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CHAPTER 1

INTRODUCTION

In the 1970s Goddard, Nuyts and Olive were the first to writerda rough version of
what has become one of the most celebrated dualities in Inigtgg physics. Following
earlier work of Englert and Windey on the generalised Diraargisation condition [1]
they showed that the charges of monopoles in a theory witheygtoup’ take values in
the weight lattice of the dual gauge groGp, now known as the GNO or Langlands dual
group. Based on this fact they came up with a bold yet attractonjecture: monopoles
transform as representations of the dual group [2].

Within a year Montonen and Olive observed that the Bogom&lrasad Sommerfield
(BPS) mass formula for dyons [3, 4] is invariant under therchange of electric and
magnetic quantum numbers if the coupling constant is iedeais well [5]. This led to the
dramatic conjecture that the strong coupling regime of ssuitable quantum field the-
ory is described by a weakly coupled theory with a similarfaagian but with the gauge
group replaced by the GNO dual group and the coupling cotisteerted. Moreover they
proposed that in the BPS limit of a gauge theory where theggugup is spontaneously
broken toU (1) the 't Hooft-Polyakov solutions [6, 7] in the original theazorrespond to
the heavy gauge bosons of the dual theory. Supporting exédiem the idea of viewing
the 't Hooft-Polyakov monopoles as fundamental partickse from Erick Weinberg’s
zero-mode analysis in [8].

Soon after Montonen and Olive proposed their duality, Osbwted that\V' = 4 Su-
per Yang-Mills theory (SYM) would be a good candidate to gsssthe duality since
BPS monopoles fall into the same BPS supermultiplets as léreeatary particles of
the theory [9]. ' = 2 SYM on the other hand has always been considered an unlikely
candidate because the BPS monopoles fall into BPS muigiat do not correspond to
the elementary fields of th& = 2 Lagrangian. In particular there are no semi-classical
monopole states with spin equal to 1 so that the monopolasotdre identified with
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Chapter 1. Introduction

heavy gauge bosons. Most surprisingly the Montonen-Olorgexcture has never been
proven for\ = 4 SYM whereas a different version of the duality has explicitten
shown to occur for the/"=2 theory in 1994 by Seiberg and Witten [10].

These authors started out frokh=2 SYM with the SU(2) gauge group broken down to
U(1) and computed the exact effective Lagrangian of the theofiptba strong coupling
phase described by SQED except that the electrons are lgatuanetic monopoles.
Moreover by softly breakingy” = 2 to N/ = 1 supersymmetry they were able to show
that in this strong coupling phase the monopoles conderdsthancby demonstrated the
't Hooft-Mandelstam confinement scenario [11, 12]. Simikssults hold for higher rank
gauge groups broken down to their maximal abelian subgridi®y4.4]. In these cases we
indeed have an explicit realisation of a magnetic abeliarggaroup at strong coupling.

A fascinating aspect of Seiberg-Witten theory is that it gigé/e rise to not just one
strong coupling phase, but to several. In general only orikase phases contains mass-
less monopoles while the other have an effective descnjiiterms of dyons. A priori it

is thus not clear what dynamically the relevant degreeseidom are. This illustrates the
necessity of a proper kinematic description of all possildgrees of freedom contained
in the theory. For abelian phases it is not too hard to prosiai a kinematic description
while for non-abelian phases, that is a phases where theegauogp is broken down to a
non-abelian subgroup, this problem has never been soltsfbstorily. The main chal-
lenge is to give a proper labelling of monopoles and dyonghigthesis we tackle this
issue.

As far as it concerns monopoles one finds classically thatnetégcharges take value
in the weight lattice of the dual group. Yet, there is no olmgioule to order these weights
into irreducible representations with the appropriateatisions and degeneracies, let
alone that there is a manifest action of the dual group on lidssical field configura-
tions. To illustrate this we consider an example with gaugeigU (2) embedded as a
subgroupinSU(3). The magnetic charge lattice in this case corresponds totidattice

of SU(3) as depicted in figure 1.1. The GNO dual groudi®) is again isomorphic to
U(2), in other words the magnetic charge lattice can be identifi¢il the weight lattice
of U(2). This group is by definition equal td/ (1) x SU(2))/Zs. The SU(2) weights
can be identified with the components of the charges alongxisedefined by one of the
simple roots ofSU (3), saya;. TheU(1)-charges then correspond to the components of
the charge along the axis perpendiculatio

As a next step one would want to use the magnetic chargedatticharacterise the mag-
neticU (2) multiplets as in accordance with the GNO conjecture. Thgimof the charge
lattice, i.e. the vacuum, can consistently be identifiechulite trivial representation of
U(2). Naively one would simply associate the doublet represiemtavith unitU (1) with
the pair of weightsy; = a3 + as andgs = as. This relation, however, raises some
guestions about the action of the dual group which become ma@e pressing as soon
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Figure 1.1: The magnetic charge lattice f& = U(2) corresponds to the root lattice &fU (3)
but also to the weight lattice df (2), henceG™ equalsU (2) in this case. One of the simple roots
of SU(3), saya; is identified with the root 06U (2) C U(2).

as one takes fusion of monopoles into account. There is @nabiat mapg; to g, and
vice versa, suggesting that we are indeed dealing with aldbuthis action corresponds
precisely to the action of the Weyl gro#p of U(2) generated by the refection in the
line perpendicular te;. If we now consider the product of two monopoles in the double
representation of the dual group then we expect from the Gdiecture that one would
obtain a singlet and a triplet. On the other hand in the aassheory the charge of a
combined monopole equals the sum of charges of the constuend in this particular
case thus equaly;, g1 + g2 Or 2g2. The chargeg; and2g, are again related by the
action of the Weyl group, but this Weyl action does not refhgse two charges i + go.
Moreover it is not clear if a combined classical monopoleigoh with chargey; + ¢-,
i.e. with anSU(2) weight equal to zero, corresponds to a triplet or a singégest

One possible argumentto resolve this issue comes fromthéhtat the action of the Weyl
group is nothing but a large gauge transformation which eatgthat charges on a single
Weyl orbit should not distinguished as different weightsaoflual representations. In-
stead such magnetic charges should be identified in the Heatdbey constitute a single
gauge invariant charge sector. Pushing this argument artfitsr one may conclude that
a monopole should be labelled by an integral dominant weightby the highest weight
of an irreducible representations of the GNO dual group. diagvback of this interpre-
tation is that it does neither manifestly show the dimensibtihe dual representations in
the magnetic charge lattice nor does it directly explaindbgeneracies implied by the
fusion rules ofG*. From this example we conclude that solving this labellingbem
for monopoles is closely related to proving the GNO conjextdt is also important to
note that the heuristic arguments above do not disprove M@ Gonjecture since, as we
have learned from Montonen and Olive, one does only expectittal symmetry to be
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Chapter 1. Introduction

manifest at strong coupling. From that perspective it isvany surprising that the dual
symmetry is to a certain extent hidden in the classical regidonetheless it should be
clear that that the charge labels of monopoles are relategigghts or dominant integral
weights of the GNO dual group.

For dyons with non-vanishing electric and magnetic chatigesituation is worse since,
as we shall explain below, it is not known what the relevagehrtaic object is that will
give rise to a proper labelling.

Before we continue one should wonder whether Yang-Millstles can have non-abelian
phases at strong coupling. Both the classitak 4 and N = 2 pure SYM theories have
a continuous space of ground states corresponding to theiraexpectation value of
the adjoint Higgs field. A non-abelian phase correspondkediggs VEV having de-
generate eigenvalues. In té = 4 theory the supersymmetry is sufficient to protect
the classical vacuum structure even non-perturbativédy. [5o the non-abelian phases
manifestly realised in the classical regime must survivaraing coupling as well. In the
N =2 theory the vacuum structure is changed in quite a subtle wayh-perturbative
effects. In those subspaces of the quantum moduli spacesvalran-abelian phase might
be expected there are no massless W-bosons. Instead thebptve degrees of freedom
correspond to photons and massless monopoles carryinigmbbhrges. In the best case
there are some indications that a non-abelian phase mayaésisong coupling in certain
N = 2 theories with a sufficient number of hyper multiplets [16].17

Although a kinematic description of monopoles and dyonsin-abelian phases is prob-
ably not very relevant foA/ = 2 SYM it may be important in understanding strongly
coupled non-abelian phases/®f= 4 SYM or non-abelian phases of other theories. We
shall therefore discuss these issues in a general comextdry specific theory, however,
progress has already been made.

Quite recently Witten and Kapustin have found extraordimaw evidence to support
the non-abelian Montonen-Olive conjecture. This evidemas constructed in an effort
to show that the mathematical concept of the geometric learitfl correspondence arises
naturally from electric-magnetic duality in physics [18].

The starting point for Kapustin and Witten is a twisted vensdf ' = 4 gauge theory.
They identify 't Hooft operators, which create the flux of &&rmonopoles, with Hecke
operators. The labels of these operators are given by thergiesed Dirac quantisation
rule and can up to a Weyl transformation be identified with oh@amt integral weights
of the dual gauge group. Since a dominant integral weightiéshighest weight of a
unique irreducible representation, magnetic chargesabugspond to irreducible repre-
sentations of the dual gauge group. The moduli spaces ofirigalar BPS monopoles
are identified with the spaces of Hecke modifications. Theaimn of bringing two
separated monopoles together defines a non-trivial prafube corresponding moduli
spaces. The resulting space can be stratified according smgyularities. Each singular
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subspace is again the compactified moduli space of a monoglated to an irreducible
representation in the tensor product. The multiplicitytaf BPS saturated states for each
magnetic weight is found by analysing the ground states efjilantum mechanics on
the moduli space. The number of ground states given by the izenReohomology of
the moduli space agrees with the dimension of the irredecigpresentation labelled by
the magnetic weight. Moreover Kapustin and Witten exptbégisting mathematical re-
sults on the singular cohomology of the moduli spaces to sthatvthe products of 't
Hooft operators mimic the fusion rules of the dual group. ®perator product expansion
(OPE) algebra of the 't Hooft operators thereby reveals thed tepresentations in which
the monopoles transform.

There is an enormous amount of evidence to support the Ment@iive conjecture for
the ordinaryV/ =4 SYM theory, see for example [19, 20, 21]. These results witianly
concern the invariance of the spectrum do not leave much toaubt that the strongly
coupled theory can be described in terms of monopoles. Henvthey do not say much
about the fusion rules of these monopoles. If the originaO&Mnjecture does indeed ap-
ply for A" =4 SYM theory with residual non-abelian gauge symmetry, simazdnopoles
should have properties similar to those of the singular BR&apoles in the Kapustin-
Witten setting. By the same token we claim that one can ekftlese properties to find
new evidence for the GNO duality in spontaneously brokeariks. In chapter 3 we aim
to set a first step in this direction by generalising the étas$usion rules found by Erick
Weinberg for abelian BPS monopoles [22] to the non-abelésec Our results indicate
that smooth BPS monopoles are naturally labelled by integainant weights of the
residual dual gauge group.

A stronger version of the GNO conjecture is that a gauge theas a hidden electric-
magnetic symmetry of the tyg& x G*. The problem with this proposal is that the dyonic
sectors do not respect this symmetry in phases where onaésislaal non-abelian gauge
symmetry. In such phases it may be that in a given magnetiorsthere is an obstruction
to implement the full electric group. In a monopole backgrbthe global electric sym-
metry is restricted to the centraliser@of the magnetic charge [23, 24, 25, 26, 27, 28].
Dyonic charge sectors are thus not labelled ity & G* representation but instead (up
to gauge transformations) by a magnetic charge and anieleetitraliser representation.
For example in the case &f = U(2), the centraliser for the magnetic chargg see
figure 1.1, equals the abelian subgrdugl) x U(1). Hence, a dyon with this magnetic
charge has an electric label corresponding to a represantaftthis abelian centraliser.
For a dyon with magnetic charge equakip + 2a. the electric charge corresponds to a
representation of the non-abelian centraliser grop). This interplay of electric and
magnetic degrees of freedom lacks in thex G* structure. Therefore one would like to
find a novel algebraic structure reflecting this complicgtetern of the different electric-
magnetic sectors in such a non-abelian phase. We see thawesaot need this algebraic
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Chapter 1. Introduction

structure just to find a labelling for dyons but actuallytfite proof the consistency of the
labelling already proposed, and second, to retrieve therusiles of non-abelian dyons
which are not known up to today. In terms of centraliser repn¢ations one seems to run
into trouble as soon as one considers fusion of dyons. Onléotrie side it is not clear
how to define a tensor product involving the representatibuiéstinct centraliser groups
such as for exampl€ (1) x U(1) andU(2), even though the fusion rules for each of the
centraliser groups are known. The algebraic structure wk weuld thus have to gener-
ate the complete set of fusion rules for all the differentsecand in particular it would
have to combine the different centraliser groups that mayoio such phases within one
framework. It also has to be consistent with the fact thah@gure electric sector charges
are labelled by the the full electric gauge grasipwhile in the purely magnetic sector, at
least for the twistedV” = 4 theory considered by Kapustin and Witten in [18], monopoles
form representations of the magnetic gauge grGtp

In chapter 4 we propose a formulation of a gauge theory, basdtie so-called skele-
ton groupS. This is in general a non-abelian group that allows to matiifenclude
non-abelian electric and magnetic degrees of freedom. Réletsn group therefore im-
plements (at least part of) the hidden electric-magnetiarsgtry explicitly and the rep-
resentation theory of provides us with a consistent set of fusion rules for the dyon
sectors for an arbitrary gauge group. Nonetheless it doeguite fulfill our original
objective. The skeleton group has roughly the product irecs = W x (T' x T*)
whereT andT™ are the maximal tori off andG* and}V the Weyl group. Therefor8
contains neither the full electric gauge grodmor the magnetic grou@™, and this of
course implies that its representation theory will not eimthe representation theories
of eitherG or G*. We show, however, that in for example the purely electrid@ethe
representation theory of the skeleton group is consistéhtthe representation theory of
G.

