, 0) and hence if a charged
vector boson condenses the complete purely electric sectoractually condenses. A dyon
with charge(λ, g), whereg 6= 0, becomes confined. This follows from the fact that such
a dyon originates from the tensor product representation(λ, 0) ⊗ (0, g).
Note that a monopole with unit charge will have a single flux tube attached which reaches
to infinity, while a monopole with charge 2, corresponding tothe root ofSU(2), can have
two fluxtubes. These observations are the three-dimensional analogue of what is encoun-
tered in two-dimensional situations studied in for example[93].
It is interesting to see what would happen on the boundary. The unit flux in the bulk de-
fines the unit flux on the boundary. In the boundary theory the monopole is an instanton
in the sense that tunnelling of a unit flux is allowed via a monopole-antimonopole pair in
the bulk. Consequently on the boundary there is no non-trivial magnetic flux sector. Since
in the bulk theory all electric charges are condensed, all charge sectors in the boundary
theory are identified with the vacuum. The boundary theory isthus trivial.
We shall see that the boundary theory becomes non-trivial ifwe consider a bulk con-
densate in the(4, 0)-representation which breaksT × T ∗ to Z2 × T ∗. The minimal
confined flux is now half the unit flux; if we move a(4, 0) state around this minimal flux
the state of the system does not pick up a non-trivial phase factor and(4, 0) can consis-
tently be identified with the vacuum representation(0, 0). Note that this actually holds
for any(4n, 0)-representation as consistent with the fact that gauge group is broken down
to Z2 × T ∗. We again see that all monopoles are confined but the unit monopole has
two flux tubes attached instead of only one, which implies that the minimal confined flux
tube cannot break up into a series of monopole-anti monopolepairs. This gives rise to a
non-trivial flux sector with half a unit flux. Together with the tunneling of unit fluxes via
monopole-antimonopoles pairs in the bulk this gives rise toa magneticZ2 factor of the
boundary theory.
To understand the electric content of the boundary theory wefirst make some observa-
tions about the bulk theory. The condensation of electrically charged particles means that
at long range their charges are screened. Since all such particles interact via the same
Coulomb field we should actually say that this field and thereby all Coulomb interactions
are screened at large disctances. Nonetheless, as proven inthe two-dimensional case [94],
one should expect all topological interactions, mediated by the magnetic fluxes, to survive
at longe range. If we move a particle with electric charge2n around the minimally con-
fined flux tube, the state of the system pick up the phase factore

i2πn
2 which is non-trvial
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for n = 1 modulo2. Particles that can pick up a non-trivial phase factor are not condensed
and give rise to one non-trivial charge sector in the boundary theory. The complete pic-
ture is that on the boundary aZ2 discrete gauge theory [34]. This is consistent with the
arguments which one may separately apply to the boundary theory [93].

We should make the following remark: there are phases that are difficult to describe in
this language, or better in this gauge. For example the non-abelian phases, corresponding
to discrete gauge theories. CertainZn andDn models are accessible because their group
can be embedded inSel. The other electric discrete non-abelian phases can be and have
been studied starting from the electric theory [34].

One could also break theT ∗ by a monopole condensate in say the(0, 2) representation of
T ×T ∗ ⊂ S. Now electric flux tubes develop which are quantised that match the possible
electric charges in the theory. In this phase one should thusexpect that electric charges
are confined.
Here applies a fortiori what we said about the non-abelian discrete phases. We have not
proven the existence of a non-abelian purely magnetic symmetry, though undoing the
abelian gauge to the magnetic side one could imagine to obtain such a phase. Our find-
ings in previous sections about the skeleton group and its dual are certainly consistent
with this hypothesis.
We also want to see what happens with dyonic condensates. Letus define an exterior
product notation between two representations:[a, b] ∧ [c, d] = ad − bc. If we identity
the weight lattice ofSO(3) with the even integers we can write the generalised Dirac
condition for dyons simply as the condition that the wedge product equals2n for some
n ∈ Z. The condition for confinement given a condensate of[a, b] is now that a repre-
sentation[c, d] will be confined if|[a, b] ∧ [c, d]| ≥ 2. This is so because exactly those
combined electric-magnetic fluxes allow a single valued vacuum state. Conversely, the
only representations that arenot confined are those for which the exterior product with
the condensate vanishes, which implies the conditionad − bc = 0 or a/b = c/d, in other
words the electric-magnetic vectors have to be parallel. The generalisation to higher di-
mensions should be similar but now we have the inner productsbetween vectors onΛ and
Λ∗ in the exterior product:[~a,~b] ∧ [~c, ~d] = ~a · ~d −~b · ~c. The condition for confinement
that the norm of the exterior product must be larger or equal than 2 remains roughly the
same. Note however that the condition to not be confined allows for many more solutions
in this situation.

The attentive reader will no doubt have noticed that we have “overlooked” one possi-
ble phase that should be part of our analysis. The question iswhat happens if in our Alice
phase the Alice strings themselves condense? This possibility has been considered before
[95], but the physical implications of such a condensate were not. The crucial property
in the unbroken phase is that electric and magnetic charges can de-localise into so-called
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Cheshire charges, which are rings of Alice flux carrying a non-localised charge, meaning
that any closed surface containing the ring may contain an electric or magnetic charge,
but it cannot be localised any further. This makes clear whatthe situation is like when
the Alice strings condense: both the notions of electric andmagnetic charge lose their
physical meaning. Another way of saying this would be to say that both types of charge
can spread (non-localisable) and neutralise any source; this means that both electric and
magnetic charges will be completely screened. The particles survive as neutral particles.
Another way to look at this is from the skeleton group breaking point of view [93] where
oppositely charged representations would be identified in the effective low energy theory,
and the photon would acquire some screening mass linked to the VEV of the Alice loop
operator.

We finally note that it is very interesting to investigate phases that emerge from a con-
densate that partially breaks the (lifted) Weyl group symmetry in the case of higher rank
groups.
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APPENDIX A

THE ALGEBRA UNDERLYING

THE MURRAY CONE

As announced in section 3.1.4 we shall construct an algebraic object whose set of irre-
ducible representations corresponds to the fundamental Murray cone. We do this in such
a way that the fusion rules respect the fusion rules of the residual dual groupH∗. We
shall start out from what is roughly speaking the group algebra of H∗. Next we intro-
duce its dualF (H∗). By dualizing again we find an objectF ∗(H∗) which again should
be thought of as the group algebra ofH∗. The difference, however, is that in this new
form the group algebra can explicitly be truncated toF ∗

+(H∗) in such a way that the
irreducible representations are automatically restricted to the fundamental Murray cone.
The nice feature of our construction is that it is very general. Starting out from any Lie
group and any subset of irreducible representations closedunder fusion we can construct
a bi-algebra which has a full set of irreducible representations corresponding to the subset
one started out with and whose fusion rules match those of thegroup one started out with.
At the end we briefly discuss the group-like objectH∗

+ which has the same irreducible
representations and the same fusion rules asF ∗

+(H∗). For most common consistent trun-
cations of the weight lattice ofH∗ one knows thatH∗

+ is obtained fromH∗ by modding
out a finite group. If one restricts the weight lattice to the Murray cone, however,H∗

+ is
not a group any more.

As a groupH∗ has a natural product and coproduct:

h1 × h2 = h1h2 (A.1)

∆(h) = h ⊗ h. (A.2)
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In addition there is a natural unit1, co-unitǫ and antipodeS by

1 = e ∈ H∗ (A.3)

ǫ : h 7→ 1 ∈ C (A.4)

S : h 7→ h−1. (A.5)

For a finite group one can immediately define the linear extensions of these maps on the
group algebra ofH∗. For a continuous groups there are several ways to define a vector
space with this Hopf algebra structure. We shall circumventthis discussion by considering
another algebra which is manifestly seen to be a vector space. This is the Hopf algebra
corresponding to the matrix entries of the irreducible representations ofH∗. Let πλ be
such a representation. For the matrix entries we have:

πλ
mm′ : h ∈ H∗ → (πλ(h))mm′ ∈ C. (A.6)

The set of finite linear combinations of such maps is obviously a vector space. The result-
ing set turns out to be a Hopf algebra and inherits a natural product, coproduct, co-unit
and antipode fromH∗.
The product inF (H∗) is directly related to the product of representations and can thus be
expressed in terms of Clebsch-Gordan coefficients, see for example chapter 3 of [96] for
the SU(2) case. The coproduct is much simpler because it merely reflects the fact that the
product ofH∗ is respected by the representations. To see this note that

πλ1

m1m′

1
× πλ2

m2m′

2
(h) = πλ1

m1m′

1
⊗ πλ2

m2m′

2
(∆(h)) =

πλ1

m1m′

1
⊗ πλ2

m2m′

2
(h ⊗ h) = πλ1

m1m′

1
(h)πλ2

m2m′

2
(h) = (A.7)