The appearance of the skeleton group can be understood fragedixing and in that
sense our approach matches an interesting proposal of ‘it [#8]. In order to get a
handle on non-perturbative effects in gauge theories,dilieal symmetry breaking and
confinement, 't Hooft introduced the notion of non-propaggapgauges. An important
example of such a non-propagating gauge is the so-calldéhalgmuge. In this gauge
a non-abelian theory can be interpreted as an abelian ghage/twith monopoles in it.
This has led to a host of interesting approximation schemésckle the aforementioned
non-perturbative phenomena which remain elusive from gitaciple point of view up
to today.

We present a generalisation of 't Hooft's proposal from aalialn to a minimally non-
abelian scheme. That is where the skeleton group comes mafftactive feature is that
our generalisation does not affect the continuous partefdésidual gauge symmetry af-
ter fixing, it is still abelian, but it adds (non-abelian) atiste components. That implies
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that the non-abelian features of the effective theory nesbhithemselves through topolog-
ical interactions only and that makes them manageable. ffaetige theories we end
up with are actually (non-abelian) generalisations of &kdectrodynamics [30, 31, 32].
In this sense the effective description of the non-abelmoty with gauge groufy in
the skeleton gauge is an intricate merger of an abelian gdwegey and a (non-abelian)
discrete gauge theory [33, 34]. Moreover, the skeleton gaugprporates configurations
which are not accesible in the abelian gauge. Hence, comipatbe abelian gauge, the
skeleton gauge and thereby the skeleton group may yield & miger scope on certian
non-perturbative features of the original gauge theory.

The motivation for exploring non-propagating gauges is litam a formulation of the
theory as much as possible in terms of the physically rekdagrees of freedom. In that
sense 't Hooft's approach looks like studying the Higgs phiasa unitary gauge, but it
goes beyond that because one does not start out from a giase getermined by a suit-
able (gauge invariant) order parameter. Instead the eféettteory in the abelian gauge
is obtained after integrating out the non-abelian gauge éemponents. Nonetheless the
resulting theory is particularly suitable to describe tlwi©@mb phase where the residual
gauge symmetry is indeed abelian. Similarly, the skeletonpis related to a generalised
Alice phase.

Once this gauge-phase relation is understood our skeletorufation not only allows us
to obtain the precise fusion rules for the mixed and neutralass of the theory, but as
a bonus allows us to analyse the phase structure of gaugeethie¥ang-Mills theories
give rise to confining phases, Coulomb phases, Higgs phdisesste topological phases,
Alice phases etc. These phases not only differ in their garipectra but also in their
topological structure. It is therefore crucial to have arfatation that highlights the rele-
vant degrees of freedom which allow one to understand wiegpltlysics of such phases
is.

Starting from the skeleton gauge we are in a position to ankimematic questions con-
cerning different phases and possible transitions betwleem. For this purpose it is
of utmost importance to work in a scheme that allows one tomdmthe fusion rules
involving electric, magnetic and dyonic sectors. This isluteed from some common
wisdom concerning the abelian case where the fusion ruéesay simple: if there is a
condensate corresponding to a particle with a certianridemntmagnetic charge then any
particle with a multiple of this charge will also be condethséf two electric-magnetic
charges confine then the sum of these charges will also corBiven the fusion rules
predicted by the skeleton group we can in priciple analysplases that emerge from
generalised Alice phases by condensation or confinement.
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CHAPTER 2

CLASSICAL MONOPOLE
SOLUTIONS

This preliminary chapter serves multiple purposes. FRivstwant to explain what mono-
poles are and review some of their properties. Most of thesavall known, a few are
not. Second, we want to introduce some conventions, coneggtquantities that will be
used in the remainder of this thesis. Finally, we want to @xphow one can create some
order in the monopole jungle by introducing several typesmohopoles.

Very roughly speaking a monopole is a solution to equatidmsation of a gauge theory
with a non-vanishing magnetic charge. The nature of suctaggeldepends of course on
exactly what Yang-Mills theory is considered and speciljcalhat the gauge group is.
Nonetheless, in general the magnetic charges constituszeetk set which in turn and
can be used to distinguish different monopoles within amieory. These sets will be
discussed in section 2.3. A cruder way to classify monopiglés distinguish singular
monopoles from smooth monopoles and non-BPS monopolesB@&monopoles. In
the first two sections of this chapter we shall review thesperties and some related
concepts.

2.1 SINGULAR MONOPOLES

Singular monopoles can appear in any gauge theory but thelrasie example is a pure
Yang-Mills theory. This can be either the abelian theonhwgiuge group that arises from
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Chapter 2. Classical monopole solutions

the homogeneous Maxwell equations or a generalisationexthergauge group'(1) is
replaced by a larger and possibly non-abelian gauge groiughw¥e shall denote by{.
The Lagrangian of such a Yang-Mills theory is completely migdi in terms of the field
strength tensof),,

L= —iTr(Fm,F’“’) (2.1)

The field strength tensor can be further expanded’as = Fi ta, wheret, are the
generators of the Lie algebra 6f. In terms of the gauge field,, = Aft, we have

Fﬁl/ = 6MAV - BMAU - Z'G[AM, Au] (22)

Using differential forms one can writd = A,dz* andF = 1 F,,dz" A dz* so that by
definition F' = dA — ieA A A.
The equations of motion derived from the Lagrangian in (aré)given by:

DxF =0

2.3
DF = 0. 23)
The first of these two equations is the true equation of motioe second is the Bianchi
identity, see e.g. section 10.3 of [35]. The electric and aragjnetic fields can be ex-
pressed in terms of the field strength tensor as

E' = FY%=_-F=F, (2.4)
B' = ge”kFij — FV =Ikpk, (2.5)

If the electric field vanishes we thus have
F = «B. (2.6)

wherex corresponds to the Hodge star of the 3-dimensional EuglidpaceR3.

A Dirac monopole [36] is a configuration of the electric-matiafield with everywhere
vanishing electric field and a static magnetic field of therfor

Go
= _——dr
472

Note that for an abelian theor® is gauge invariant. If the gauge group is truly non-
abelian the magnetic field transforms as

2.7)

B— G 'Bg (2.8)

under a gauge transformation
A G (A + 3d> G. (2.9)
€

10



2.1. Singular monopoles

Hence in a non-abelian theory the magnetic field of a Diracapote is defined by (2.7)
up to gauge transformations.

From equation (2.7) we find for the field strength

F=x ﬂdr = @ sin 0dO A d¢. (2.10)
472 47

We shall check that this satisfies the equations motion Ex&pt at the origin where the
Bianchi identity is violated. Note that since the field sgggntransforms in the adjoint
representation of the gauge group, its covariant derigatoontain a commutator term
with the gauge field. However, there is a gauge in which (3.8atisfied and in which the
gauge field commutes with the field strength so that effelgtittee equations of motion

reduce to the abelian case where the covariant derivativéedield strength become
ordinary derivatives. If the electric field vanishes suchtth = B the equations of

motion simplify to:

dB=0 < €9%9;B, =0

(2.11)

While the curl of the magnetic field given in (2.7) obviouslgnishes everywhere the
divergence vanishes only away from the origin. As a mattetrféect one finds

iB; = G (r). (2.12)

From Gauss’ theorem we now see that the magnetic charge aidhepole equalé&.
Finally, making a comparison with (2.11) one finds that a npmie with non-vanishing
chargeG, violates the Bianchi identity at the origin. In that sense Birac monopole is
singular at the origin.

Another way to view the singularity of the Dirac monopoledscbnsider the gauge field
itself. One possible solution for the gauge field that gives to equation 2.7 is given by

Ay = @(1 — cos 0)dp. (2.13)
4

On the negative-axis (including the origin) wheréy divergesA. is singular. This
Dirac string, however, is merely a gauge artifact as can ée bg adopting the Wu-Yang
formalism [37]. One can introduce a second gauge potential

G
A_ = —2%(1 4 cosO)dy (2.14)
47

which also gives rise to 2.7 and which is well defined everywlmR3 except for the
positive z-axis and the origin. One could also construct other gaudgesevthe Dirac
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Chapter 2. Classical monopole solutions

string does not coincide with the positive or negativaxis. Nonetheless in every gauge
there is a singularity at the origi® for non-vanishing values af,. The two gauge po-
tentialsA, andA_ thus give a complete description.

In the region where they are both well-definédd and A_ are related by a gauge trans-
formation:

A =G7p) (e + 1) Gl (2.15)
One can check _
G(p) = exp <%Go<ﬁ) : (2.16)

We thus see that a singular monopol&ihwith non-vanishing magnetic charge defines a
non-trivial H-bundle onR? {O} and hence a non-trivial bundle on each sphere centred at
the origin. We shall discuss this further in section 2.3. albeless we already note that
the non-triviality of theH -bundle is closely related to the violation of the Bianctaritity

at the origin. In the bundle description one quite literaikgises the origin froriR3. One
might therefore be tempted to say that such monopoles caxgit On the other hand
one can simply accept that the magnetic field has certaircpbes! singularities.

Still, in some sense singular monopoles seem avoidabledfrestricts the fields to be
smooth everywhere. This restriction does not rule out thesibdity of having classical
monopole solutions. It is also possible to have soliton tik@nopoles, see e.g. [6, 7].
Such monopoles satisfy the equations of motion, includiregBianchi identity, every-
where onR3. SinceR? is contractible a smooth monopole is related to a trivialdden
Nonetheless these smooth monopoles behave asymptotisdlliyac mopoles. In section
2.3 we shall explain this relation between singular and gmomnopoles in further detail.

2.2 BPSMONOPOLES

A very special subtype of monopoles are BPS monopoles whiatebnition satisfy the
BPS equation discussed below. Examples of smooth solutibtitee BPS equation for
SU(2) are the 't Hooft-Polyakov monopoles [6, 7]. Precisely thesmopoles have been
conjectured by Montonen and Olive to correspond to the hgawge bosons of the S-
dual gauge theory [5]. Though we shall mainly focus on smawhopoles in this thesis
it should be noted that for singular monopoles only BPS motegphave been shown to
transform as representations of the dual gauge group bydiapand Witten [18]. This
motivates why also for smooth monopoles one should work éBRS limit to obtain
some insight in for example the fusion rules monopoles.

Instead of giving a detailed description of BPS solutionssivall merely try to give an
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2.2. BPS monopoles

idea of the general context by introducing the BPS limit apdketching the derivation
of the BPS equations and the BPS mass formula [3, 4]. In se2tibwe shall come back
to the asymptotic behaviour of smooth BPS monopoles.

In general smooth monopoles exist in certain Yang-Millgigéi theories. Special cases
are Grand Unified theories or Yang-Mills-Higgs theories edded in a larger theory with
extra fermionic fields such as for example a super Yang-Mik®ry. The Lagrangian for
the Yang-Mills-Higgs theory can be written as:

L= —iTr(F#,,F’“’) + %Tr(D#q)D“(I)) — V(D). (2.17)

Unless stated otherwise we shall tdkeo be the Mexican hat potential given by
V(®) = /4 (|9 — |Bo[?)?. (2.18)

The energy functional for the Yang-Mills-Higgs theory fbig theory is given by:
E[®,A] = / %|D0<I>|2 + %|Dk<1>|2 + %|Bk|2 + %|Ek|2 + V() d3x. (2.19)

To retrieve the Bogomolny equations one should restricHiggs field® to transform in
the adjoint representations. One can now rewrite the totgy as [3, 38]:

E[®, A] = |Po| (Qesina + @, cosa) +
1 1 1
/ 5|D0<1>|2 + 5 |Bx = cos aDy®* + 3 Bx = sinaD®> + V(@) d®z. (2.20)

whereq, andg,, are the so-called total abelian electric and magnetic ehdefined by

Q = — [ asTEw) (2.21)
[®o| Jsz,

Om = —— [ asTr(B®). (2.22)
o Js2.

If we now take the BPS-limit by lettingg — 0 while keeping®d, fixed and set
Qe Qm

sinag = ————~+ and cosa=W7

(Q2+Q7)'?

we find from (2.20) the following inequality for the energy:

(2.23)

1/2 .
2 2 10]|Qe + iQml.  (2.24)

This lower bound for the energy is known as the Bogolmolnyrzband is satisfied when
the fields satisfy the following field equations:

E > |®| (Qesina + Qm cosa) = | Do (QF + Q7,)

B; = cosaD;d

13



Chapter 2. Classical monopole solutions

E; =sinaD;® (2.25)
Dy® = 0.

The BPS bound is very natural in supersymmetric Yang-Milkories in the sense that it
is satisfied if the gauge group is broken but the supersynymatnains unbroken.

In the special case that the electric charge vanisheg)i.e- 0, and all fields are static
these three equations reduce to the Bogomolny or BPS equatio

B; = D;®. (2.26)

A solution to this BPS equation is calledB®S monopoleln general a solution of the
equations of motion satisfying the Bogomolny bound is e¢bdeBPSdyon As for ordi-
nary particles the energy of a BPS monopole or dyon is boufrded below by its rest
mass. Therefore the right hand side of equation (2.24) isdtttie BPS mass formula. To
obtain a more profound understanding of the BPS limit it is/@nvenient to re-express
the BPS formula as

M:‘%- (e)\—i— @g)’. (2.27)
€

The quantatieé\);—;..., and(g)=1... are the electric charge and the magnetic charge. To
determine the allowed values of the electric chaxge somewhat delicate, see [39] and
references therein. There exist classical solutions feryevalue of the electric charge
but in the semi-classical theory the electric charge musfuamtised. Without going into
details we note that in a gauge theory with gauge grGupis heuristically clear thai
takes value in the weight lattice 6f and that this is at least consistent with the fact that
the BPS mass formula reproduces the mass of the massive basges with charge
equal to a root of7, see e.g. [40]:

M, =e|®g - . (2.28)

The magnetic charge is also quantised, we shall discusithisich more detail in sec-
tion 2.3.

An interesting adaptation of the theory is obtained by tugndon thef parameter. This
means that one adds to the Lagrangian the term:

fe?

~a3 /Tr(F « F). (2.29)

By introducing the complex coupling parameteas

0 47
27 e2

(2.30)



2.3. Magnetic charge lattices

the total Lagrangian can now be conveniently rewritten io@monly used form as:

e2

1

L= —3Tlm [TTr(Fuy + 0% Fpp ) (F* 4% F“”)]+§Tr(DM®D“®)—V(<I>). (2.31)
T

The additional term does not change the equations of moitme $2.29) can be written

as a total derivative, see e.g. section 23.5 of [41]. Evenghdhe classical physics is

unchanged by turning on tlteparameter, the quantum theory is affected in a subtle way

via instanton effects. As shown by Witten [39] these ingtargffects give rise to non-

integral abelian electric charges in the sense that
fe?

—|Po|Qm, 2.32
with X taking value on the weight lattice 6f. This shift in the abelian electric charge is
called the Witten effect. For an arbitrary valuetahe BPS mass formula is given by

|@Q|Qe =edp- N+

. 47
M =1|®0|Qc + i|Po|Qm| = ?|@0 (A +T19)]. (2.33)

In section 4.5 we shall review the invariance under S-du#iinsformations of this BPS
mass formula for dyons in a gauge theory with arbitrary gagrgep.

2.3 MAGNETIC CHARGE LATTICES

In this section we describe and identify the magnetic chafgeseveral classes of mono-
poles. We shall start with a review for Dirac monopoles, tlkentinue with smooth
monopoles in spontaneously broken theories. Specificatladjoint symmetry breaking
we shall explain how the magnetic charge lattice can be staled in terms of the Lang-
lands or GNO dual group of either the full gauge group or tis&leal gauge group. This
will finally culminate in a thorough description of the setrofgnetic charges for smooth
BPS monopoles.

Dirac monopoles can be described as solutions of the Yarig-8djuations with the prop-
erty that they are time independent and rotationally iramttiMore importantly they are
singular at a point as discussed in section 2.1. As a direwrgdisation of the Wu-Yang
description o/ (1) monopoles [37], singular monopoles in Yang-Mills theoryhwgauge
groupH correspond to a connection on &ftbundle on a sphere surrounding the singu-
larity. The H-bundle may be topologically non-trivial, but in additidretmonopole con-
nection equips the bundle with a holomorphic structure. dlhssification of monopoles
in terms of their magnetic charge then becomes equival@rtdthendieck’s classification
of H-bundles orCP'. As a result, the magnetic charge has topological and haiohio
components, both of which play an important role in this ihes
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Chapter 2. Classical monopole solutions

A different class of monopoles is found from smooth statitisons of a Yang-Mills-
Higgs theory orR?® where the gauge grou@ is broken to a subgrouff. SinceR3 is
contractible the&z-bundle is necessarily trivial. Choosing the boundary étiors so that
the total energy is finite while the total magnetic chargeoiszero one finds that smooth
monopoles behave asymptotically as Dirac monopoles. $imckong range gauge fields
correspond to the residual gauge group this gives a noiadtfii-bundle at spatial infin-
ity. The charges of smooth monopoles in a theory withpontaneously broken g are
thus a subset in the magnetic charge lattice of singular males in a theory with gauge
groupH .

Finally one can restrict solutions to the BPS sector whezestiergy is minimal. Smooth
BPS monopoles are solutions of the BPS equations and themditomatically solutions
of the full equations of motion of the Yang-Mills-Higgs thgoThus the charges of BPS
monopoles are in principle a subset of the charges of smootiopoles. This subset is
determined by the so-called Murray condition which we shifbduce below. We shall
also define the fundamental Murray cone which is related ecstt of magnetic charge
sectors.

2.3.1 QUANTISATION CONDITION FOR SINGULAR MONOPOLES

The magnetic charge of a singular monopole is restrictedh&yeneralised Dirac quan-
tisation condition [1, 2]. This consistency condition canderived from the bundle de-
scription [37]. One can work in a gauge where the magnetid fiak the form

Go

= o, (2.34)

with Gy an element in the Lie algebra of the gauge gréiipThis magnetic field corre-
sponds to a gauge potential given by:

Ay = :t% (1F cosB) dp. (2.35)
T

The indices of the gauge potential refer to the two hemisgshe®n the equator where the
two patches overlap the gauge potentials are related bygegeansformation:

A =7 (4. + La) 6o (2.36)

One can check _
1€
G(p) = exp <2—G099) | (2.37)
™

One obtains similar transition functions for associatectmebundles by substituting ap-
propriate matrices representifg. All such transition functions must be single valued.
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2.3. Magnetic charge lattices

In the Dirac picture this means that under parallel trantspaund the equator electri-
cally charged fields should not detect the Dirac string. @qgasntly we find for each
representation the condition:

G(2m) = exp (ieGp) =1, (2.38)

wherell is the unit matrix. To cast this condition in slightly morexféiar form we note
that there is a gauge transformation that maps the magnaticaind hence als@ to a
Cartan subalgebra (CSA) éf. Thus without loss of generality we can takg to be a
linear combination of the generatdtd,,) of the CSA in the Cartan-Weyl basis:

47 47
Go=— w - Hy=—g- H. 2.39
0= Za:g —g (2.39)
The generalised Dirac quantisation condition can now badtaited as follows:

2\-g € Z, (2.40)

for all charges\ in the weight lattice\ (H) of H.

We thus see that the magnetic weight lattice( /) defined by the Dirac quantisation
condition is dual to the electric weight lattidé H ). Consider for example the case where
H is semi-simple as well as simply connected so that the wdddtite A(H) is gener-
ated by the fundamental weighfs;}. ThenA*(H) is generated by the simple coroots
{af = a;/a?} which satisfy:

2()&1' . /\j

2&: . Aj = 3 = 5” (241)

QF

As observed by Englert and Windey and Goddard, Nuyts ance@Hig magnetic weight
lattice can be identified with the weight lattice of the GNGatlgroupH*. For example
if we take H = SU(n) and define the roots &§U(n) such thata? = 1, we see that
A*(SU(n)) corresponds to the root lattice 81/ (n). The root lattice ofSU(n) on the
other hand is precisely the weight latticeSi¥ (n) /Z,,. In the general simple case (H)
resulting from the Dirac quantisation condition is the weitattice A(H*) of the GNO
dual groupH* whose weight lattice is the dual weight lattice dfand whose roots are
identified with the coroots off [1, 2]. In addition the center and the fundamental group
of H* are isomorphic to respectively the fundamental group aadénter ofH. Note
that for all practical purposes the root systenif can be identified with the root system
of H where the long and short roots are interchanged.

We shall not repeat the proof of the duality of the center dredfundamental group,

but we will sketch the proof of the fact that the root lattidefd* is always contained in

the magnetic weight lattice. Finally we sketch the gensadilbn to any connected com-
pact Lie group.
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Chapter 2. Classical monopole solutions

If H is not simply-connected we have = fI/Z whereH is the universal cover dff and

Z C Z(H) a subgroup in the center éf. SinceA(H) c A(H) with Z = A(H)/A(H)
the Dirac quantisation condition (2.40) applied Aris less restrictive than the condition
for H. Moreover one can check [2]:

A*(H)/AN*(H) = A(H)/A(H). (2.42)

This implies that the coroot Iatticﬁ*(ﬁ) of H is always contained in the magnetic
weight latticeA* (H ) of H and in particular that any coroat = a/«a? with o a rootH,

is contained iM\*(H ).

Without much effort this property can be shown to hold for aoynpact, connected Lie
group. Any such group/ say of rank- can be expressed as:

g Y<K (2.43)

Z
whereK is a semi-simple and simply connected Lie group of rarks. The CSA ofH
is spanned by H, : a = 1,...,r} whereH, with a < s are the generators of tiié(1)

subgroups andH,, : s < b < r} span the CSA oK. Any weight of H can be expressed
asA = (A1, \2) where); is a weight ofU (1)® and )\, is a weight of K. Finally one finds
that a magnetic charge, defined by
4
Go = —aj - H, (2.44)
e

whereq; is any of ther — s simple roots off, satisfies the quantisation condition.

H H*
SU(nm) /Ly, SU(nm)/Z,
Sp(2n) SO(2n+1)
Spin(2n+1)  Sp(2n)/Z
Spin(2n) SO(2n)/Z2

SO(2n) SO(2n)
Gs Go
Fy Fy
Eg Es/Z3
Er Er/Zs
Fg FEg

Table 2.1: Langlands or GNO dual pairs for simple Lie groups.

In this section we have identified the magnetic charge &tifcsingular monopoles with
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2.3. Magnetic charge lattices

o o
(U(1) x SU(n))/Zn (U(1) x SU(n))/Zn
U(1) x Sp(2n) U(1) x SO2n + 1)

(U(1) x Spin(2n+1))/Zs  (U(1) x Sp(2n))/Z»
(U(1) x Spin(2n))Zs  (U(1) x SO(2n))/Zs

Table 2.2: Examples of Langlands or GNO dual pairs for some compact tdefs.

the weight lattice of the dual grouli* of the gauge group/. In table 2.1 and 2.2 some
examples are given of GNO dual pairs of Lie groups. Table 2domplete up to some
dual pairs related t&'pin(4n) that are obtained by modding out non-diagoAalsub-
groups of the centéfs x Zs. The GNO dual groups for these cases can be found in [2].
In section 2.3.3 we shall briefly explain how the dual paiiimgable 2.2 is determined.

The magnetic charge lattice contains an important subsitwie shall need later on:
even if one restrict§s) to the CSA there is some gauge freedom left which corresponds
to the action of the Weyl group. Modding out this Weyl actiovneg a set of equivalence
classes of magnetic charges which are naturally labelledbiyinant integral weights in

the weight lattice off/ *.

2.3.2 QUANTISATION CONDITION FOR SMOOTH MONOPOLES

Yang-Mills-Higgs theories have solutions that behave atiapinfinity as singular Dirac
monopoles but which are nonetheless completely smootteatrigin. This is possible
if one starts out with a compact, connected, semi-simplggauoupG which is sponta-
neously broken to a subgroup. Since all the fields are smooth, the gauge field defines
a connection of a principal-bundle over space which we take to Bé. The Higgs
field is a section of a the adjoint bundle. RS is contractible the principaf-bundle is
automatically trivial, seb is simply a Lie-algebra valued function. We would like to im-
pose boundary conditions for the Higgs fidlcand the magnetic fielé at spatial infinity
which ensure that the total energy carried by a solution®iding-Mills-Higgs equations
is finite. To our knowledge the question of which conditions mecessary and sufficient
has not been answered in general. Below we review some sthadguments, many of
them summarised in [42].

We assume an energy functional for static fields of the usrad f
1 2 1 2 3
E[®,A] = §|Dk<1>| + §|Bk| +V(®)d’x, (2.45)
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Chapter 2. Classical monopole solutions

whereD;, = J; —ieAy, is the covariant derivative with respect to theconnection4, and
the magnetic field is given byie B, = — fie€pim Fim = 3€wm[Di, D). The potential
V is aG-invariant function on the Lie algebra 6f whose minimum is attained for non-
vanishing value of®|; the set of minima is called the vacuum manifold. The veoizai
equations for this functional are

ov
eklleBm = ie[@, Dkq)], Dka(I) = 8—(1) (2.46)

In order to ensure that solutions of these equations have &nergy we require the fields
® and B; to have the following asymptotic form for large

Q= ¢(7) + J(0) +0 (r_(1+5)) r>1
&) dnr (2.47)
A —(2+9)
= 47rr2dT + O (r ) r> 1.

Hered > 0 is some constant ant{7), f(7), andG(#) are smooth functions ofi* taking
values in the Lie algebra of the gauge gra@mvhich have to satisfy various conditions.
First of all, the functionp has to take values in the vacuum manifold of the potenfial

It is thus a smooth map from the two-sphere to that vacuum feldni The homotopy
class of that map defines the monopole’s topological chaje Bince the vacuum man-
ifold can be identified with the coset spa€g H the topological charge takes value in
7o (G/H). Secondly, writingV for the induced exterior covariant derivative tangent to
the two-sphere “at infinity” it is easy to check that

Vé=0  Vf=0 (2.48)

are necessary conditions for the integral defining the gn@g5) to converge. The first
of these equations implies

[¢(7), G(#)] = 0. (2.49)
The quickest way to see this is to note that the curvature ®@tvb-sphere at infinity is
F>® = x (ﬂgdr) = % sin0df A dp. (2.50)

47r 47

Since[V, V] = —ieF*, it follows thatV¢ = 0 implies[F'>°, ¢] = 0. Finally we also
require that
VG =0, (2.51)
and that
[¢(7), f ()] = 0. (2.52)
The condition (2.51) is crucial for what follows, and seem®&¢ satisfied for all known

finite energy solutions [42]. The condition (2.52) is re@diso that the first of the equa-
tions (2.46) is satisfied to lowest order when the expansicti] is inserted. In general
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there will be additional requirements on the functigrand f that depend on the precise
form of the potential/ in (2.45). Since we do not specify we will not discuss these
further.

The above conditions can be much simplified by changing gatibe equations (2.48)
and (2.51) imply that for each of the Lie-algebra valued fims ¢, f andG the values
at any two points on the two-sphere at infinity are conjugai@te another (the required
conjugating element being the parallel transport along#ik connecting the points). We
can therefore pick a poirit), say the north pole, and gauge transfafinto ®, = ¢(),
finto ®; = f(#p) andG into Gy = G(7). However, sinces? is not contractible, we
will, in general, not be able to do this smoothly everywhandte two-sphere at infinity.
If, instead, we cover the two-sphere with two contractildéches which overlap on the
equator, then there are smooth gauge transformagiomssidg_ defined, respectively, on
the northern and southern hemisphere, so that the folloatnmtions hold where they
are defined:

o(7) = g5 (F)Poge(7) (2.53)
f(7) =g (F) @19+ (7) (2.54)
G(7) = g3 (?)Gog (7). (2.55)

After applying these gauge transformation, our bundle f#ndd in two patches, with
transition functiong = ¢, ¢g~' defined near the equator. This transition function leaves
®d invariant, and hence lies in the subgraldpof G which stabilisesb,. This, by defini-
tion, is the residual or unbroken gauge group referred thérpening paragraph of this
section. It follows from (2.49), thg®,, Go] = 0, so thatGy lies in the Lie algebra of
H. Similarly, (2.52) implies tha®, lies in the Lie algebra off. After applying the local
gauge transformations (2.53), the asymptotic form of tHddies

P
® =P+ — + (9(7“_(1"'6))
4mr

B = ﬂdr + O (7“_(2+5)).