∑

λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′

1,m′

2,m′

1+m′

2
πλ

m1+m2,m′

1+m′

2
(h)

and

∆(πλ
mm′)(h1 ⊗ h2) = πλ

mm′(h1 × h2) =

πλ
mm′(h1h2) =

∑

s

πλ
ms(h1)π

λ
sm′ (h2) =

∑

s

πλ
ms ⊗ πλ

sm′(h1 ⊗ h2).
(A.8)

The product and coproduct onF (H∗) are thus completely defined by:

πλ1

m1m′

1
× πλ2

m2m′

2
=
∑

λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′

1,m′

2,m′

1+m′

2
πλ

m1+m2,m′

1+m′

2
(A.9)

∆(πλ
mm′) =

∑

s

πλ
ms ⊗ πλ

sm′ . (A.10)

To find the unit1 ∈ F (H∗) and the co-unit ofF (H∗) we note that these are defined in
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terms of their dual counterparts by:

1(h) = ǫ(h) = 1 ∈ C (A.11)

ǫ(πλ
mm′) = πλ

mm′(e) = δmm′ ∈ C. (A.12)

From the first equation it follows that the unit inF (H∗) is given by the matrix entry of
the trivial irreducible representation ofH∗ while the co-unit ofF (H∗) is related to the
entries of the unit matrix in theλ-representation ofH∗.
The antipode ofF (H∗) is defined byS(πλ

mm′)(h) = πλ
mm′(h−1). In the end, however,

we will only be interested in the bi-algebra structure. To avoid unnecessary complication
we will ignore the antipode.

To retrieve the group algebra ofH∗ we shall again take the dualF ∗(H∗) of F (H∗).
This space of linear functionals is generated by the basis elementsf ll′

µ . These are defined
in the standard way by:

f ll′

µ : πλ
mm′ ∈ F (H∗) 7→ f ll′

µ (πλ
mm′) = δµλδlmδl′m′ ∈ C. (A.13)

The product and coproduct ofF ∗(H∗) can be defined in terms of their counterparts in
F (H∗).

f
l1l′1
µ1 × f

l2l′2
µ2 (πλ

mm′) = f
l1l′1
µ1 ⊗ f

l2l′2
µ2 (∆(πλ

mm′ ))

= f
l1l′1
µ1 ⊗ f

l2l′2
µ2

(
∑

s

πλ
ms ⊗ πλ

sm′

)
=
∑

s

f
l1l′1
µ1 (πλ

ms)f
l2l′2
µ2 (πλ

sm′)

=
∑

s

δµ1λδl1mδl′1sδµ2λδl2sδl′2m′ = δµ1µ2δl′1l2δµ2λδl1mδl′2m′

= δµ1µ2δl′1l2f
l1l′2
µ2 (πλ

mm′)

(A.14)

∆(f ll′

µ )(πλ1

m1m′

1
⊗ πλ2

m2m′

2
) = f ll′

µ (πλ1

m1m′

1
× πλ2

m2m′

2
)

=
∑

λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′

1,m′

2,m′

1+m′

2
f ll′

µ (πλ
m1+m2,m′

1+m′

2
)

=
∑

λ

Cλ1λ2λ
m1,m2,m1+m2

Cλ1λ2λ
m′

1,m′

2,m′

1+m′

2
δµλδl,m1+m2δl′,m′

1+m′

2

= Cλ1λ2µ
m1,m2,m1+m2

Cλ1λ2µ
m′

1,m′

2,m′

1+m′

2
δl,m1+m2δl′,m′

1+m′

2

=
∑

Cµ1µ2µ
l1,l2,l Cµ1µ2µ

l′1,l′2,l′δl,l1+l2δl′,l′1+l′2
δµ1λ1δl1m1δl′1m′

1
δµ2λ2δl2m2δl′2m′

2

=
∑

Cµ1µ2µ
l1,l2,l Cµ1µ2µ

l′1,l′2,l′δl,l1+l2δl′,l′1+l′2
f

l1l′1
µ1 (πλ1

m1m′

1
)f

l2l′2
µ2 (πλ2

m1m′

1
)

=
∑

Cµ1µ2µ
l1,l2,l Cµ1µ2µ

l′1,l′2,l′δl,l1+l2δl′,l′1+l′2
f

l1l′1
µ1 ⊗ f

l2l′2
µ2 (πλ1

m1m′

1
⊗ πλ2

m2m′

2
)

(A.15)
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The product and coproduct onF ∗(H∗) are thus completely defined by:

f
l1l′1
µ1 × f

l2l′2
µ2 = δµ1µ2δl′1l2f

l1l′2
µ2 (A.16)

∆(f ll′

µ ) =
∑

Cµ1µ2µ
l1,l2,l Cµ1µ2µ

l′1,l′2,l′δl,l1+l2δl′,l′1+l′2
f

l1l′1
µ1 ⊗ f

l2l′2
µ2 , (A.17)

where the sum in the last line is overl1, l2, l
′
1, l

′
2, µ1 andµ2. Note that this sum has an

infinite number of non-vanishing terms corresponding to thepairs of irreducible repre-
sentations(µ1, µ2) whose tensor product contains the irreducible representation of H∗

labelled byµ.
One can easily check that the unit and co-unit ofF ∗(H∗) are given by:

1 =
∑

µ,l

f ll
µ (A.18)

ǫ(f ll′

µ ) = δµ0δl0δl′0. (A.19)

Just as the coproduct, the unit is not properly defined because it is a sums over an infinite
number of basis elements with non-vanishing coefficients. This is just a formal problem
because the finite dimensional representations ofF ∗(H∗) will only pick out a finite num-
ber of elements as we shall see below.

We can now truncateF ∗(H∗) to F ∗
+(H∗) by projecting out all functionalsfmm′

µ that
do not satisfy the Murray condition forG → H . This means that we will project out
all functionals withµ not in the Murray coneΛ+. The Murray condition can thus be
implemented by using the following linear projection operator:

P : fmm′

µ 7→ P (fmm′

µ ) =

{
0 if µ /∈ Λ+

fmm′

µ if µ ∈ Λ+
(A.20)

The product and coproduct of this truncated bi-algebra are given by:

f
l1l′1
µ1 × f

l2l′2
µ2 = δµ1µ2δl′1l2f

l1l′2
µ2 (A.21)

∆(f ll′

µ ) =
∑

Cµ1µ2µ
l1,l2,l Cµ1µ2µ

l′1,l′2,l′δl,l1+l2δl′,l′1+l′2
P (f

l1l′1
µ1 ) ⊗ P (f

l2l′2
µ2 ). (A.22)

Similarly, we have for the unit and co-unit:

1 =
∑

µ,l

P (f ll
µ ) (A.23)

ǫ(f ll′

µ ) = δµ0δl0δl′0. (A.24)

We shall now turn to the representations ofF ∗(H∗) andF ∗
+(H). First we will introduce

the set{πλ} of representations ofF ∗(H∗), where{λ} is the set of irreducible represen-
tations ofH∗. We define these representations ofF ∗(H∗) by:

πλ : f ll′

µ 7→ πλ(f ll′

µ ), (A.25)
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where the matrix entries are given by
(
πλ(f ll′

µ )
)

mm′

= f ll′

µ (πλ
mm′). (A.26)

This definition ensures that the representations{πλ} respect the product ofF ∗(H∗). The
representationsπλ defined here can thus be identified with the irreducible representations
of H∗. Below we shall prove thatπλ itself is actually an irreducible representation of
F ∗(H∗) and moreover we will find that these representations constitute the full set of
irreducible representation ofF ∗(H∗).

Next we want to consider if the representationsπλ of F ∗(H∗) are also representations
of the truncated algebraF ∗

+(H∗). ForF ∗(H∗) the representations above all satisfy

πλ(1) = πλ
(∑

f ll
µ

)
= I. (A.27)

However, inF ∗
+(H∗) we find for the representations labelled byλ not satisfying the

Murray condition:

πλ(1) = πλ
(∑

P (f ll
µ )
)

= 0. (A.28)

Since suchπλ does not respect the identity this is not a representation ofF ∗
+(H∗). Hence

for F ∗
+(H∗) we must restrict to the truncated set of representations{πλ} satisfying the

Murray condition. This last set of representations is obviously in one-to-one relation with
the magnetic charges in the fundamental Murray cone forG → H . Below we shall prove
that this is the complete set of irreducible representations ofF ∗

+(H∗).