472

(2.56)

Note that “the Higgs field at infinity” is now constant, takititge value®, everywhere.

In particular, it therefore belongs to the trivial homotoggss of maps from the two-
sphere to the vacuum manifold. The topological chargesraily encoded in the map

¢ can no longer be computed from the Higgs field. Instead theynaw encoded in
transition functiong. Since, in the new gauge, the magnetic field at largethat of a
Dirac monopole with gauge grouip we can relate the transition function to the magnetic
charge as before:

G(p) =exp (;—ZGoso) (2.57)
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Chapter 2. Classical monopole solutions

We thus obtain a quantisation condition for the magnetieghaf smooth monopoles,
following the same arguments as in the singular case. Fdr egresentation off the
gauge transformation must be single valued if one goes drtinequator, so that

2\-g € Z, (2.58)

for all charges\ in the weight lattice of.

One observes that the magnetic charge lattice of smooth podem lies in the weight
lattice of the GNO dual groupl *. There is, however, another consistency condition [1].
Note that a single valued gauge transformation on the egdafmes a closed curve in
H as well as in, starting and ending at the unit element. Since the origiikblndle is
trivial, this closed curve has to be contractiblednTherefore the monopole’s topological
charge is labelled by an elementin(H ) which maps to a trivial element iy, (G). This

is consistent with our earlier remark that the topologitelrge is an element ah(G/ H)
because of the isomorphism(G/H) ~ ker(m, (H) — 71 (G)).

To find the appropriate charge lattice we use the fact thabp io G is trivial if and
only if its lift to the universal covering grouﬁY is also a loop (closed path). This implies
that for smooth monopoles the quantisation condition shoat be evaluated in the group
H itself but instead in the grouﬁ C @ defined by the Higgs VEW,. Consequently
equation (2.58) must not only hold for all representatiohg/obut in fact for all repre-
sentations of{. Note that ifG is simply connected thel = H. In the next section we
shall work this topological condition out in more detail.

2.3.3 QUANTISATION CONDITION FOR SMOOTH BPSMONOPOLES

In chapter 3 we will mainly focus on BPS monopoles in sponvaisey broken theories.
We shall therefore work out some results of the previous@eat somewhat more detalil
for the BPS case. We shall also give an explicit descriptidh@magnetic charge lattice.
In addition we introduce terminology that is convenientbed in the remainder of this
thesis.

By BPS monopoles we mean static, finite energy solutionseBfS equations
B;=D;® (2.59)

in a Yang-Mills-Higgs theory with a compact, connected, sseimple gauge groupg-.
The equations (2.59) imply the second order equations Y2 M6order to obtain finite
energy solutions we again impose the boundary conditiod}2 As in the previous
section we can gauge transform these into the form (2.56@reTare some differences
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2.3. Magnetic charge lattices

with the non-BPS case. The potentfialin (2.45) vanishes in the BPS limit, so does not
furnish any conditions on the functiogsand f. On the other hand, by substituting (2.56)

in the BPS equation and solving order by order one finds that—G, or, equivalently,

®; = —Gp. As before we havgdy, Go] = 0, so in the BPS case we automatically
have[®(, ®;] = 0. From now on we shall thus define a BPS monopole to be a smooth
solution of the BPS equations satisfying the boundary dand{2.47) with®; = —Gy.

After applying the local gauge transformations discussethé previous section, these
boundary conditions are equivalent to

_ Go —~(144)
q) = q)o — E + O (r )
_ Go . ~(2+9)
B= ot + 0 (),
where®, andG, are commuting elements in the Lie algebrabfThese boundary con-
ditions are sufficient to guarantee that the energy of the BBBopole is finite. Itis in
general not known what the necessary boundary conditientasbtain a finite energy
configuration. It is expected though [43, 44], and true @br= SU(2) [45], that the

boundary conditions above follow from the finite energy atod and the BPS equation.

(2.60)

Before we give an explicit description of the magnetic clealajtice let us summarise
some properties of the residual gauge group. SiffgeG] = 0 there is a gauge trans-
formation that map®, andGy to our chosen CSA ofr. Without loss of generality we
can thus expres, andG in terms of the generato($i,) of that CSA:

(1)0: ,LLH
A (2.61)
G() = ?ﬂ-g . H.

The residual gauge group is generated by generatanghe Lie algebra of7 satisfying
[L, ®o] = 0. Since generators in the CSA by definition commute with thggdiVEV
the residual groug? contains at least the maximal torli§1)” C G. For generic values
of the Higgs VEV this is the complete residual gauge symmeériyhe Higgs VEV is
perpendicular to a roat the residual gauge group becomes non-abelian. This follows
from the action of the corresponding ladder operdigrin the Cartan-Weyl basis on the
Higgs VEV: [E,, ®o] = —u - a E, = 0. Accordingly we shall call a root aff brokenif

it has a non-vanishing inner product withand we shall define it to benbrokenif this
inner product vanishes.

The residual gauge group is locally of the fothil)* x K, whereK is some semi-simple
Lie group. The root system df is derived from the root system 6f by removing the
broken roots. Similarly, the Dynkin diagram &f is found from the Dynkin diagram of
G by removing the nodes related to broken simple roots. Foipbeteness we finally de-
fine a fundamental weight to be (un)broken if the correspagsimple root is (un)broken.
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Chapter 2. Classical monopole solutions

The magnetic charge lattice for smooth monopoles lies itz weight lattice off, as

we saw in the previous chapter. For adjoint symmetry brepttie weight lattice off is
isomorphic to the weight lattice @¥. Moreover the isomorphism respects the action of
the Weyl groupV(H) C W(G). The existence of an isomorphism betwe¥(ds) and
A(H) is easily understood since the weight latticestbfand G are determined by the
irreducible representations of their maximal tori whicle @&omorphic for adjoint sym-
metry breaking. A natural choice for the CSAHfis to identify it with the CSA ofG. In

this case\ (G) andA(H) are not just isomorphic but also isometric. Since the robf§ o
can be identified with roots @ and since the Weyl group is generated by the reflections
in the hyperplanes orthogonal to the roots, this isometsjalsly respects the action of
W(H). Often the CSA ofH is identified with the CSA of7 only up to normalisation
factors. This leads to rescalings of the weight latticdHof Of course one can apply an
overall rescaling without spoiling the invariance of wditgdttice under the Weyl reflec-
tions. One can also choose the generator§ @f)°-factor such that the corresponding
charges are either integral or half-integral. Note thas¢hescalings again respect the
action of W(H). To avoid confusion we shall ignore these possible resgslin the re-
mainder of this thesis and talk& /') to be isometric to\(G).

Since the weight latticed (H) and A(G) are isometric their dual lattices™(H) and
A*(G) are isometric too. We thus see that the Dirac quantisatiowition (2.58) for
adjoint symmetry breaking can consistently be evaluateerims of eithe? or G.

Remember that for smooth monopoles there is yet anotherittumdsince one starts
out from a trivialG bundle the magnetic charge should define a topologicalliatrioop
in G as explained in the previous section. For general symmeg&gking this implies
that the Dirac quantisation condition must be evaluateti vaspect to weight lattice of
H c G, whereG is the universal covering group 6f. For adjoint symmetry breaking we
can consistently lift the quantisation conditiordpthe weight lattice of is isometric to
the weight lattice of3. The weight lattice of7 is generated by the fundamental weights
{\i} and hence the magnetic charge lattice for smooth BPS moesmbiven by the
solutions of:

2\i-g €Z, (2.62)

for all fundamental weights,; of G. The most general solution of this equation is easily
solved in terms of the simple coroots@Gf

9=y _mia;  m; €L, (2.63)

with o = a;/a? and{q;} the simple roots of;.
We thus conclude that the magnetic charge lattice for smBBt® monopoles is gener-

ated by the simple coroots 6f. The resulting coroot latticA*(G) corresponds precisely
to the weight latticeA (G*) of the GNO dual grougz* as mentioned in section 2.3.1.
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2.3. Magnetic charge lattices

Similarly, the dual lattice\* (H) can be identified with\ (H*). With A*(G) being iso-
metric to A*(H) we now conclude that the weight lattice 6f can be identified with
the weight lattice offf*. ForG simply connected we have thus established an isometry
between the root lattice @* and the weight lattice off *. We have used this isometry
to compute the GNO dual pairs given in table 2.2 which appeainé minimal adjoint
symmetry breaking of the classical Lie groups.

Above we have seen that the magnetic charge lattice for $mBBS monopoles cor-
responds to the coroot lattice of the gauge gréupOne can split the set of coroots into
broken coroots and unbroken coroots. A coroot is defined tordeen or unbroken if the
corresponding root is respectively broken or unbroken.eNbéat the unbroken coroots
are precisely the roots df*. The distinction between broken and unbroken applies in
particular to simple coroots. There is, however, altexgatérminology for the compo-
nents of the magnetic charges that reflects these same fiegp&roken simple coroots
are identified withtopological chargesvhile unbroken simple coroots are related to so-
calledholomorphic charges

Remember that the magnetic charge= m;a} defines an element iker(m (H) —
71(@)). One might hope that every single magnetic chagtge. every pointin the coroot
lattice, defines a unique topological charge. If in that @asetic monopole solution does
indeed exist even its stability under smooth deformatisnguiaranteed. Such a picture
does hold for maximally broken theories where the residaabg group equals the max-
imal torusU(1)" C G. If H contains a non-abelian factor the situation is slightly enor
complicated because these factors are not detected byrtiarhental group. Fa¥ equal

to SU(3) for instance the magnetic charge lattice is 2-dimensionéba (SU(3)) = 0.

In the maximally broken theory we hawe (U (1) x U(1)) = Z x Z, while for minimal
symmetry breakingr; (U(2)) = m(U(1)) = Z. As a rule of thumb one can say that
the components of the magnetic charges related t&/{He-factors inH are topological
charges. It should be clear that these components corréspire broken simple coroots.
We therefore call the coefficients; = 2); - g with \; a broken fundamental weight the
topological charges of. The remaining components gfare often called holomorphic
charges.

2.3.4 MURRAY CONDITION

We have found that magnetic charges of smooth monopoles ang-Wills-Higgs the-
ory lie on the coroot lattice of the gauge group. In the BPStlimere is yet another
consistency condition which was first discovered by Muri@ySU (n) [46]. We refer to
this condition ashe Murray conditioreven though its final formulation for general gauge
groups stems from a paper by Murray and Singer [44]. For ava@on of the Murray
condition we refer to these original papers. We shall onigflyrreview some properties
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Chapter 2. Classical monopole solutions

of roots which are crucial for the Murray condition. Next weal formulate the results of
Murray and Singer in such a way that the set of magnetic ckdogd8PS monopoles can
easily be identified. Finally we show that our formulatioeégiivalent to the condition as
stated in [44]. Both formulations of the Murray conditionlivehow up in later sections.
The set of magnetic charges satisfying the Murray condgtuall be called the Murray
cone. At the end of this section we shall also introduce tinedmental Murray cone.

The Murray condition hinges on the fact that one can splittioe system of7 into posi-
tive and negative roots with respect to the Higgs VEV. If fepata we havex - > 0 it

is by definition positive and if - 1+ < 0 it is negative. The set of roots is now partitioned
into two mutually exclusive sets, at least if the residualggmgroup is abelian. In that
case we can as usual define a simple root to be a positive ettatahnot be expressed as
a sum of two other positive roots and it turns out that the HiggV defines a unique set
of simple roots. These form a basis of the root diagram is suehy that every positive
root is a linear combination of simple roots with positiveefficients and similarly every
negative root is a linear combination with negative coedfits. In the non-abelian case
there exist roots such that- . = 0. Hence there are several choices for a set of simple
roots which are consistent with the Higgs VEV. Again for adixahoice such simple roots
must by definition have the property that all roots are a liweabination of simple roots
with either only positive or only negative coefficients. lhdition the simple roots must
have either a strictly positive or a vanishing inner produitth the Higgs VEV:

;- > 0. (2.64)

This condition implies that. must lie in the closure of the fundamental Weyl chamber. In
the remainder of this thesis we shall always choose simits 5o that the inequality in
(2.64) is satisfied.

All choices for a set of simple roots respecting the Higgs Vd&¥ related by the residual
Weyl groupW(H). This is seen as follows. In general all choices of simplégaothe
root system ofG are related by the Weyl group/(G) of G. Since Weyl transforma-
tions are orthogonal we have for all € W(G) w(a;) - p = ;- w™(u). Given a set
of positive roots satisfying (2.64) the action©f € W(G) gives another set of simple
roots satisfying the same condition if and onlyifandw(y) lie in the closure of same
Weyl chamber. This is only possible jf is actually invariant undew, implying that
w e W(H) C W(G).

Above we have defined a positivity condition for the rootstbthat is consistent with
the Higgs VEV. This same definition is applicable for corcsitece these differ from the
roots by a scaling. We now also extend this definition of pdgitin a consistent way to
the complete (co)root lattice. We call an element on ther¢m)lattice positive if it is
a linear combination of simple (co)roots with positive o coefficients. Note that the
intersection of the set of positive elements in the (co)taibice with the set of (co)roots
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2.3. Magnetic charge lattices

is precisely the set of positive (co)roots. Finally we sex ththe Higgs VEV lies in the
fundamental Weyl chamber then the inner product of any pesiiement in the (co)root
lattice with iz is non-negative.

Murray and Singer have found that the magnetic charge mupbbitive with respect
to all possible choices of simple roots consistent with tigg VEV. This means that in
the expansiop = ), m;c; the coefficientsn; should be positive for all possible choices
of simple root ;) that satisfye; - © > 0. The Murray condition can be summarised as
follows:

2w(A;) - g >0 Ywe W(H), V. (2.65)

This is seen from the fact that the fundamental weights anglsiroots satisfg\; - a; =
d;; and that all allowed choices of positive simple roots anadlamental weights are re-
lated by the residual Weyl grouy(H) € W(G).

The Murray condition defines a solid cone in the CSA. In coration with the Dirac
quantisation condition this results in a discrete cone afmetic charges. We shall call
this cone the Murray cone. As an example one can considgB) broken to either
U(1) x U(1) or U(2) as depicted in figure 2.1. In the first case the Weyl group of the
residual gauge group is trivial and the Murray condition dynimplies that the topo-
logical charges must be positive. In the second case theuasiVeyl group isZ, the
reflections in the line perpendiculardq. Consequently there are two possible choices of
positive simple roots which makes the Murray condition masrictive. The topologi-
cal charge still has to be positive, just like the holomoepifiarge, but the holomorphic
charge is bounded by the topological charge.

We shall finish this section with yet another formulationle# Murray condition originat-
ing from proposition 4.1 in the paper of Murray and Singerj[4drelies on the fact that
the holomorphic charges can be minimised under the actidneofesidual Weyl group.
For any elemeny in the coroot lattice there exists a uniquely determinediced mag-
netic chargeg in the Weyl orbit ofg such thaty; - g < 0 for all unbroken simple roots;.
The Murray condition can be expressed in terms of this misgghicharges. A magnetic
chargey is positive with respect to any chosen set of simple rootsdf@nly if for a fixed
choice of simple roots its reduced magnetic charge is pesitrhe reduced magnetic
charge should thus satisfy:

20, g >0 VA (2.66)

We shall shortly show thdt does indeed exist and is unique. But already we can see that
this last condition easily follows from (2.65). Singe= w(g) for somew € W(H) we
havew(\;)-§ = w(\)-w(g) = @~ (w(N\))-g =w'(N\;)-g > 0, wherew’ = o~ tw €
W(H). To show equivalence, however, we also have to show thab)2olows from
(2.66), which boils down to proving the following propositi:
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Chapter 2. Classical monopole solutions

Proposition 2.1 If the reduced magnetic charges positive thenu(g) is positive for all
w e W(H).

Proof. We take the gauge groupbroken toH . The magnetic charges of BPS monopoles
lie on the coroot lattice ofr or equivalently the root lattice aff*. We can assumé' to

be simply-connected since this does not affect the magnk#ege lattice. Under this
assumption there is an isomorphisnfrom the coroot lattice\* (G) to the weight lattice
A(H*) of H* as discussed in section 2.3.3. Up to discrete fackbtsis of the form
U(1)® x K*, whereK™* is some semi-simple Lie group. Similarly, the set of simplets

of G is split up intos broken roots{«; } with 0 < ¢ < s andr — s unbroken rootga; }
with s < j < r. The magnetic charges are thus expandeg-as) -, m;o; + Zj hjaj.

The linear map\ is defined by the images of the simple coroots. For the uniorskeple
coroots this is particularly simple. We haw¢a;) = oj. More generally the image is
given in terms of the abelian charges and a weighkof While the abelian charges are
identified with the topological chargdsn;} the non-abelian charge can be expanded in
terms of the fundamental weights of K*. The coefficients, i.e. the Dynkin labels, are
given by the projection on the roots &f*: k; = 2a; - g/a;Q. Being sums of multiples
of the entries of the Cartan matrix 6f* these labels are indeed integers.

|
1 \VAVAVY,

Figure2.1: The Murray cone foSU (3) as a subset of the Cartan subalgebra. If the residual gauge
group equald/(1) x U(1) (left) the Higgs VEV determines a unique set of simple radts. static
BPS monopoles have magnetic charges equal to a positiva loeenbination of these roots. These
charges are in one-to-one correspondence with the poditigelogical charges. If the residual
gauge group idJ(2) (right) there are two choices of simple roots. Only thosergksa that have

a positive expansion for both these choices correspond meemapty moduli spaces of static BPS
monopoles. There is only a single topological charge whsgbroportional to the inner product of
the magnetic charge with the Higgs VEV As can been seen from the picture the total magnetic
charge is not uniquely determined by the topological chatpme: non-abelian monopoles may
carry non-trivial holomorphic charges.

Y
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2.3. Magnetic charge lattices

We can now easily prove that the reduced magnetic chamasts and is unique. Let
h = X(g). Any weighth € A(H*) can be mapped to a unique weightn the anti-
fundamental Weyl chamber via a Weyl transformation. We thaseh - o« < 0. The
reduced magnetic chargés fixed byA(§) = h. Since2\(g) - o /a3 = 2g- % /a’? we
havea} - g < 0 for all unbroken roots of:*. The same inequality holds for the unbroken
roots ofG itself.

We now return to the proof of the proposition. First we sha#l the fact thax respects the
residual Weyl group is the sense thatw(g)) = w (A(g)) for allw € W(H). This can
be proved using the fact that any Weyl transformation is aisege of Weyl reflections
w; in the hyperplanes perpendicular to the simple coragtdt is thus sufficient to prove
that A commutes withw; for all unbroken simple roots. We have

My (0)) = ) <g S a;*-) = M0~ LR xa3)
;o J (2.67)
o)~ 2 s (09

Note that for the unbroken rootg«;) = «; and that) is an isometry as discussed in
section 2.3.3 and thus leaves the inner product invariant.

Secondly for the proof of the proposition we use the fact fhas lowest weight, we
havew(h) = h + nja; with n; > 0 for anyw € W(H™), see for example chapter 10 to
13 of [47]. Forg and anyw € W(H*) = W(H ) we now get:

Aw(@) = w (M) = w(h)
= h+njal = A(G) +njMa)) (2.68)
=Ag+ nja;‘)

Consequently in terms of the unbroken simple coroot&'afe findw(g) = g + n;a}
wheren; > 0. Thus for the all fundamental weights 6f we have2), - w(g) > 0 if
2 - § > 0. O

Note that the set of positive reduced magnetic charges idbseswf the Murray cone
and can be obtained by modding out the residual Weyl group. selt of Wey! orbits in
the Murray cone is a physically important object; it corrasgs to the magnetic charge
sectors of the theory. This follows from the fact that a maigrehargey is defined only
modulo the action of the residual Weyl group. For this reasershall introduce a set
called the fundamental Murray cone which is bijective to skeof of Weyl orbits in the
Murray cone. The set of positive reduced magnetic charge®taourse be identified
with the fundamental Murray cone. However, it would be mqyprapriate to call this set
the anti-fundamental Murray cone. We recall that a reducadmatic charg@ satisfies
a; - g < 0 for all unbroken simple roots;. It follows from this condition thag can be
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Chapter 2. Classical monopole solutions

identified with a lowest weight off*. Similarly, we can define the subset of the Murray
cone{yg : a; - § > 0}. These magnetic charges now map to the fundamental Weyl-cham
ber of H*, hence we call this set the fundamental Murray cone. We timastFat the
magnetic charge sectors are labelled by dominant integeahts of the residual gauge
group. A similar conclusion was drawn for singular monopddg Kapustin [48].
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CHAPTER 3

FUSION RULES FOR SMOOTH
BPS MONOPOLES

The magnetic charges carried by smooth BPS monopoles in-ValfgzHiggs theory
with arbitrary gauge grouf spontaneously broken to a subgraotpare restricted by
a generalised Dirac quantization condition and by an inkgudue to Murray. These
conditions have been discussed in chapter 2. Geometritiaflyset of allowed charges
is a solid cone in the coroot lattice 6f, which we call the Murray cone. As argued in
section 2.3.4 magnetic charge sectors correspond to poitite Murray cone divided by
the Weyl group ofAH.

The goal of this chapter is to determine which charge seconsain indecomposable
monopoles and which contain composite monopoles, and tatimdules according to
which charge sectors are composed or "fused”. Our succdsgling a consistent set of
rules provides an a posteriori justification of the defimitaf charge sectors. We begin, in
section 3.1, by determining the additive structure of thefelypcone and the fundamental
Murray cone. In both cases this results in a unique set ocimaosable charges which
generate the cone. For Dirac monopoles similar sets of géngicharges are introduced.
We show that the generators of the fundamental Murray conergé a subring in the
representation ring of the residual gauge group. In theragiged we construct an alge-
braic object whose representation ring is identical to i® $special subring.

In order to support the interpretation of the indecompasatéhgnetic charges as build-
ing blocks of decomposable charges we review basic factstaboduli spaces of BPS
monopoles in section 3.2. By analyzing the dimensions cfdtspaces we show that the
decomposable charges for smooth BPS monopoles correspandlti-monopole con-
figurations built up from basic monopoles associated to theegating charggsrovided
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Chapter 3. Fusion rules for smooth BPS monopoles

we work within the fundamental Murray cone. The additiveisture of the fundamental
Murray cone thus provides candidate fusion rules for thematig charge sectors.

We find further support for these classical fusion rules ittisa 3.3 by drawing on ex-
isting results regarding the patching of monopoles, inipalgrly in the work of Dancer
on BPS monopoles in afil (3) theory broken td/(2). We briefly discuss similar results
for singular BPS monopoles obtained by Kapustin and Witie3) fnd speculate on the
implications for the semi-classical fusion rules.

3.1 GENERATING CHARGES

As we have seenin section 2.3 consistency conditions orhidrgies of magnetic monopoles
give rise to certain discrete sets of magnetic charges.drtdise of singular monopoles
this set is nothing but the weight lattice of the dual grdiip. The set of charges of
smooth monopoles in a theory with adjoint symmetry breakiogesponds to the root
lattice of the dual grou*. Alternatively one can view this set as a subset in the weight
lattice of the residual dual gauge grof¥ C G*. In the BPS limit the minimal energy
configurations satisfy an even stronger condition whiclegisise to the so-called Mur-
ray cone in the root lattice af*. Both the weight lattice off* and the Murray cone

in the root lattice ofG* contain an important subset which is obtained by modding out
the Weyl group ofif*. For singular monopoles one simply obtains the set of dontina
integral weights, i.e. the fundamental Weyl chambeFdf In the case of smooth BPS
monopoles modding out the residual Weyl group is equivatenéstricting the charges
to the fundamental Murray cone.

In each case we want to find a set of minimal charges that genataiemaining charges
via positive integer linear combinations. As it turns ous fhroblem is most easily solved
for the Murray cone. In the latter case the generators caddygified as the coroots with
minimal topological charges. Below we shall prove this fay aompact, connected semi-
simple Lie groupG and arbitrary symmetry breaking. For the weight latthqg?*) one
can give a generic description for a small set of generalarfind a smallest set of gener-
ators one needs to know some detailed propertiég*ofThe generators the fundamental
Weyl chamber and the fundamental Murray cone are not eashtified in general either.
In all these cases we shall therefore restrict ourselvesrtelear examples.

The physical interpretation of the generating chargesas tifie monopoles with these
minimal charges are the building blocks of all monopolesia theory. We shall there-
fore call monopoles with minimal charges in the weight &tof H* or in the Murray
cone inG* fundamental monopole§he monopoles corresponding to the generators of
the fundamental Weyl chamber and those related to the fuedtihMurray cone both
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3.1. Generating charges

are callecbasic monopoledn section 3.2 and 3.3 we study to what extent these notions
make sense in the classical theory.

3.1.1 GENERATORS OF THE MURRAY CONE

Given two allowed magnetic charggsandg’, that is two magnetic charges satisfying
the Dirac condition (2.40) and the Murray condition (2.6f&)e can easily show that the
linear combinatiomg + n’¢’ with n,n’ € N again is an allowed magnetic charge. This
raises the question whether all allowed magnetic chargebegenerated from a certain
minimal set of charges. This would mean that all charges eaddzeomposed as linear
combinations of these generating charges with positiegirt coefficients. The minimal
set of generating charges is precisely the set of indecoamp@sharges. These inde-
composable charges cannot be expressed as a non-trivitv@disear combination of
charges in the Murray cone. It is obvious that such a setsexitts also not difficult to
show that such a set is unique. This follows from the fact efjative magnetic charges
are excluded by the Murray condition. Despite its existesog uniqueness we do not
know a priori what the set of generating charges is, let atbaé we can be sure it is
reasonably small or even finite.

There are some charges which are certainly part of the gemgiset, namely those for
which the corresponding topological charges are minimhaést are the allowed charges
g such thaR); - g = 1 for one particular broken fundamental weightand2\; - g = 0
for all other broken fundamental weights.

Proposition 3.1 Topologically minimal charges are indecomposable.

Proof. If an allowed chargeg with a minimal topological component can be decomposed
into two allowed chargeg, = ¢’ + ¢” then one of these, say, would have a topological
component equal to zero. This means gt ¢’ = 0 for all broken fundamental weights
Ai, implying thatg’ = >, m;c; with only unbroken rootsy; andm; > 0. If {a;} isa

set of simple roots off C G then sois{«/} with o = —a;. Since the Weyl group acts
transitively on the bases of simple roots there exists ameté inVW(H) that takes all

unbroken rootsy; to a; = —a;. With respect to the basigy;) we havey’ = 3 . mia;
with m} < 0. This implies thayy’ only satisfies the Murray condition §f = 0 showing
thatg is indecomposable. O

We now wish to identify these topologically minimal chargess a first step we shall
show that some of the coroots, that is rootg6f are contained in the set of topologi-
cally minimal charges. Note that there always exist coraatis topologically minimal
charges, these correspond to the broken simple roots. Hesidual symmetry group is
non-abelian the set of topological minimal coroots is lathan the set of broken simple
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Chapter 3. Fusion rules for smooth BPS monopoles

roots. In any case the whole set of topologically minimabats lies in the Murray cone.

Proposition 3.2 Any coroota® with 2)\; - o* = 1 for one of the broken fundamental
weights and which is orthogonal to the other broken fundaalemeights, satisfies the
Murray condition.