We will construct the irreducible representations ofF ∗(H∗) andF ∗
+(H∗) out of the rep-

resentations of a set of subalgebras. LetF ∗ denote eitherF ∗(H∗) or F ∗
+(H∗). The

subalgebras denoted byF ∗
λ ⊂ F ∗ are generated by{f ll′

λ } with fixed dominant integral
weightλ. In the case ofF ∗

+(H∗) we of course restrictλ to be a dominant integral weight
in Λ+. Note that∪λF ∗

λ = F ∗. It follows from the product rule (A.16) or (A.21) thatF ∗
λ

is indeed closed under multiplication. The identity1λ in F ∗
λ is expressed as:

1λ =
∑

l

f ll
λ . (A.29)

These elements1λ ∈ F ∗ satisfy:

f × 1λ = 1λ × f ∀f ∈ F ∗ (A.30)
∑

λ

1λ = 1F∗ (A.31)

1λ × 1λ′ = δλλ′1λ. (A.32)

We can use these properties to characterize the irreduciblerepresentations ofF ∗. Let V
be any irreducible representation ofF ∗. It is easy to see that for anyλ the imageVλ
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of V under the action of1λ is itself a representation ofF ∗. This follows from the fact
that anyf ∈ F ∗ commutes with1λ as expressed by equation (A.30).V thus contains
invariant subspaces{Vλ}. For irreducible representations all invariant subspacesmust be
trivial, i.e. equal either{0} or V . Since any representation ofF ∗ respects the identity
1F∗ we find from (A.31) that for at least oneλ we must haveVλ 6= {0}, henceVλ = V .
Note thatλ is unique sinceVλ′ = {0} for λ′ 6= λ as follows from (A.32). Consequently
any irreducible representation ofF ∗ is labelled by a dominant integral weightλ. It now
follows from the product rule ofF ∗ that anyf ll′

λ′ ∈ F ∗
λ′ with λ′ 6= λ acts trivially onVλ.

An irreducible representation ofF ∗ thus corresponds to an irreducible representation of
F ∗

λ . Fortunately the irreducible representations ofF ∗
λ are easily found.

Note that the labelsl and l′ of F ∗
λ take integer values in{1, . . . , n} wheren is the di-

mension of the irreducible representationπλ of H∗. As it turns outF ∗
λ is ann×n matrix

algebra and it is a well known fact that such an algebra has a unique irreducible represen-
tation of dimensionn. For completeness we shall prove this now.
F ∗

λ has a commutative subalgebraF ∗
λ

diag generated by the elementsf ll
λ . Let us con-

struct the irreducible representations ofF ∗
λ

diag. Since the algebra is commutative its
irreducible representations are 1-dimensional. Letπ be such a representation. From
π(f ll

λ )2 = π(f ll
λ × f ll

λ ) = π(f ll
λ ) we find thatπ(f ll

λ ) equals either 0 or 1. If we assume
the latter for a fixed valuek of l then we have forl 6= k:

π(f ll
λ ) = π(fkk

λ )π(f ll
λ ) = π(fkk

λ × f ll
λ ) = δklπ(f ll

λ ) = 0. (A.33)

Note that since the unit ofF ∗
λ

diag must be respectedπ(f ll
λ ) cannot vanish for alll. The

irreducible representations ofF ∗
λ

diag are thus given by:

πl : f l′l′

λ 7→ δll′ . (A.34)

Any non-trivial irreducible representation(π, V ) of F ∗
λ can be decomposed into a sum of

irreducible representations ofF ∗
λ

diag. Hence there is avk ∈ V such thatπ(f ll
λ )vk = δlkvk.

Let us define a set ofn vectors inV by vm = π(fmk
λ )vk. The span of{vm} defines an

invariant subspace ofV . This follows again from the product rule:

π(f ll′

λ )vm = π(f ll′

λ )π(fmk
λ )vk = π(f ll′

λ × fmk
λ )vk

= δl′mπ(f lk
λ )vk = δl′mvl.

(A.35)

Sinceπ is irreducible the span of{vm} is V .

The claim is thatV is n-dimensional. In order to prove this we have to show that the
vectorsvm are linearly independent. If

∑

m

amvm = 0 (A.36)
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one finds from (A.35):

f ll
λ

(
∑

m

amvm

)
= alv

l = 0. (A.37)

So eitheral = 0 or vl = 0. However,vl = 0 together with the product rule and the
definition of vm implies thatvm = π(fml

λ )vl = 0. This would mean thatV = {0}
contradicting the fact thatV is non-trivial i.e. at least one dimensional. We thus find that
an irreducible representation ofF ∗

λ is n-dimensional and moreover it follows from the ex-
plicit action on a basis ofV as in equation (A.35) that such an irreducible representation
is unique up to isomorphy.

We have found that an irreducible representation ofF ∗ is completely fixed by a domi-
nant integral weightλ in the appropriate weight lattice. The dimension of such an irre-
ducible representation is given by the dimension of the irreducible representation ofH∗

with highest weightλ. To find the fusion rules for these representations we go backto
the representations{πλ} introduced in formula (A.25) and (A.26) via the matrix entries
of the originalH∗-representations. The dimensions of these representations are given
by the dimensions of the corresponding highest weight representations ofH∗. Moreover
they satisfyπλ(f ll′

µ ) = 0 for µ 6= λ, i.e.πλ defines a representation ofF ∗
λ . By compar-

ing (A.26) and (A.35) one finds thatπλ corresponds precisely to the unique non-trivial
irreducible representation ofF ∗

λ . We conclude that the representations{πλ} are the irre-
ducible representations ofF ∗. Since the labels, the matrix elements and hence also the
dimensions of these irreducible representations match those of the irreducible representa-
tions ofH∗ is seems very likely that the fusion rules for these representations ofF ∗ are
also identical to the fusion rules of the correspondingH∗-representations.

We have seen that the representation ofF ∗(H∗) are identical to the representations of
H∗. One might thus wonder to what extentH∗ andF ∗(H) are equivalent. IfH∗ is a
finite group one would find thatF ∗(H∗) being a double dual ofCH∗ is isomorphic to
the group algebraCH∗. Since in our casesH∗ is a continuous group one has to take
care in taking the dual. Nonetheless one can defineF (H∗) as the dual ofH∗ via the irre-
ducible representations ofH∗. Similarly, one can retrieveH∗ from the co-representations
of F ∗(H). These co-representations are nothing but the representations ofF (H) which
is the dual ofF ∗(H). Let us illustrate this forH∗ = U(1).
An irreducible representation ofU(1) is uniquely labelled by an integer number. It is not
very hard to check from equation (A.7) that the product ofF (U(1)) can be expressed as:

πn × πn′

= πn+n′

. (A.38)

SinceF (U(1)) is commutative its irreducible representations are 1-dimensional. An ir-
reducible representation thus sendsπ1 to somez ∈ C. It follows from (A.38) that the
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representation is completely defined byz:

z : πn 7→ zn ∈ C. (A.39)

Not all values ofz give a representation ofF (U(1)) though. To give an example we note
thatπ−1 is mapped toz−1. This goes wrong forz = 0. For eachz ∈ C\{0} one does find
a proper representation. It is easy to check thatC\{0} is a group. Obviously this is not the
groupU(1). As matter of fact we have reconstructed the complexificationU(1)C of U(1).
To understand this we note thatU(1) has an involution which takesh 7→ h∗ = h−1. The
representations ofU(1) respect this involution in the sense that(πn(h))∗ = πn(h∗). We
therefore have a natural involution onF ∗(U(1)) defined by(πn)∗ = π−n. Again one can
define the representations ofF (U(1)) to respect the involution, i.e.(z(πn))∗ = z((πn)∗).
This results in the conditionz∗ = z−1 which restrictsz to the unit circle inC, i.e. toU(1).

For SU(2) broken toU(1) the Murray cone is the set of all non-negative integers. This
implies that the dualF+(U(1)) of F ∗

+(U(1)) is generated by{πn : n ≥ 0}. The product
is still given by (A.38) and henceF+(U(1)) is a commutative algebra. Again we define
an irreducible representation byπ1 7→ z ∈ C. Since the representation should respect the
product we find that the choice ofz completely fixes the representation, i.e.z : πn 7→ zn.
One might again wonder if all values ofz give a representation. Note thatF+(U(1))

is not closed under inversion just as the Murray cone is not closed under inversion. For
exampleπ−1 /∈ F+(U(1)). The representation labelled byz = 0 is thus not immediately
ruled out. Note that forz = 0 we haveπn 7→ 0 for all n > 0. The image ofπ0 seems
undetermined, nonetheless we can setz(π0) = z0 ∈ C for z = 0. The representation we
now obtain does respect the product if and only ifz0 equals either0 or 1. But sinceπ0 is
the unit of the algebra it should be mapped to the unit ofC. Hence we find thatz(π0) = 1

for all z ∈ C and in particular forz = 0.
We have found that we should identifyU(1)+ with C. The complex numbers are indeed
closed under multiplication and moreover this multiplication is associative. On the other
hand there is no inverse. We thus see thatU(1)+ is a semi-group and not a group as
U(1). Let us finally connect both ends of the circle and see if the commutative alge-
bra U(1)+ = C has the appropriate irreducible representations. Obviously U(1)+ has
representationsπn for n > 0 defined by:

πn : z 7→ zn. (A.40)

Representations withn < 0 do not exist because the image ofz = 0 would not be defined.
Finally the representationπ0 is a bit tricky. One can, however, simply defineπ0(0) = z0.
It follows from the product onC thatz0 equals either0 or 1. If, however, we restrict all
representations to be continuous we findz0 = 1. It is now almost trivial to check that
the fusion rules ofU(1)+ correspond precisely to the fusion rules ofU(1). It would be
interesting to study if a smooth semi-groupH∗

+ can be defined for every possible residual
dual gauge groupH∗.
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APPENDIX B

WEYL GROUPS

In this appendix we first review and list the Weyl groups of theclassical groups. For
some simple examples we consider their irreducible representations. For a more detailed
discussion we refer to e.g. [97]. These are used in appendix Cto work out some examples
of proto skeleton group representations. The characters ofthe Weyl group representations
can be used to determine the fusion rules for the related proto skeleton groups.