Proof. We shall first show tha&* - ¢ > 0. As argued in section 2.3.4 we taketo lie

in the closure of the fundamental Weyl chamber, jie= 23", 11, A; with y; > 0. Thus

a* - p=p; > 0. If a*-p =0, awould be an unbroken root and as such orthogonal
to all broken fundamental weights. This is clearly not theecaince2)\; - o* = 1. We
conclude thatv* - 1 > 0 and hence that* is a positive coroot.

It is now easy to show that* does indeed satisfy Murray’s condition. Since the Weyl
group is the symmetry group of the (co)root system we havafyrw € W(H) C
W(G), thatw(a*) is another coroot. Moreover(a*) is positive since the residual Weyl
group leaves the Higgs VEV invariant:(a*) - u = o* - w=!(u) = o - u. We thus have
thatw(a*) - ¢ > 0 foranyw € W(H). Equaling some root a&* the positivity ofw(a*)
implies that it can be expanded in simple positive corooth @il coefficient greater than
zero:2)\; - w(a™) > 0. We finally find thaw(A;) - o* > 0 for all fundamental weights
and for all elements in the residual Weyl group. O

It was easily shown that topologically minimal chargessgiing the Murray condi-

Qo Q2 a1 tao
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Figure 3.1: In the picture above the generators of the Murray cone$©f3) are depicted. If
the gauge group is maximally broken (left) #(1) x U(1), the generators correspond to the
simple roots of SU(3). Both generating charges have distinit topological charges. For minimal
symmetry breaking (right) where the gauge grou@/i®), the Murray cone is further restricted
by the Murray condition. The generating magnetic chargefalee distinct holomorphic charges
related by the Weyl group. Their topological charges bothadd..

tion are indecomposable charges within the Murray conethEumore we have seen that
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these topologically minimal charges contain the set of atawith topologically minimal
charges. We will now prove that these coroots do not only titoms the complete set of
minimal topological charges in the Murray cone, they adyu@rm the full set of inde-
composable charges. F6r = SU(3) these facts are easily verified in figure 3.1 where
the Murray cones and its generators are drawn for the twoildegsatterns of adjoint
symmetry breaking. Below we prove that the minimal topatagjcharges generate the
full Murray cone. Consequently the set of minimal topol@jicharges must coincide
with the complete set of indecomposable charges.

Proposition 3.3 The coroots with minimal topological charges generate thersly cone

Proof. The outline of the proofis as follows. We slice up the Murrape according to the
topological charges in such a way that each layer corregaoraiunique representation of
the dual residual group. For unit topological charges wevthat the weights correspond
to the coroots with unit topological charges. Finally wewhbat the representations for
higher topological charges pop up in the symmetric tensodyxcts of representations
with unit topological charges.

ConsiderG — H whereH is locally of the formU (1)® x K. We split ther roots of the
gauge groufd+ into s broken rootg«;) with 0 < ¢ < s andr — s unbroken rootgc;)
with s < j < r. The magnetic charges are thus expandeg-asy . m;a; + Zj hjaj.
Without loss of generality we can assuddo be simply connected just like in the proof
of proposition 2.1. In that same proof we also defined an igptiem\ from the coroot
lattice A*(G) to the weight lattice\ (H*) of H*. SinceH* is locally of the formU (1)! x
K™ with K semi-simpleA(g) can be expressed in terms of #iél) charges and a weight
of K*. While the abelian charges are identified with the topolalgahargesn;, the
Dynkin labels of the non-abelian charge arédhy= 2a; -g/a;Q. Being sums of multiples
of the entries of the Cartan matrix 6f* these labels are indeed integers. Moreover for
vanishing holomorphic charges only the off-diagonal esticontribute so that; < 0.
Consequently for any € A*(G) we have:

Ag)

A (mie + hjas)
=h_(m;) + thé;f.

whereh_(m;) is a lowest weight that only depends on the topological assgrlVe shall
prove that for a fixed set of positive topological charges } the magnetic charges in the
Murray cone are in one-to-one relation with the weights efitheducible representation
of H* labelled byh_(m;). To show this we use two important facts. First a weigght
is in the representation defined by if and only if for the lowest weight in the Weyl
orbit of . one hash = h_ + njo; wheren; > 0. Second, the map commutes with the
residual Weyl group.

First we shall show that for a magnetic chagé the Murray cone\(g) is a weight
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in the h_(m;) representation. As a superficial consistency check we hate\tg) and
h_(m;) differ by an integer number of roots & * given by the holomorphic charges.
The lowest weight in the Weyl orbit of(g) is given by the image of the reduced mag-
netic charge\(g), as explained in the proof of proposition 2.1. It followsrréhe Murray
condition (2.65) thag is of the formg = m;a; + hYja; whereh > 0. Consequently
A(g) = h—(m;) + nja; wheren; > 0.

To prove the converse we take a weightn the representation defindd_(m;) with

m,; > 0. We need to prove thatwith \(g) = h satisfies the Murray condition. This is
done as follows. The tripléh_ (m;), h, h) of weights inA(H*) can be mapped to a triple
(9—(m;), g, g) of elements in the coroot lattick* (G) by the inverse of. Next we show
that g_(m;), g and g satisfy the Murray condition. We have (m;) = m;a} so that
A(g—) = A_(m;) andm; > 0. The broken simple coroots satisfy the Murray condition
and hencegy_ (m;) lies in the Murray coneg is given byg = g—(m;) + n;ja; so that
AG) = AMg-(mi)) + njaj = h. Sinceg maps to the anti-fundamental Weyl chamber
of H* and has a positive expansion in simple coroots it satisfeedlrray conditions as
follows from proposition 2.1. Finally sinck respects the residual Wey! group ani in

the Weyl orbit ofh we find thatg is in the Weyl orbit ofg. With g satisfying the Murray
condition it is easy to show thgtalso obeys the condition.

The coroots of7 form the nonzero weights of the adjoint representatiod’df Under
symmetry breaking the adjoint representation maps to acibldurepresentation off *.
We are particularly interested in the irreducible factossresponding to unit topologi-
cal charges. Coroots with unit topological charge,qg.= ¢;%, equal a broken simple
coroota;, up to unbroken roots. We have seen in proposition 3.2 thatatsmwith unit
topological charge satisfy the Murray condition. Hence pithevious discussion tells us
that such coroots are mapped to the weight space of the egpiation labelled by(a}).
The weightA(«) itself corresponds tg = «;. We now see that each weight in the
(o )-representation must not only correspond to a magneti@eliarthe coroot lattice
of G but in fact to a coroot, otherwise the coroot system wouldauststitute a proper
representation off *.

We can now finish the proof. Each element in the Murray con@édsweight in a rep-
resentation labelled by _(m;). Such representations only depend on the topological
charges. Moreover the lowest weights are additive witheesip the topological charges:
h_(m;) + h_(m}) = h_(m; +m}). Consequently every such lowest weight is of the
form Y. m;A(a; ). The representation labelled by (m;) is obtained by the symmetric
tensor product of representations labelled\gy; ). A weight in the product representa-
tion equals a sum of weights from théa ) representations. By identifying the weights
with magnetic charges we find that all charges is the Murraye@gual a sum of coroots
with unit topological charges. O
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3.1.2 GENERATORS OF THE MAGNETIC WEIGHT LATTICE

In this section we want to describe the generators of the etagoharge lattice for sin-
gular monopoles in a theory with gauge grolip This charge lattice can be identified
with the weight latticeA (H*) of the dual groupg?* as discussed in section 2.3.1. As for
the Murray cone it is obvious that a minimal set of generatihgrges exists such that
all charges are linear combinations of these generatingyelavith positive integer co-
efficients. The difference with the Murray cone, howevethet the generating set is not
necessarily unique. We shall give some simple exampleswteldlustrate this, but we
already note that the underlying reason for this is that thight lattice ofH* is closed
under inversion.

Using some textbook results on Lie group theory is easy to dimdlatively small set
of generators: leV be a faithful representation ¢df* andV* its conjugate representa-
tion. Any irreducible representation éf* is contained in the tensor productsiéfand
V*, see e.g section VIl of [49] for a proof. Since the weightdof V5 are given by the
sums of the weights df; andV: we now find that any weight of an irreducible represen-
tation of H* is a linear combination of weights &f andV* with positive coefficients.
Since any weight im\(H*) is contained in an irreducible representatiorFbf we have
found that the weights df andV* generate the magnetic weight lattice. Note that if this
faithful representatiolt” is self-conjugate the weight lattice is obviously genatdtg the
non-zero weights o¥/. This happens for example f&tO(n) and Sp(2n) which have
only self-conjugate representations. To find a small seeakgators one should take the
non-zero weights of a smallest faithful representation im@onjugate representation,
i.e. the fundamental representation and its conjugateseptation.

The recipe above does not necessarily give a smallest setnafrgtors since there still
might be some double counting. We mention two examplest Fitsnight be contained

in the tensor products df. This happens for example f&iU (n): the representation

is given by the(n — 1)th anti-symmetric product af. Second some weights &f may

be decomposable withivi. Consider for exampl8U (n)/Z,,. The weight lattice of this
group corresponds to the root lattice$' (n) and forV one can take the adjoint repre-
sentation whose weights are the rootsSéf(n). Note that all roots can be expressed as
positive linear combinations of the simple roots and thaieises in the root lattice.

When H* is a product of groups the defining representation is rediicibd falls apart
into irreducible components. Each of these irreduciblegsgntations has trivial weights
for all but one of the group factors. This agrees with the fhat in this case the weight
lattice of H* is a product of weight lattices.

In table 3.1 we give the representation or representatidms@/ nonzero weights consti-
tute a minimal generating set of the magnetic weight lati¢& *). The corresponding
electric groupd? were mentioned in tables 2.1 and 2.2.
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Hr (v}

SU(n) {n}

Sp(2n) {2n}

50(n) {n}
WU (1) x SUM))/Z, foy, 01}
Ul)xSO@2n+1) {(2n+1)p, 15,141}
(U(1) x Sp(2n))/Zs {2n1,2n_,}
(U(l) X SO(2TL))/ZQ {21’11, 21’1_1}

Table 3.1: Generators of the magnetic weights lattid®¢ 7 ™) in terms of representations of the
dual groupH ™. The boldface numbers give the dimensionality of the ircétle representations of
the corresponding simple Lie groups, their conjugate repreations are distinguished by an extra
bar. The subscripts denoté(1)-charges.

3.1.3 GENERATORS OF THE FUNDAMENTAL WEYL CHAMBER

The charges of singular monopoles in a theory with gaugepyféuake values in the
weight lattice of the dual grouff*. This weight lattice has a natural subset: the weights
in the fundamental Weyl chamber. i is semi-simple and has trivial cent&r* is semi-
simple and is simply connected. In this particular case teegators of the fundamental
Weyl chamber ofi * are immediately identified as the fundamental weightsH tf is
not simply connected or even not semi-simple the generat&ights in the fundamental
Weyl chamber are not that easily identified. The generatiagges are, however, closely
related to the generators of the representation ring, wdrielcomputed in chapter 23 of
[50]. We shall explain this relation for the semi-simplanply connected Lie groups.
Finally we use the obtained intuition to compute the gemmesadf the fundamental Weyl
chamber for the dual groups in table 2.2 which occur in mithisyanmetry breaking of
classical groups. In the next section we shall use similahaus to find the generators
of the fundamental Murray cone.

The representation rin§(H*) is the free abelian group on the isomorphism classes of
irreducible representations éf*. In this group one can formally add and subtract repre-
sentations. The tensor product mak&g{*) into a ring. We shall for now assunié*

to be a simple and simply connected Lie group of rardo that its weight lattice\ is
generated by the fundamental weight§; } .

R(H*) is isomorphic to a certain ring of Weyl-invariant polynotsiaWe will review the
proof following [50]. We shall start by introducing[A], the integral ring om\.. By this

we mean that any element#jA] can be written a3, naex wheren, € Z andny # 0

for a finite set of weights. We thus see thgtis the basis element ii{A] corresponding
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to \. The productirZ[A] is defined byeyey = ex;x . We thus see thak[A] is nothing
but a group ring on the abelian growp Note that the additive and multiplicative unit
are given by0 andey while the additive and multiplicative inverses of are given by
respectively—e, ande_ .

There is a homomorphism, denoted by Char, from the reprasenting intoZ[A] This
map sends a representatignto ChafV’) = > dim (V) ey, where dim'V) equals the
multiplicity with which the weight\ occurs in the representatidn It is easy to see that
this map does indeed respect the ring structure.

The Weyl groupV of H* acts linearly orZ[A] and the action is defined by € W :

ex — e,(n)- T0 show that the action ofV respects the multiplication ié[A] one simply
uses the fact that) acts linearly om\.

Z[A] contains a subrin@[A]"Y consisting of elements invariant under the Weyl group.
The claim is thatR(H*) is isomorphic toZ[A]"V. It is easy to show that the image of
Char is contained i#[A]"”. Below we shall also prove surjectivity by using the facttha
there is a basis GE[A]"” that is generated out of certain representatiof 6f In the end
we are of course interested in these generators.

To each dominant integral weightc A we associate an elemeRf < Z[A]"Y by choos-
ing Py = > naex With n, ) = ny forallw € W and withn, = 1. For simplicity
we takeP, so thatny, = 0 if A — )\ is not a linear combination of roots. We now restrict
the choice ofP, so that for any dominant integral weight > )\, n,, vanishes. Note
that \ is the highest weight of’,. One can now prove by induction that any $ét, }
satisfying the conditions above forms an additive basigfai"" .