B.1 WEYL GROUPS OF CLASSICAL LIE ALGEBRAS

The Weyl group is generated by reflections in the hyperplanesorthogonal to the roots and
thus consist only of orthogonal transformations. This is why the structure of the Weyl
group becomes particularly evident when an orthonormal basis of the weight space is
used. To streamline matters even more one can put an additional requirement on such a
basis, namely that the coordinates of any root are integers between -2 and 2. Such a basis
exists for every classical Lie algebra exceptAr = su(r + 1). However in this case it is
still possible to accommodate this requirement by choosingan embedding of the weight
space inRr+1. Thus will of course not give the familiar roots ofsu(r + 1) in Rr, but
this more unusual embedding is particular convenient for deriving the Weyl group. In
table B.1 below we have listed these roots in terms of these bases for the classical groups,
while in figure B.1 we have drawn the root diagrams for the simplest cases. For these
examples it is quite simple to find the Weyl groups, and using the roots as expressed in
table B.1 it does not require much more effort to generalise to any rank. First forsu(r+1)

we see that the fundamental reflectionwi in the hyperplane orthogonal to the simple root
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Appendix B. Weyl groups

g Dynkin diagram simple roots positive roots

Ar ei − ei+1 1 ≤ i ≤ r ei − ej 1 ≤ i < j ≤ r+1

Br

ei − ei+1 1 ≤ i ≤ r−1 ei ± ej 1 ≤ i < j ≤ r

er ei 1 ≤ i ≤ r

Cr

ei − ei+1 1 ≤ i ≤ r−1 ei ± ej 1 ≤ i < j ≤ r

2er 2ei 1 ≤ i ≤ r

Dr

ei − ei+1 1 ≤ i ≤ r−1 ei ± ej 1 ≤ i < j ≤ r

er−1 + er

Table B.1: Roots in the orthonormal basis

su(2) so(4)

so(5) sp(4)

Figure B.1: Root diagrams in the orthonormal basis
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B.1. Weyl groups of classical Lie algebras

αi = ei − ei+1 acts on the orthonormal basis as

w(i) :

{
ei ↔ ei+1

ej 7→ ej for j 6= i, i+1.
(B.1)

In other words the fundamental reflectionswi interchange the coordinates of a weight

wi : λ = (λ1, . . . , λi, λi+1, . . . , λr+1) 7→ (λ1, . . . , λi+1, λi, . . . , λr+1) (B.2)

and thereby generate all possible permutations of ther + 1 coordinates. We thus see that
the orthonormal basis is convenient to derive the commonly know fact thatW(su(n)) =

Sn. For the other classical Lie groups, the firstr− 1 fundamental reflections again gener-
ate all permutations of ther coordinates of the weights. The reflection in the hyperplane
orthogonal to therth root however also involves a sign change. For bothsp(2r) and
so(2r + 1) we have

wr : λ = (λ1, . . . , λr) 7→ (λ1, . . . ,−λr), (B.3)

While therth fundamental reflection inW(so(2r) we actually have two sign flips since

wr : λ = (λ1, . . . , λr−1, λr) 7→ (λ1, . . . , ,−λr−1,−λr). (B.4)

We conclude that the Weyl groups of these three Lie algebras act by permuting the coor-
dinates in the orthonormal basis and multiplying them by signs. ForW(so(2r) we have
the additional condition that only an even number of sign flips is allowed. The transfor-
mations with only a single sign change are actually the symmetries of the roots system
induced by theZ2 symmetry of the Dynkin diagram.
It is very important to note that the permutations and the sign flips are not independent.
Pick any elementw in the Weyl group that only changes signs:w = (s1, . . . , sr) with
si ∈ Z2. Conjugation of this group element by a pure permutationπ returns again a pure
sign flip element. But the positions where the sign flips occurhave been permuted:

π(s1, . . . , sr)π
−1 = (sπ(1), . . . , sπ(r)). (B.5)

From these considerations it follows that the Weyl groups ofsp(2r), so(2r+1) andso(2r)

have the structure of a semi-direct product as given in the table below.1

g W
su(n) Sn

so(2r+1) Sr ⋉ Zr
2.

sp(2r) Sr ⋉ Zr
2

so(2r) Sr ⋉ Z
r−1
2

1Note that there are exceptions. Obviously the Weyl group ofso(3) = su(2) is not a semi-direct product.
Forso(4) = su(2) × su(2) the action of the permutation group is also trivial.
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Appendix B. Weyl groups

B.2 REPRESENTATIONS OF THE WEYL GROUP

The Weyl group ofSU(n) is the symmetric groupSn. The irreducible representations
of the symmetric group are well known. The simplest non trivial case isS2 ≈ Z2. This
group has two 1-dimensional irreducible representations.We shall denote the trivial rep-
resentation byΠ0. For the non trivial representation we shall writeΠ1. Computing tensor
products ofZ2 representations is very easy:Π1⊗Π1 = Π0. BesidesS2 we shall be using
S3 in some of the examples in the upcoming sections. Therefore we have summarised
some facts basic facts in the character tables of these groups below.

S2
Π0 Π1

e 1 1
w1 1 -1

S3
Π0 Π1 Π2

{e} 1 1 2
{w1, w2, w3} 1 -1 0
{w1w2, w2w3} 1 1 -1

Except in the case ofSU(n) the Weyl groups of classical groups are semi-direct products
of the symmetric group and a normal subgroup that equals somepower ofZ2. Hence to
find their irreducible representations one can use the method of induced representations
as reviewed in section 4.4.1. In practice this means that onecan assign either a trivial or
a non trivial representation to eachZ2 factor. These factors are permuted by the action of
the symmetric group and their representations are interchanged accordingly. Hence the
representation of the Weyl group will have an additional charge corresponding to the sub-
group of permutations that do not interchange trivial and non-trivial Z2 representations.2

We finish this section with an example which we will be using later on. We shall com-
pute the character table ofW(Sp(4)) = S2 ⋉ (Z2 × Z2). This Weyl groups is actually
the dihedral groupD4, the symmetry group of the square spanned by the fundamental
representation ofSp(4), see figure B.2.3 This group has 8 elements which we denote by
(π, s1, s2) ∈ S2 × Z2 × Z2. The semi-direct product structure shows op in the multipli-
cation of 2 elements:(π, s1, s2)(π

′, s′1, s
′
2) = (ππ′, s1s

′
π(1), s2s

′
π(2)).

The 8 group elements fall into 5 different conjugacy classeswhich can be represented by
the following group elements:e = (1, 1, 1), w1 = (1,−1, 1), w2 = (−1, 1, 1), w1w2 =

(−1,−1, 1) and finallyw1w2w1w2 = (1,−1,−1), wherew1 andw2 are the reflections

2Since the Weyl group ofSO(2r) has has oneZ2 factor less, its irreducible representations will have quan-
tum numbers corresponding to some subgroup ofSr−1.

3Notice the change in ordering of the simple roots with respect to table B.1.
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in the axes perpendicular toα1 andα2. w1w2 is a rotation overπ/2. ConsequentlyD4

has 5 irreducible representations.
Four of these irreducible representations are quite easy tofind. They correspond to
Z2 × Z2 charges that are left invariant by theS2 action, i.e. these representations have
a quantum number corresponding to the fullS2 group. Thereby we find the following
one-dimensional representations:

Π(i1,i2,i2) : (π, s1, s2) 7→ Πi1(π)Πi2 (s1)Πi2 (s2). (B.6)

Two remarks should be made. First note that these representations are invariant under the
S2 action, they do not depend on the order ofs1 ands2. It is therefore trivial that these
representations respect the group multiplication of the semi-direct product. Second, the
characters for these representations can be computed simply by counting signs, see the
table below.