We shall now make a rather special choice for the bésis}. For the fundamental
weights); we takeP,, to be P, = CharV;) wereV; is the irreducible representation of
H* with highest weight\;. For any other dominant integral weight= >~ m;\; we take
Py = Char(®,;V;™") =11, P". Since{ P} is a basis foZ[A]"Y any element in this ring
can thus be written as a polynomial in the varialResvith positive integer coefficients:

ZIA] = Z[P,, ..., ). (3.2)

As promised we have proven th&( H*) is isomorphic toZ[A]"Y for H* semi-simple
and simply connected. In addition we have found that the iggoes of Z|A]"Y corre-
spond precisely to the generators of the fundamental Weyhtier via the map,; — P;.
This is not very surprising because it was input for the pafdhe isomorphism. So the
interesting question is if we can really retrieve the getmesaof the fundamental Weyl
chamber fromR(H*). This can indeed be done by identifying the generators wfith
the generators of[A]. We shall explain this below fa$U (n). Before we do so we want
to make an important remark.

In the proof we used the fact that there is a b@sisvhere eachP, can be identified with
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CharV,) and whereV, is some representation with highest weightSuch a choice of
basis always exist since one can tdkebe the irreducible representation with highest
weight\. The fact that there is a generating set for the fundameregl @hamber is thus
not crucial in the proof of the isomorphism betwelg(H *) andZ[A]"".

We return toZ[A], whereA is the weight lattice ofSU (n). As discussed in the previ-
ous section the weight lattice 6 (n) is generated by the weights of thedimensional
fundamental representation. Let us denote these weights bgd define

x; =er, € Z[A]. (3.3)
Note that the vectors; are not linearly independent sing¢; L; = 0. We thus have
T1T2 - Ty = 1, (34)

wherel = ¢ is the multiplicative unit ofZ[A]. We find that any elemen, can be
written as monomiall; ;" with positive coefficientsn;. Such monomials are unique
up to factorsey - - - z,. Since{ey : A € A} forms a basis foZ[A] we find:

ZIA) = Z[zq, ... xp) /(21 2 — 1). (3.5)

The Weyl group ofSU (n) is the permutation groug,, and obviously permutes the in-
dices of ther;s, see also appendix B.1. Consequently

R(SU(n)) = ZIA]» = Z[x1,...a0)° /(21 20 — 1). (3.6)
To find the generators aR(SU(n)) we use the well known fact that any symmetric
polynomial inn variables can be expressed as a polynomial,ofk = 1,...,n where
ay is thekth elementary symmetric function of given by:
ap = Z Tiy * Ly (3.7)
i <o <ip

Note thata,, = ;1 - - - ,, is identified with1 in R(SU (n)). We have thus established the
isomorphism:
R(SU(H)) :Z[al,...,an_l]. (38)

Our conclusion is that the first — 1 elementary symmetric functions form a minimal
set generating the representation ringdf(n). It should not be very surprising that for
1 < na; = P, = Cha(V;) whereV; is the irreducible representation with highest weight
\i. Itis nice to note that; = A’V whereV is the fundamental representationsif (n)
and thatA”V = 1 the trivial representation.

For SO(2n + 1), Sp(2n), andSO(2n) the fundamental representation t2asnonzero
weights+L; :i=1,...n. By identifying;vf1 = e4 1, one finds that the group ring on
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3.1. Generating charges

the weight lattice is isomorphic t[z1, 27", ..., x,, 2z, ']. As shown in [50] the repre-

n

sentation rings are given by polynomial rings of the form:

R(SO(2n +1)) = Z[by, -+ , by (3.9)
R(Sp(2n)) = Zlc1,- -+, cnl (3.10)
R(SO(2n)) =Zldy, -+ ,dp_1,dS,d]. (3.11)

The polynomialshy, ¢, anddy can all be chosen to equal the elementary symmetric
functions in the2n variables{z:}. The polynomialsi* can be expressed 48%)2. d+
andd~ correspond to the two spinor representationS@f{2n) :

d* = Cha(Ss) = TR i (3.12)

81 Sp==%1

It is easy to check that® are indeed polynomials.

To explain whyR(SO(2n)) has an extra generator compared to the other groups we note
that its Weyl group is given bg,, x Z5 ' whereas the Weyl groups 6f0(2n + 1) and
Sp(2n) are given byS,, x Z%. This means that the Weyl groups act on the non-zero
weights of the fundamental representations by permutiegritlices and changing the
signs of the weights, but fafO(2n) only an even number of sign changes is allowed,
see also appendix B.1. Consequently the generatofg 660 (2n)) do not have to be
invariant under for example af; — z; and hence the generaigy can be decomposed
into d; andd;.

for completeness we mention that the highest weights, o€, anddy are given by the
highest weights of the anti-symmetric tensor product¥” of the corresponding funda-
mental representatidi. The highest weights of:- are given by twice the highest weight
of the spinor representations.

We finally want to identify the generators of the fundamentelyl chamber for some
groups that arise in minimal symmetry breaking of classicalips. As discussed in sec-
tion 3.1.2 the weight latticA of U(n) is generated by the weights of itsdimensional
representation; and those of its conjugate representafion. Let us denote the weights
of n; by {L;} and definer; = ey, € Z[A]. The weights ofa_; are given by{ —L;}. We
thus immediately find the following isomorphism for the gpaing on the weight lattice
of U(n):

ZIN] = Z[x1, 21, ..., 20,2, ] (3.13)

To find the generators of the representation ri@/(n)) = Z[A]"Y we note that the
Weyl groupW = S,, of U(n) permutes the indices of the generator&of] but does not
change any of the signs as happened for the classical griaqusded right above. This
implies thatR(U(n)) is generated bya, : K = 1,...,n} the elementary symmetric
polynomials inz; and{ay : k = 1,...,n} the elementary symmetric polynomials in the
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variables{xi‘l}. Note thata,, = x; - - - x,, is invertible in the representation ring and its
inverse is given byi,, = (x1 -+ x,) "L
The generators we have found fB(U (n)) are not completely independent since:

axay, " = Z Tiy @iy (X1 @) = Z (ziy i, )t = An_p. (3.14)

G5 1 <tj<iBj41 15 —1<1j<ij41
The representation ring &f(n) can thus be identified with the polynomial ring:
R(U(n)) = Zlay,. .., an,a,]. (3.15)

The generating polynomialg, anda., ' are indecomposable in the representation ring,
their highest weights thus form a minimal set generatingftimelamental Weyl cham-
ber of U(n). We finally mention that, = ChaiA*V), whereV is the fundamental
representation o/ (n). MoreoverA™V is the one dimensional representation that acts
by multiplication with detg) whereg € (U(n)) This representation is invertible and
a, ' = Char((A"V)~h)).

SincelU (1) xSO(2n+1) is a product of groups its representation ring is sim(y/ (1)) x
R(S0O(2n + 1). The representation ring &f(1) can be identified with the polynomial
ring Z[zo, =, '] wherezZ! = Cha(V+') andV the fundamental representationéf1).
There is, however, an alternative description of the reprigion ring which will prove
to be valuable in the next section. Lgko, L1, L},..., L,, L.} be the weights of the
fundamental representation 6f(1) x SO(2n + 1), i.e. the representation with unit
U(1) charge. Defindxzg,z1,2'1,...z,,2),} to be the images of these weights in the
group ringZ[A] of the weight lattice. It is not too hard to show tHA}A] is isomor-
phic to Z[xo,xgl,xl,a:’l, ...xn,x,]/I wherel is the ideal generated by the relations
z;2'; = z2. Moreover one can prove that

R(U(1) x SO(2n + 1)) = Z]wg, x5, b1, . .., by), (3.16)

whereb;, = ChafAFV) is thekth elementary symmetric polynomial in the + 1 vari-
ableszg, z1,2'1,...,2z,, 2" ,. The highest weights of these generating polynomials cor-
respond to the minimal set of generating charges in the fuedéal Weyl chamber.

By mapping the weights of the fundamental representati@hitsnconjugate represen-
tations toZ[A] on finds that group rings on the weight lattices(6%(1) x Sp(2n))/Zs
and(U(1) x SO(2n))/Z, can be identified with the polynomial ring

_ 1 _
Zlwy, oyt a2,y a2 ]/, (3.17)

where! is the ideal generated by the relationg’; = x;2’,;. Note that these relations
imply thatz; 2 is invariant under the Weyl group that permutes the indices waps
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primed variables with their unprimed counterparts. Oneream show that the represen-
tation ringsR ((U(1) x Sp(2n))/Zs) andR ((U(1) x SO(2n))/Z2) can be identified as
quotient rings of respectively:

Z[;le’l, (xlx’l)_l, Cly.v.yCnyCly..., En] (318)
and
Z[Ilﬂf/l, (le/l)_l, dl, ceey dn—la d;‘;, dr_zv Jl, . ,Jn_l, JZ, d;], (319)

wherec;, anddy, are the elementary symmetric polynomials in2hevariablese, . . ., z,,
andz’,...,z!,. The functionss; andd; are similar elementary symmetric polynomials
expressed in terms of the inverted variables. Explicit eggions ford: = (d*)? can
be found from formula (3.12) where the inverted variablesudth be replaced by the
primed variables. Finallg;" is found by substitution of the inverted variablesijf. The
generating set of polynomials we have found is not the mihsaa This follows from

the fact that:; ' = (x;2/) ', = (z12))~'2}. Consequently one finds:

R((UQ) x Sp(2n))/Z) = Z]z12'1, (x12"1) " e1, .., el (3.20)

R ((U(l) X SO(2))/Z2) = Z[;lell, (,’Elirll)_l,dl, ey dn—la d+ d_] (321)

n»-'n

The highest weights of these generating polynomials argeherators of the fundamental
Weyl chamber of the two groups.

3.1.4 GENERATORS OF THE FUNDAMENTAL MURRAY CONE

The fundamental Murray cone, just like the Murray cone, aorgt a unique set of in-
decomposable charges. The uniqueness of this set is a cemerof the fact that the
fundamental Murray cone does not allow for invertible elatse The main difference
with the Murray cone, however, is that the generators forftilelamental Murray cone
are not easily computed. After a general discussion we 8teiéfore only determine the
generators for a couple of cases that correspond to minynabhetry breaking of classi-
cal groups. The approach we use is closely related to the etatipn of the generators of
the fundamental Weyl chamber as discussed in the previatissend can in principle
be applied to any gauge group and for arbitrary symmetrykimga

Note that this whole exercise only makes sense if the fundtah®lurray cone is closed
under addition. At the beginning of section 3.1.1 we arghetithe Murray cone is closed
under this operation by evaluating the defining equatiorts. tire fundamental Murray
cone similar considerations apply. F¢to be in the fundamental Weyl chamber of the
Murray cone we have the extra conditigpn a;; > 0 for all unbroken rootsy;. It is now

easily seen that if bothhandg’ satisfy this condition then + ¢’ will satisfy it too, as will
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any linear combination of these charges with positive iategpefficients. This proves
that the fundamental Murray is closed under addition of gbsr

Instead of computing the generators of the fundamental &urone directly by evaluat-
ing the Murray condition we shall determine the indecomptesgenerators of a certain
representation ring. We shall start by describing this.rihgt G be a compact, semi-
simple group broken téf via an adjoint Higgs field. Without loss of generality we can
assume7 to be simply connected since this does not change the setgifetia charges.
Under this condition the magnetic weight lattitke:= A(H*) is isomorphic to the root
lattice of G*. The ring we want to consider is the free abelian group onrtegliicible
representations dff * with weights in the Murray cone. These irreducible représsions
of H* are labelled by dominant integral weightsin. C A and can be identified with
the fundamental Murray cone as a set. Note that since theayluone is closed under
addition this set of representations is closed under theoteproduct. As we prove in
the appendix there exists an algebraic object, but not apgitaving a complete set of
irreducible representations labelled by the magneticgd®min the Murray cone. Let us
denote this object by/ ;. The representation ring we are discussing here is thussphgc
the representation ring(H7 ).

Just as in the previous section we now introduce a secondZfing| that turns out to
be quite useful.Z[A+] has a baside) : A € A;}. SinceAy is closed under addi-
tion Z[A ] is indeed closed under multiplication. The multiplicatidentity is given by

1 = eg. The basis elements, of Z[A ] are not invertible under multiplication sinee

is not contained ifZ[A . ]. Finally we introduce the rin@[A ]"” consisting of the Weyl
invariant elements iZ[A . ]. Note thatZ[A ] C Z[A] andZ[A]"Y C Z[A]"Y. By using
arguments almost identical to arguments mentioned in thgqus section one can show
that R(H? ) is isomorphic taZ[A]"V. This last ring can be identified with a polynomial
ring. The highest weights of the indecomposable polyna@riah be identified with the
generators of the fundamental Murray cone.

We shall identify the generators of the fundamental Murmayecfor the classical simply-
connected groupSU (n + 1), Sp(2n + 2), Spin(2n + 3), andSpin(2n + 2) and for
minimal symmetry breaking. The relevant residual elegjricups and their magnetic
dual groups are listed in table 2.2. One can show that theaylwone in these cases is
generated by the weights of the fundamental representatiéit which are respectively
n, 2n + 1, 2n and2n dimensional.

Let us denote the weights of the fundamental representafiéh(n) by L; wherei =
1,...,n. We definer; = ey,,. Since the weight$,; freely generate the Murray cone we
immediately find

ZINL) = Z[xq, ... 2] (3.22)
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The Weyl group ofU (n) permutes the indices of the generators. Copying our regtilts
the previous section we thus find the following isomorphism:

ZINY = Zlay, . .., ). (3.23)

wherea;, are the elementary symmetric polynomials in the variables The highest
weights of these indecomposable polynomials are the gemeiaf the fundamental Mur-
ray cone forSU (n+ 1) broken down td/ (n). Note thatZ[A]"” is obtained fronZ[A]"Y
as given in formula (3.15) by removing the generaipt.

Let{Lo, L1, L},..., Ly, L} be the weights of the fundamental representatidiidf) x
SO(2n+1). Define{xg, z1,2'1, ... 2, 2}, } to be the images of these weights in the ring
Z[A4]). Z[A4] is isomorphic to

Zlxg, 21,21, ... xp, a0 /1, (3.24)

n

wherel is the ideal generated by the relations’; = x3. Moreover one can now prove
that
ZINY = Zlxo, by, ..., by, (3.25)

whereb;, = CharfAFV) is thekth elementary symmetric polynomial in tBe + 1 vari-
ableszg, z1, 21, ..., 2z, 2',. The highest weights of these generating polynomials cor-
respond to the minimal set of generating charges in the fmed#l Murray cone.