To find the last irreducible representation ofD4 one starts withZ2 charges(i1, i2) =

(1, 0). First note this pair is only invariant under the action of the trivial element inS2.
This implies that we have an irreducible representation without an additionalS2, which
we shall denote byΠ(1,0). Furthermore it is good to remember that the representations
with charges in an orbit ofS2 are equivalent, e.g.Π(1,0) = Π(0,1).
To find the characters of this last irreducible representation one can use equation (4.35)
with σπ ∈ Π4/(Z2 × Z2) = S2. Since(π, s1, s2)σπ′ = σππ′ , we find

χ((π, s1, s2)) =

{
0 for π 6= e∑

π′ χ(π′−1(s1, s2)π
′) = s1 + s2 for π = e.

(B.7)

α1

α2

sp(4)

Figure B.2: The fundamental representation ofSp(4).
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S2 ⋉ (Z2 × Z2) Π(0,0,0) Π(1,0,0) Π(0,1,1) Π(1,1,1) Π(1,0)

(+1, +1, +1) 1 1 1 1 2
(+1,±1,∓1) 1 1 -1 -1 0
(−1,±1,±1) 1 -1 1 -1 0
(−1,±1,∓1) 1 -1 -1 1 0
(+1,−1,−1) 1 1 1 1 -2

Table B.2: Character table of the Weyl group ofsp(4) andso(5).
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APPENDIX C

PROTO SKELETON GROUP FOR

CLASSICAL LIE GROUPS

Below the representation theory is considered fro the protoskeleton group associated to
the groupsSU(2), SU(3) andSp(4).

C.1 PROTO SKELETON GROUP FOR SU(2)

In this section we compute the irreducible representationsand the characters of the proto
skeleton groupW ⋉ (T × T ∗) starting out from a Yang-Mills theory withG = SU(2).
The Weyl group ofSU(2) is of courseZ2. The maximal torusT of SU(2) is simply
the subgroupU(1) ⊂ SU(2) generated byHα = σ3. The dual group ofSU(2) is
SO(3) = SU(2)/Z2. We thus find thatT ∗ can be identified withU(1)/Z2 whereU(1)

is generated byσ3 andZ2 is generated by−I. We thus see that if we identify the electric
weight lattice with the integer numbers the magnetic weightlattice is given by the even
integers.
An irreducible representation ofT × T ∗ is labelled by a pair(2λ, 2g) ≡ (n, n∗) ∈ Z×Z

with n∗ even. The Weyl groupZ2 acts on these pairs as(n, n∗) 7→ (−n,−n∗). Hence
only (n, n∗) = (0, 0) has a non-trivialZ2-centraliser. In this case the centraliser actu-
ally equalsZ2, and therefore the trivial charges together with the irreducible centraliser
representation gives us a one-dimensional irreducible representation ofZ2 ⋉ (T × T ∗):

Π(i,[0,0]) : (w, g, g̃) 7→ Πi(w). (C.1)

119



Appendix C. Proto skeleton group for classical Lie groups

If either the electric or the magnetic charge is non-trivialwe will obtain an irreducible rep-
resentation of the proto skeleton group which is induced from theΠ(n,n∗) representation
of T × T ∗. As described in section 4.4.1 such an induced representation is constructed
by using the action of the group on a coset space. In this case the coset space is the proto
skeleton group modded out byT × T ∗, which is isomorphic to the Weyl groupZ2. Since
there are two cosets the induced representation is two dimensional. We shall denote these
representations byΠ[n,n∗].
Before we continue to discuss the tensor products of these irreducible representations one
last remark should be made: Irreducible representations with charges related by the action
of the Weyl group are equivalent, i.e.Π[n,n∗] = Π[−n,−n∗]. For the pure electric repre-
sentations withn∗ = 0 this means that the representation is defined unambiguouslyby
the absolute value|n|.

The fusion rules for the proto skeleton group can be computedby evaluating equation
(4.42). This gives the following results. If the charges arezero one simply retrieves the
Z2 fusion rules. For nonzero charges one finds

(i, [0, 0])⊗ [n, n∗]) = [n, n∗] (C.2)

[n1, n
∗
1] ⊗ [n2, n

∗
2] = [n1 + n2, n

∗
1 + n∗

2] ⊕ [n1 − n2, n
∗
1 − n∗

2]. (C.3)

If the charges are equal (up to a Weyl transformation) this fusion rule is slightly different

[n, n∗] ⊗ [n, n∗] = (0, [0, 0])⊕ (1, [0, 0]) ⊕ [2n, 2n∗]. (C.4)

These fusion rules can be understood from two perspectives.First, if we take either the
magnetic or the electric charges zero we obtain the fusion rules ofO(2). This should not
be surprising at all sinceZ2 ⋉ U(1) ∼= O(2). Second, the fusion rules above are nothing
but a logical extension and respect the fusion rules ofZ[Λ × Λ∗] as discussed in section
4.4.4.

C.2 PROTO SKELETON GROUP FOR SU(3)

The next example we are going to work out corresponds to anSU(3) theory. All that
we shall do here is repeating the recipe from the previous section. Nonetheless, the Weyl
group ofSU(3) is truly non abelian and therefore the representation theory of the related
proto skeleton group is potentially much more interesting.By the same token it is also
much more complicated. We shall still be able to work out all irreducible representations.
We shall deal with the fusion rules on the other hand on a case by case basis.
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To avoid too much cluttering we shall use a compact notation and useT to denoteT ×T ∗.
Thus for the proto skeleton group we writeS3 ⋉ T . As before we should start by choos-
ing the charges corresponding to theU(1) factors inT , and determine the centraliser
subgroup. TheT charge which we denote byµ has 2 components, one related to the elec-
tric charge and one to the magnetic charge. Each of these components correspond to a
point in the weight lattice ofSU(3), the magnetic charge however is restricted to the root
lattice. The Weyl group acts on the chargeµ. To visualise this action one take 2 copies
of the SU(3) weight lattice. The Weyl group acts on these charges simultaneously. It
follows that the centraliser ofµ is simply the intersection of the electric and the magnetic
centralisers. We distinguish 3 different classes of Weyl orbits, with either 1, 3 or 6 ele-
ments, corresponding to 3 different classes of representations of the proto skeleton group.

λ1

λ2

Figure C.1: Weyl orbits in the weight lattice ofSU(3).

The simplest case is when the Weyl orbit is trivial, that is when the charges are zero. All
elements in the Weyl group leave this weight fixed which meansthat the centraliser sub-
group isS3 itself. Thus by choosing aS3-representationΠi we define a representation of
the complete proto skeleton group:

Π(i,[0]) : (w, t) 7→ Πi(w). (C.5)

If the charge is a multiple of either(λ1, λ1) or (λ2, λ2) the centraliser subgroup is isomor-
phic toZ2 ⊂ S3. Choosing a charge corresponding to an irreducible representation of the
Z2 centraliser group gives us a one dimensional representation of Z2 ⋉ T . From the fact
that in these cases the Weyl orbits of the charges have 3 elements we conclude that the
induced representionsΠ(i,[µk]) are 3 dimensional. Finally there is a set of charges with
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trivial centralisers. These lead to six dimensional representations of the proto skeleton
group denoted byΠ[µ].
We shall finally compute some fusion rules for the skeleton group ofSU(3). If we restrict
to either pure electric case charges we haveµ = nλ1 + mλ2 for some positive integers
n andm. Here we use the fundamental weights with2λi · αj/α2

j = δij . We shall first
compute the fusion rule related to3 ⊗ 3 in SU(3).

(i, [λ1]) ⊗ (i, [λ1]) = (0, [λ2]) ⊕ (1, [λ2]) ⊕ (0, [2λ1) (C.6)

(i, [λ1]) ⊗ (j, [λ1]) = (0, [λ2]) ⊕ (1, [λ2]) ⊕ (1, [2λ1]) i 6= j. (C.7)

As for as it concern the electric charges it is clear that thisagrees with3 ⊗ 3 = 6 ⊗ 3 for
SU(3).

Some more fusion rules related to3 ⊗ 3 are given by:

(i, [λ1]) ⊗ (i, [λ2]) = [λ1 + λ2] ⊕ (0, [0]) ⊕ (2, [0]) (C.8)

(i, [λ1]) ⊗ (j, [λ2]) = [λ1 + λ2] ⊕ (1, [0]) ⊕ (2, [0]) i 6= j. (C.9)

If we ignore the centraliser charges this corresponds to3 ⊗ 3 = 8 ⊕ 1.

C.3 PROTO SKELETON GROUP FOR SP(4)

In the last case we work out in considerable detail we take theresidual gauge symmetry to
contain a factorSp(4). This example is not much different from theSU(3) case, except
for the fact thatSp(4) is not selfdual. Consequently the magnetic lattice is not directly
embedded in the electric weight lattice but corresponds to the weight lattice of the dual
group. Once we have taken this into account we can follow exactly the same procedure
as before to compute the irreducible representations and the fusion rules.

As in the previous sections we shall denote the proto skeleton group byW ⋉T . WhereT
contains the maximal tori of both the electric groupSp(4) and its magnetic dualSO(5).
The Weyl group in this particular case isD4 = S2 ⋉ (Z2 × Z2) as discussed in appendix
B.1 and B.2. To construct the irreducible representations we first choose theT charge
µ = (λ, g). The centraliser ofµ is eitherD4 × T , Z2 ⋉ T or T . We shall discuss these
cases separately.
Only if µ is zero it is invariant under the whole Weyl group. This will lead to irreducible
representationsΠ(i,[0]) which correspond to representationsΠi of D4 reviewed in ap-
pendix B.2.
There are several possibilities to realise aZ2 centraliser. In each case the subgroup
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Z2 ⊂ W is generated by the refectionwα that leaves theT -charge fixed. Takingα to
be a simple root is sufficient to capture all the isomorphism classes of irreducible repre-
sentations. This leaves us with two possibilities corresponding toα1 andα2 as depicted
in figure B.2. In the first case the centraliser corresponds toa sign flip in the second case
theZ2 subgroup comes from the permutation of the coordinates of the weight space. Ei-
ther way the resulting Weyl orbits have four elements and since there are two irreducible
Z2-representations one obtains two inequivalent 4-dimensional proto skeletongroup rep-
resentations for each such Weyl orbit.
Finally one can have an orbits represented byµ ∈ Λ × Λ∗ such thatµ has only a trivial
centraliser. Such orbits thus have 8 elements and corresponding irreducible representation
Π[µ] which are 8 dimensional.

Fusion rules for the skeleton group ofSp(4) can be computed from formula (4.42) using
the characters ofD4 listed in table B.2.
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APPENDIX D

SKELETON GROUP FOR

CLASSICAL LIE GROUPS

A subtle part in constructing the skeleton group is determining the lift of the Weyl group
to Lie group. The main part of this appendix is therefore dedicated to describing these
lifts for the classical groups. We shall also determine the relevant normal groups that by
modding out give the Weyl group back.

D.1 SKELETON GROUP FOR SU(N)

Below we work out the construction of the skeleton group and its irreducible representa-
tions in some detail forG = SU(n).

We shall start by identifying the liftW of the Weyl group. For the maximal torusT
of SU(n), we take the subgroup of diagonal matrices. The length of theroots is set
to

√
2. The raising and lowering operators for the simple roots arethe matrices given by

(Eαi
)lm = δliδm,i+1 and(E−αi

)lm = δl,i+1δm,i. From this one finds thatxαi
as defined

in equation (4.26) is given by:

(xαi
)lm = δlm(1 − δli − δl,i+1) + i(δliδm,i+1 + δl,i+1δmi). (D.1)

From now on we abbreviatexαi
to xi. One easily shows that

x4
i = 1, [xi, xj ] = 0 for |i − j| > 1, xixi+1xi = xi+1xixi+1. (D.2)
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As it stands, this is not the complete set of relations forW . However, one may show that
W is fully determined if we add the relations

(xixi+1)
3 = 1. (D.3)

This also makes contact with the presentation of the normaliser ofT obtained by Tits
[98, 99].

We shall now determine the groupD. Note that the elementsx2
i ∈ W are diagonal

and of order 2. In fact we have(x2
i )lm = δlm(1 − 2δli − 2δl,i+1). One thus sees that

the groupK generated by thex2
i is just the group of diagonal matrices with determinant

1 and diagonal entries equal to±1. Since its elements are diagonal we haveK ⊂ T and
henceK ⊂ D = W ∩ T . As a matter of factK = D. To prove this one can check
that conjugation with thexi leavesK invariant. HenceK is a normal subgroup ofW and
thus the kernel of some homomorphismρ onW . The image ofρ is the Weyl groupSn of
SU(n). To see this note thatW/K satisfies the relations of the permutation group (these
are the same as the relations for thexi above, but withx2

i = 1). An explicit realisation
of ρ : W → Sn is given byρ(w) : t ∈ T 7→ wtw−1. ObviouslyD ⊂ Ker(ρ) = K,
consequentlyD = K.

Let us work out theSU(2) case as small example.SU(2) has only a simple root and
thusW as only one generatorx which satisfiesx4 = 1. This givesW = Z4. D is gen-
erated byx2 which squares to the indentity and henceD = Z2. For higher rankW is
slightly more complicated butD is simply given by the abelian groupZn−1

2 .

In order to determine the representations ofS for SU(n) we need to solve (4.52) and
hence we need to describe howD is represented on a state|λ 〉 in an arbitrary represen-
tation ofSU(n). This turns out to be surprisingly easy. The generating elementx2

i of D

acts as the non-trivial central element of theSU(2) subgroup inSU(n) that corresponds
to αi. Now let (λ1, . . . , λn−1) be the Dynkin labels of the weightλ. Note thatλi is also
the weight ofλ with respect to theSU(2) subgroup corresponding toαi. Recall that the
central element ofSU(2) is always trivially represented on states with an even weight
while it acts as−1 on states with an odd weight. Hencex2

i leaves|λ 〉 invariant if λi is
even and sends|λ 〉 to λ(x2

i )|λ 〉 = −|λ 〉 if λi is odd.

For any given orbit[λ, g] we can solve (4.52) by determiningNλ,g ⊂ W and choos-
ing a representation ofNλ,g which assures that the elements(x2

i , x
2
i ) act trivially on the

vectors|λ, vγ 〉.
If the centraliser of[λ, g] in W is trivial its centraliserN(λ,g) in W equalsD = Z

n−1
2 .

An irreducible representations ofγ of D is 1-dimensional and satisfiesγ(x2
i ) = ±1. The

centraliser representations that satisfy the constraint (4.52) are defined byγ(x2
i ) = λ(x2

i ).
If (λ, g) = (0, 0) such the centraliser isW . In this case an allowed centraliser representa-
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tionsγ satisfiesγ(d)| v 〉 = | v 〉, i.e.γ is a representation ofW/D = W . The irreducible
representationsΠ[0,0]

γ of S thus correspond to irreducible representations of the permuta-
tion groupSn.
If N(λ,g) is neitherD nor W the situation is more complicated and we will not discuss
this any further.

D.2 SKELETON GROUP FOR SP(2N)

In this section we shall consider the skeleton group forSp(2n). The skeleton group for
the dual groupSO(2n + 1) will be discussed in the next section.

In order to construct the liftW of the Weyl group toSp(2n) we need to define the Lie al-
gebra, see e.g section 16.1 of [50]. The CSA is generated by2n×2n matricesHi defined
by

(Hi)kl = δkiδli − δk,n+iδn+i,l. (D.4)

The short simple rootsαi = ei−ei+1 with length
√

2 correspond toEαi
andE−αi

which
are defined as

(Eαi
)kl = δkiδi+1,l − δk,n+i+1δn+i,l (D.5)

(E−αi
)kl = δk,i+1δi,l − δk,n+iδn+i+1,l. (D.6)

The long simple rootαn with length2 is related to the raising and lowering operatorEαn

andE−αn
given by

(Eαn
)kl = δknδ2n,l (D.7)

(E−αi
)kl = δk,2nδn,l. (D.8)

From this one finds thatxαi
as defined in equation (4.26) is given by:

(xαi
)lm = δlm(1 − δli − δl,i+1 − δl,n+i − δl,n+i+1) + (D.9)

i(δliδm,i+1 + δl,i+1δmi − δl,n+iδm,n+i+1 − δl,n+i+1δm,n+i).

While xαn
is given by

(xαn
)lm = δlm(1 − δln − δl,2n) + i(δlnδm,2n + δl,2nδmn). (D.10)

To avoid cluttering we abbreviatexαi
to xi andxαn

to yn. As follows from the results in
section D.1 forSU(n) thexis generate a subgroupSn of W which is completely defined
by

x4
i = 1, [xi, xj ] = 0 for |i − j| > 1, xixi+1xi = xi+1xixi+1 (D.11)
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and

(xixi+1)
3 = 1. (D.12)

Another subgroup ofW is Z4 generated byyn, which is nothing but the lift ofZ2 ∈ W

generated by the Weyl reflection in the plane orthogonal toαn. Note thatW contains a
subgroupZn

2 . One might thus expect thatW contains a subgroupZn
4 . This is indeed the

case. We define

(yi)lm = δlm(1 − δli − δl,n+i) + i(δliδm,n+i + δl,n+iδmi). (D.13)

Note thaty4
i = 1 and[yi, yj] = 0. Theyis thus generate a subgroupZn

4 in W . More-
over this subgroup is a normal subgroup ofW since it is invariant under conjugation with
all the generators ofW . One can easilycheck thatyi+1 is related toyi via conjugation
with xi. One might thus expect that the lift ofW = Sn ⋉ Zn

2 is simplySn ⋉ Zn
4 . Note

however thatSn ∩ Z4
n 6= {e}. To determine the true value of this intersection one ob-

serves thatx2
i = y2

i y2
i+1. ConsequentlySn ∩ Z4

n = Z
n−1
2 generated by thex2

i s and
W = (Sn ⋉ Zn

4 )/Z
n−1
2 .

Next we want to compute the intersection ofW with the maximal torusT in Sp(n). One
immediately sees thaty2

i is a diagonal matrix and thus an element ofT . Since eachy2
i

generates aZ2 group one finds thatZn
2 ⊂ W∩T . Next we want to proof thatW∩T ⊂ Zn

2 .
We use the same approach as in theSU(n) case.Zn

2 is a normal subgroup ofW . Hence
Zn

2 is the kernel of some homomorphismρ. The image of this homomorphism is iso-
morphic toW/Zn

2 . The defining relations of this group can be found from the defining
relations ofW and the equivalence relationsy2

i = 1. Note that this equivalence relation
also implies the relationx2

i = 1 and we thus retrieve the defining relations forSn ⋉ Zn
2 .

An explicit realisation ofρ : W → Sn ⋉ Z2
n is given byρ(w) : t ∈ T 7→ wtw−1.

ObviouslyW ∩ T ⊂ Ker(ρ) = Zn
2 , consequentlyW ∩ T = Zn

2 .

D.3 SKELETON GROUP FOR SO(2N+1)

Here we shall compute the skeleton group forSO(2n + 1) by determining the lift of the
Weyl groupW and its insertsection with the maximal torus.

In order to construct the liftW of the Weyl group toSO(2n + 1) we need to define the
Lie algebra, see e.g. section 18.1 of [50]. The CSA is generated by(2n + 1) × (2n + 1)

matricesHi defined by

(Hi)kl = δkiδli − δk,n+iδn+i,l. (D.14)

128



D.4. Skeleton group for SO(2n)

The long simple rootsαi with length
√

2 correspond toEαi
andE−αi

which are defined
as

(Eαi
)kl = δkiδi+1,l − δk,n+i+1δn+i,l (D.15)

(E−αi
)kl = δk,i+1δi,l − δk,n+iδn+i+1,l. (D.16)

The short simple rootαn with length1 is related to the raising and lowering operatorEαn

andE−αn
which in our conventions are given by

(Eαn
)kl =

√
2 (δk,nδ2n+1,l − δk,2n+1δ2n,l) (D.17)

(E−αn
)kl =

√
2 (δk,2n+1δn,l − δk,2nδ2n+1,l) . (D.18)

From this one finds thatxαi
as defined in equation (4.26) is given by:

(xαi
)lm = δlm(1 − δli − δl,i+1 − δl,n+i − δl,n+i+1) + (D.19)

i(δliδm,i+1 + δl,i+1δmi − δl,n+iδm,n+i+1 − δl,n+i+1δm,n+i).

While xαn
is given by

(xαn
)lm = δlm(1 − δl,n − δl,2n − 2δl,2n+1) + (δlnδm,2n + δl,2nδmn). (D.20)

To avoid cluttering we abbreviatexαi
to xi andxαn

to yn. As for Sp(2n) we conclude
that thexis generate a subgroupSn of W . In contrast to theSp(2n) case we havey2

n = 1,
hence, instead of aZ4 subgroupyn simply generates aZ2 subgroup. In addition we define
the generatorsyi = xiyi+1x

−1
i . Note thaty4

i = 1 and[yi, yj] = 0. It should be clear that
theyis generate a normal subgroup ofW which equalsZn

2 . One can also check that this
subgroup does not intersect withSn except in1. We thus findW = Sn ⋉ Zn

2 .
Next we want to compute the intersection ofW with the maximal torusT in SO(2n+1).
Note thaty2

i equals the trivial element inT . On the other handx2
i is a diagonal matrix not

equal to the unit. By adapting our arguments from theSU(n) andSp(2n) cases it should
now be clear thatD = W ∩ T is generated by thexis and hence equalsZn−1

2 . Moreover
we indeed have thatW/D equals the Weyl groupSn ⋉ Zn

2 of SO(2n + 1).

D.4 SKELETON GROUP FOR SO(2N)

Finally we shall determine the lift of the Weyl group forSO(2n + 1) and its intersection
with the maximal torus. Together with the maximal torus itself and the dual torus this
fixes the skeleton group.

As can be read off from table B.1 and as illustrated by figure B.1 the root diagram of
SO(2n) looks like the root diagrams ofSO(2n+1) andSp(2n) but with the exceptional
roots removed. This similarity is directly reflected upon the matrix representations, see
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e.g. section 18.1 of [50]. The CSA ofSO(2n) is generated by2n × 2n matricesHi

defined by
(Hi)kl = δkiδli − δk,2iδ2i,l. (D.21)

The firstn − 1 simple rootsαi with length
√

2 correspond toEαi
andE−αi

which are
defined as

(Eαi
)kl = δkiδi+1,l − δk,n+i+1δn+i,l (D.22)

(E−αi
)kl = δk,i+1δi,l − δk,n+iδn+i+1,l. (D.23)

Thenth simple rootαn, whoseSO(2n + 1) counterpart is actually not simple, is related
to the raising and lowering operatorEαn

andE−αn
given by

(Eαn
)kl = δk,n−1δ2n,l − δk,nδ2n−1,l (D.24)

(E−αn
)kl = δk,2nδn−1,l − δk,2n−1δn,l. (D.25)

From this one finds thatxαi
as defined in equation (4.26) is given by:

(xαi
)lm = δlm(1 − δli − δl,i+1 − δl,n+i − δl,n+i+1) + (D.26)

i(δliδm,i+1 + δl,i+1δmi − δl,n+iδm,n+i+1 − δl,n+i+1δm,n+i).

While xαn
is given by

(xαn
)lm = δlm(1 − δl,n−1 − δl,n − δl,2n−1 − δl,2n) + (D.27)

i(δl,n−1δ2n,m + δl,2nδn−1,m − δl,nδ2n−1,m − δl,2n−1δn,m).

We abbreviatexαi
to xi with i = 1, · · · , n−1. Thexis generate the groupSn. We define

yn−1 asxn−1xαn
and finallyyi = xiyi+1x

−1
i . One can check thaty2

i = 1 and[yi, yj ] = 0

and in particular that the groupZn−1
2 generated by theyis correspond to the double sign

flips of the Weyl group action as discussed in appendix B.1. Itis important to note that
Z

n−1
2 is invariant under the action ofSn. It is also not hard to see thatSn∩Z

n−1
2 = e. The

lift of the Weyl groupW is thus given bySn ⋉ Zn−1
n . Finally we note thatD = W ∩ T

equalsZn−1
2 generated by the set{x2

i }.
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APPENDIX E

GENERALISED

TRANSFORMATION GROUP

ALGEBRAS

We have seen that the irreducible representations of a semi-direct product are labelled by
an orbit and a centraliser representation. This property isnot unique. The irreducible rep-
resentations of generalised transformations group algebras have a similar classification.
This makes it interesting to consider a generalised transformation group algebra that re-
produces the dyonic charge sectors as the skeleton group does. We shall see that such an
generalised transformation group algebra also has the samefusion rules as the skeleton
group. One thus might interpret such an algebra as a subalgebra of a unified electric-
magnetic symmetry. A possible objection is that this transformation group algebra is not
group and can thus not be interpreted as an invertible symmetry acting on states. On the
other hand a transformation group algebra does contain a group algebra, which we can
take to be the group algebra of an electric group.

E.1 IRREDUCIBLE REPRESENTATIONS

The definition of a general transformation group algebra canbe found in [100], see also
[101]. In the definition we will be usingH is a finite group acting on a finite setΛ.
Nonetheless there is a valid generalisation forH a locally compact group with a Haar
measure andΛ a discrete set.F (Λ × H), the set of functions onΛ × H , is called a
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transformation group algebra if it is equipped with a multiplication given by

f1f2(λ, h) =

∫

H

f1(λ, g)f2(g
−1 ⊲ λ, g−1h)dg. (E.1)

The unit of this algebra is given by aδ-function:

1 : (λ, h) ∈ Λ × H 7→ δe,h ∈ C, (E.2)

wheree is the unit ofH .
If Λ is also a group thenF (Λ × H) can be extended to a Hopf algebra. The coproduct,
counit and antipode are defined by

∆(f)(λ1, h1; λ2, h2) = f(λ1λ2, h1)δh1,h2 (E.3)

ǫ(f) =

∫

H

f(eΛ, h)dh (E.4)

S(f)(λ, h) = f(h−1 ⊲ λ−1, h−1). (E.5)

At least if bothH andΛ are discrete sets there is a convenient basis forF (Λ×H) defined
by the projection functions

Pλh : (µ, g) ∈ Λ × H 7→ δλ,µδh,g. (E.6)

In terms of these projection operators the Hopf algebra is given by

Pλ1h1Pλ2h2 = δλ1,h1⊲λ2Pλ1h1h2 (E.7)

∆(Pλh) =
∑

µ∈Λ

Pλµ−1h ⊗ Pµh (E.8)

1 =
∑

λ∈Λ

Pλh (E.9)

ǫ(Pλh) = δeΛ,λ (E.10)

S(Pλh) = Ph−1⊲λ−1h−1. (E.11)

An intersting set of functions is given by

Ph : (λ, g) ∈ Λ × H 7→ δh,g ∈ C. (E.12)

One can check that these function generate a subalgebra inF (Λ×H) which is isomorphic
to the group algebra ofH .

Before we review the the irreducible representations we introduce the Hilbert spaces upon
which the representations will act. LetN be a subgroup ofH , andγ a unitary represen-
tation ofN acting on the spaceVγ . We define a Hilbert space by the set of maps fromH

to Vγ that respect the action ofN :

Fγ(H, Vγ) =
{
|φ 〉 : H → Vγ | |φ 〉(hn) = γ(n−1)|φ 〉(h), ∀h ∈ H, ∀n ∈ N

}
.

(E.13)
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The irreducible representations ofF (Λ×H) are described as follows. Let[λ] be an orbit
in Λ under the action ofH and letNλ be the centraliser of the representantλ ∈ Λ. Then,
for each pair([λ], γ) of an orbit[λ] andγ an irreducible representation ofNλ, we have an
irreducible unitary representationΠ[λ]

γ of F (Λ × H) onFγ(H, Vγ) is given by

Π[λ]
γ (f)|φ 〉(h) :=

∫

H

f(h ⊲ λ, g)|φ 〉(g−1h)dg. (E.14)

Moreover, all unitary irreducible representations ofF (Λ × H) are of this form andΠ[λ]
γ

andΠ
[µ]
α are equivalent if and only if[λ] = [µ] andγ ∼= α.

E.2 MATRIX ELEMENTS AND CHARACTERS

For an irreducible representionΠ[λ]
γ we denote its carrier spaceFγ(H, Vγ) by V

[λ]
γ . The

dimension ofV [λ]
γ is equal to the productd[λ] of the number of elements in[λ] anddγ

the dimension ofVγ . To see this note that the functions|φ 〉 ∈ V
[λ]
γ are completely

determined once their value on one element in each cosethNλ of H/Nλ is chosen. The
number of cosets equalsd[λ] while φ(h) hasdγ components. Hence dimV [λ]

γ = d[λ]dγ .

To define a basis forV [λ]
γ we choose a basis{| eγ

i 〉} for Vγ andhµ ∈ H for eachµ ∈ [λ]

such thathµ ⊲ λ = µ. The basis elements{|µ; eγ
i 〉} are given by the map

|µ; eγ
i 〉 : hνn ∈ H 7→ δνµγ(n−1)| eγ

i 〉 ∈ Vγ . (E.15)

The action ofΠ[λ]
γ (f) can be found by evaluating equation (E.14) onhν for eachν ∈ [λ].

Π[λ]
γ (f)|µ; eγ

i 〉(hν) =

∫

H

f(hν ⊲ λ, g)|µ; eγ
i 〉(g−1hν)dg

=
∑

ρ∈[λ]

∫

Nλ

f(ν, hνnh−1
ρ )|µ; eγ

i 〉(hρn
−1)dn

=
∑

ρ∈[λ]

∫

Nλ

f(ν, hνnh−1
ρ )δµργ(n)| eγ

i 〉dn

=

∫

Nλ

f(ν, hνnh−1
µ )γ(n)| eγ

i 〉dn

=

∫

Nλ

f(ν, hνnh−1
µ )γ(n)ij | eγ

j 〉dn

=

∫

Nλ

f(ν, hνnh−1
µ )γ(n)ijdn| ν; eγ

j 〉(hν).

(E.16)
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The matrix elements ofΠ[λ]
γ with respect to the basis{|µ; eγ

i 〉} are thus given by

Π[λ]
γ (f)

µ,ν

ij
=

∫

Nλ

f(ν, hνnh−1
µ )γ(n)ijdn. (E.17)

In particular forf = Pσh we have

Π[λ]
γ (Pσh)

µ,ν

ij
=

∫

Nλ

Pσh(ν, hνnh−1
µ )γ(n)ijdn

=

∫

Nλ

δσ,νδh,hνnh−1
µ

γ(n)ijdn

= δσ,νδh⊲µ,νγ(h−1
ν hhµ)ij .

(E.18)

Consequently the characterχ
[λ]
γ of Π

[λ]
γ is defined by

χ[λ]
γ (f) =

∑

µ∈[λ]

∫

Nλ

f(µ, hµnh−1
µ )χγ(n)dn, (E.19)

whereχγ denotes the character ofγ. For the projection operators this gives

χ[λ]
γ (Pνh) =

∑

µ∈[λ]

∫

Nλ

Pνh(µ, hµnh−1
µ )χγ(n)dn

=
∑

µ∈[λ]

∫

Nλ

δνµδh,hµnh−1
µ

χγ(n)dn

=
∑

µ∈[λ]

δµ,νδh⊲ν,νχγ(h−1
ν hhν).

(E.20)

One may now define an inner product by the formula

〈χ1, χ2〉 =
∑

λ∈Λ

∫

H

χ1(Pλh)χ∗
2(Pλh)dh. (E.21)

One may check that the characters of the irreducible representation are orthogonal with
respect to this inner product:
〈
χ[ρ]

γ , χ[σ]
α

〉
=
∑

λ∈Λ

∫

H

∑

µ∈[ρ]

δµ,λδh⊲λ,λχγ(h−1
λ hhλ)

∑

ν∈[σ]

δν,λδh⊲λ,λχ∗
α(h−1

λ hhλ)dh

= δ[ρ][σ]

∑

µ∈[ρ]

∫

H

δh⊲µ,µχγ(h−1
µ hhµ)χ∗

α(h−1
µ hhµ)dh

= δ[ρ][σ]

∑

µ∈[ρ]

∫

Nρ

χγ(n)χ∗
α(n)dn (E.22)

= δ[ρ][σ]δγα

∑

µ∈[ρ]

∫

Nρ

dn

= δ[ρ][σ]δγα dim(H).
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If F (Λ × H) can be equipped with a co-algebra one can use the characters to obtain the
fusion rules. We shall consider this in more detail in the next section.

E.3 FUSION RULES

In special case thatΛ is a group,F (Λ×H) becomes a Hopf algebra with a co-multiplication
defined by (E.8). The co-multiplication defines the tensor product of two representations
and thus also the character of the tensor product. Since the characters of the irreducible
representations are orthogonal one can compute the decomposition of the tensor product
into irreducible representations by calculating the innerproduct of the characters of the ir-
reducible representations with the character of the tensorproduct. In this way one obtains
the fusion rules for the generalised transformation group algebra. We shall show that for
Λ equal to the set of characters of an abelian groupN the fusion rules ofF (Λ×H) equal
the fusion rules ofH ⋉ N .
From equation (E.8) one find for the characterχa×b of the representationa ⊗ b

χa⊗b(Pλh) = χa ⊗ χb(∆(Pλh)) =
∑

κ∈Λ

χa(Pλκ−1h)χb(Pκk). (E.23)

135



Appendix E. Generalised transformation group algebras

If we take the irreducible representationsa = Π
[σ]
α , b = Π

[η]
β andc = Π

[ρ]
γ we get from

equations (E.20) and (E.21):

〈χc, χa⊗b〉 =
∑

λ∈Λ

∫

H

χc(Pλh)χ∗
a⊗b(Pλh)dh

=
∑

λ∈Λ

∫

H

χc(Pλh)
∑

κ∈Λ

χ∗
a(Pλκ−1h)χ∗

b (Pκk)dh

=
∑

κ∈Λ

∑

λ∈Λ

∫

H

∑

µ∈[ρ]

δµ,λδh⊲λ,λχγ(h−1
λ hhλ)×

∑

ν∈[σ]

δν,λκ−1δh⊲(λκ−1),λκ−1χ∗
α(h−1

λκ−1hhλκ−1)×

∑

ζ∈[η]

δζ,κδh⊲κ,κχ∗
β(h−1

κ hhκ)dh

=

∫

H

∑

µ∈[ρ]

δh⊲µ,µχγ(h−1
µ hhµ)×

∑

ν∈[σ]

δν,µζ−1δh⊲ν,νχ∗
α(h−1

ν hhν)
∑

ζ∈[η]

δh⊲ζ,ζχ
∗
β(h−1

ζ hhζ)dh

=
∑

µ∈[ρ]

∑

ν∈[σ]

∑

ζ∈[η]

δµ,νζ

∫

H

δh⊲µ,µδh⊲ν,νδh⊲ζ,ζ

χγ(h−1
µ hhµ)χ∗

α(h−1
ν hhν)χ∗

β(h−1
ζ hhζ)dh.

(E.24)

Comparing this with equation (4.42), which only differs with an irrelevant constant factor,
we conclude that this does indeed give the fusion rules ofH ⋉ N .
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