By mapping the weights of the fundamental representati@iAq | for G equalsSp(2n+
2) or SO(2n + 2) the ringZ[A ] can be identified with the polynomial ring

Zlxy, 2’1, .. xn, 2] /1, (3.26)

n

wherel is the ideal generated by the relations’; = z;z’;. One can now show that the
representation rings can be identified as respectively:

Zlx12'1,c1,. .. cn) (3.27)
and
Z[itlxll,dl,...,dn_l,d:,d;], (328)

wherecy, andd;, are both elementary symmetric polynomials in the variables. ., z,,
andz?,...,z!. Explicit expressions fod: = (d*)? are the same as the corresponding
generating polynomials faZ [A]"Y. The generators of the fundamental Murray cone can
be found by computing the highest weights of the polynomials
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3.2 MOoODULI SPACESFOR SMOOTH BPS MONOPOLES

For both singular and smooth monopoles we have identifiede¢hef magnetic charges.
This set always contains a subset closed under additiomatisats by modding out Weyl
transformations. On top of this we have seen that these setgeaerated by a finite set
of magnetic charges. This suggest that these generatimgesheorrespond to a distin-
guished collection of basic monopoles and that all remginiagnetic charges give rise
to multi-monopole solutions. By studying the dimensionsmufduli spaces of solutions
we can try to confirm this picture. In this section we shalldvé concerned with smooth
BPS monopoles. For such monopoles the magnetic chargsfysh& Murray condition.

3.2.1 FRAMED MODULI SPACES

The moduli spaces we shall discuss in this section are $edcirthmed moduli spaces.
Such spaces are commonly used in the mathematically odiéitéeature on monopoles,
see, for example, the book [51]. We shall discuss these saesently. In the next sec-
tions we review the counting of dimensions.

The moduli spaces we are considering correspond to a set®fBRtions modded out
by gauge transformations. The set of BPS solutions is oéstriby the boundary condi-
tion we use, as discussed in section 2.3.3. Beside the fiméyg condition one can use
additional framing conditions, hence the terminology femhmoduli spaces.

Recall from our discussion following (2.47) that the valt(é,) of the asymptotic Higgs
field at an arbitrarily chosen poirig on the two-sphere at infinity determines the residual
gauge group. It is therefore natural to restrict the conéijan space to BPS solutions
with ¢(79) = @, for a fixed value ofb,. The resulting space has multiple connected com-
ponents labelled by the topological charge of the BPS smiati This topological charge
is given by the topological componenis of G, = G(7) as explained in section 2.3.
We shall thus consider the finite energy configurationsfyaiig the framing condition

A\ Go —(149)
®(tfo) = B0 — - + O (t ) t>1, (3.29)

wherer,, & and the topological components of G, are completely fixed. The framed
moduli spaceM (7, ®o, m;) is now obtained from the configuration space by modding
out certain gauge transformations that respect the frawamglition. The full group of
gauge transformationg : R* — G that respect this condition satis§j(t7y) = h as

t — oo whereh € H. However, for the moduli space to be a smooth manifold one can
only mod out a group of gauge transformations that actsyfi@ethe configuration space.
For example the configuratioh = ®, andB = 0 is left invariant by all constant gauge
transformations given by € H. The framed moduli space is thus appropriately defined
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as the space of BPS solutions satisfying the boundary dondif2.47) and (3.29), mod-
ded out by the gauge transformations that become trividieathosen base poif§ on
the sphere at infinity.

The moduli spaceM (7, &, m;) has several interesting subspaces which will play an
important role in what is to come. These subspaces are ddiatine fact that there is a
map f from the moduli space to the Lie algebra@f This map is defined by assigning
Gy to each configuration. As explained in section 2.3.3 andi2up to a residual gauge
transformatiorG is given byG, = %gH with g an elementin the fundamental Murray
cone. The topological componentsgdire of course fixed while the holomorphic charges
are restricted by the topological charges. The imaggiofthe Lie algebra of7 is thus a
disjoint union of H orbits

Clg1)U---UC(gn), (3.30)

whereyg; is the intersection of each orbit with the fundamental Myicane. The mag
defines a stratification of1 (7, ®o, m;). Each stratuniM,, is mapped to a correspond-
ing orbitC'(g;) in the Lie algebra.

The remarkable thing about the stratification is that foreditopological charge the strata
are disjoint but connected even though the images of theastra disconnected sets in the
Lie algebra ofG. This follows from the fact that all BPS configurationsh (7, ®¢, m;)
are topologically equivalent and can be smoothly deforméal €ach other. Under such
smooth deformations the holomorphic charges can thus jump.

If the residual gauge group is abelian the stratificationiigal. Since the topological
charges completely fix there is only a single straturtl, = M (7o, ®o, m;).

There is another interesting moduli space we want to inteduThis so-called fully
framed moduli spacé (7o, ®o, Go) C M(7o, Do, m;) arises by imposing even stronger
framing conditions. The points in the fully framed modulasp M (7, ®o, Goy) corre-
spond to BPS configurations obeying the usual boundary tiondi(2.47) and (3.29) but
instead of only fixingd, we also choose a completely fixed magnetic chargeAgain
the gauge transformations that become trivial at the chbaea point are modded out.
The fully framed moduli spaces have a special property atie to the strata. Monopoles
with magnetic charge&|, andGj related byh in residual gauge grouff C G lie in the
same stratum of the framed moduli space. Moreover, theradlidc € H C G on
the magnetic charges can be lifted to a gauge transform@gtios? — G [44]. Since
m2(G) = 0 this gauge transformation can in turn be extended to a gaagsformation
in R3 acting on the complete BPS solution. In other words the acifdh € H on the
Lie algebra can be lifted to an action on the framed modulesaich that each point in
M(79, Do, Gp) is mapped to a pointiM (7y, Do, Gp). We thus see that all fully framed
moduli spaces in a single stratum are isomorphic. In additie also have that a stratum
is nothing but a space of fully framed moduli spaces. Finalyconclude that locally we
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Chapter 3. Fusion rules for smooth BPS monopoles

must have thadZ; = C(g;) x M (7o, ®o, Go) WhereGy is defined byy;.

If the residual gauge group is abelian the actioifodn the magnetic charges is trivial. In
this particular case the fully framed moduli space equadssihgle stratum and we have
M(Fo, o, Go) = M(Fo, Po, m;).

3.2.2 PARAMETER COUNTING FOR ABELIAN MONOPOLES

The dimensions of the framed moduli spaces for maximal sytmnibeeaking have been
computed by Erick Weinberg [22]. From his index computatidginberg concluded that
there must be certain fundamental monopoles and that thaimérg monopoles should
be interpreted as multi-monopole solutions. The magnéiizges of these fundamen-
tal monopoles are precisely the generators of the Murrag cdiote that since there is
no distinction between the Murray cone and the fundamentat&y cone in the abelian
case we may also call these fundamental monopoles basico@aiusion is thus that the
moduli space dimensions are consistent with the structutieeo(fundamental) Murray
cone. This result also holds in the non-abelian case albaimiuch less obvious way. To
get some feeling for this general case we shall first briefhexe Weinberg's results.

As before we consider a Yang-Mills theory with a gauge gréupThe adjoint Higgs
VEV p is taken such that the gauge group is broken to its maximas{é(1)”, r is the
rank of the group. In this abelian case the structure of tam&d moduli as well as the
structure of the Murray cone is relatively simple. Sincer¢his no residual non-abelian
symmetry there are no holomorphic charges. Consequemlyniignetic charge is fully
determined by the topological charges and the action ofdhiglual gauge group on the
magnetic charges is trivial. The fully framed moduli spates coincide with the framed
moduli spaces while the fundamental Weyl chamber of the BMucone is identical to
the complete cone. From the Murray-Singer analysis it fadldhat the stable magnetic
charges are of the form:

g= Zmiaf , m; € N. (3.31)
=1
Ther simple corootsy} obviously generate the Murray cone and the positive expansi
coefficientsn; can be identified with the topological charges as explainséction 2.3.3.

According to the index calculations of Weinberg the dimensiof the moduli spaces are
proportional to the topological charge:

dim M, =" 4m;. (3.32)
=1

As an illustration the Murray cone is depicted f6¢/(3) — U(1)? in figure 3.2. For
each charge the dimension of the moduli space is given. Iargéthere are indecom-
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3.2. Moduli spaces for smooth BPS monopoles

posable charges, one for ed¢ll) factor. These basic monopoles all have unit topolog-
ical charge. Thus we see that the dimension of the moduliesgaproportional to the
numberN = Y m,; of indecomposable charges constituting the total chargeWain-
berg concluded this is precisely what one would expecMaron-interacting monopoles,
and hence is seems consistent to view the higher topolodi@abe solutions as multi-
monopole solutions.

a2 4 8

a1

Figure 3.2: The Murray cone forSU(3) broken toU(1) x U(1). The generators of the cone
are precisely the simple (co)roots; and a2 of SU(3). Both these charges correspond to unit
topological charge inr (U(1)?) = Z x Z. All charges can be decomposed into the generating
charges. The dimensions of the moduli spaces are propaititimthe number of components.
These dimensions are obviously additive.

Before we continue with general symmetry breaking let usspdar moment to discuss
the nature of the moduli space dimensions. These dimens@mnsspond to certain pa-
rameters of the BPS solutions. For the basic monopoles Wwihgeo; the obvious can-
didates for three of these are their spatial coordinatesthie position of the monopole.
The fourth is related to electric action By, which keeps the magnetic charge fixed but
nevertheless acts non-trivially on the monopole solutioRsis can be seen by consid-
ering exact solutions for the basic monopoles obtained hyeeltingST (2) monopoles
[40, 22].

If the multi-monopole picture is correct the nature of theduld space dimensions for
higher topological charge is easy to guesd.. correspond to the positions of tié con-
stituents, while the remainindy’ dimensions arise from the action of the gauge group on
the constituents. It has been shown by Taubes [52] thatifi; = NV there exists an exact
BPS solutions corresponding/ monopoles with unit topological charges. A similar re-
sult was obtained by Manton for two 't Hooft-Polyakov montgs)(53]. The positions of
the individual monopoles can be chosen arbitrarily as I@tpa monopoles are well sep-
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arated. This immediately confirms the given interpretatibthe 3N parameters. Further
evidence for this interpretation of the moduli space patansecan be found by study-
ing the geodesic motion on the moduli space. Fowidely separated monopoles the
geodesic motion on the asymptotic moduli space correspiontie motion of NV dyons,
considered as point-particlesR?, interacting via Coulomb-like forces. The conserved
electricU(1) charges appear in the geodesic approximation on the astimptoduli
space because the metric Ha6l) symmetries. The correspondence between the clas-
sical theory on the asymptotic moduli space and the effedtieory of classical dyons
in space has up till now only been demonstrated for an arpitopological charge in a
SU(n) theory broken tdJ(1)™ [54, 55, 56, 57, 58] and for topological charge 2 in an
arbitrary theory with maximal symmetry breaking [59].

3.2.3 PARAMETER COUNTING FOR NON-ABELIAN MONOPOLES

Just as in the abelian case the dimensions of the framed mehdes for non-abelian
monopoles are proportional to the topological charges celéme dimensions of the mod-
uli spaces respect the addition of charges in the Murray.dortbat sense one could once
more interpret monopoles with higher topological chargesalti-monopole solutions
built out of monopoles with unit topological charges. Thigbysis would however ig-
nore the fact that both the framed moduli space and the Mewag have extra structure.
The framed moduli space has a stratification while the magokarges have topological
and holomorphic components. The holomorphic charges adlly the strata are physi-
cally very important because they are directly related éoetlectric symmetry that can be
realized in the monopole background as we shall discussitatbe section. Therefore
one should wonder if these structures are compatible arallifosv they will affect the
multi-monopole interpretation.

The dimensions for the framed moduli spaces of monopolesibeegn computed by Mur-
ray and Singer for any possible residual gauge symmetthereébelian or non-abelian
[44]. Their computation does not rely on index methods baetdad it is based on the
fact that framed moduli spaces can be identified with cegats of rational maps. Such
a bijection was first proved by Donaldson f6r = SU(2) [60] and later generalized
by Hurtubise and Murray for maximal symmetry breaking [62, 63]. Finally the cor-
respondence between framed moduli spaces and rational wepproved for general
gauge groups and general symmetry breaking by Jarvis [43Mig#ray and Singer have
computed the dimensions of these spaces of rational mapfurfieer details we refer to
the original paper. Th6U (n) case can also be found in [46].

One of the results of the calculations in [44] is that the disien of the framed mod-
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uli spaceM (7y, ®g, m;) is given by:

dim M (7o, @o,m;) =4> (1= 2p- ) ms, (3.33)

i=1

wherep is the Weyl vector of the residual group and thus equals Ihafsum of the
unbroken roots:

1 T
P=3 Z . (3.34)
Jj=s+1
In equation (3.33) one sums over the broken roots and thasoadsr the topological
charges.The dimensions of the framed moduli spaces havietpartant properties. First
for g = ¢’ + ¢ with topological charges:; = m/ + m we have

dim M(’f‘o, Py, mi) =dim M(fo, <I>0,m/i) +dim M(fo, (I)(),m/il). (335)

Second if the residual gauge group equals the maximal (U in G so that there are
no holomorphic charges the dimension formula above redioc@&inberg’s formula

dim M (fo, ®o,m;) =43 m. (3.36)

i=1

We thus see that equation (3.33) for the dimension of thedthmoduli space is a gen-
eralization of Weinberg’s result. More importantly we firight dimensions of the framed
moduli spaces respect the addition of charges in the Muiwag.c

The dimensions of the framed moduli spaces are compatilbhetine addition of charges
in the Murray cone. These dimensions do not depend on thertwsfthic components.
Naively it thus seems we can safely ignore these comporndatertheless, from a phys-
ical perspective one is forced to take the holomorphic ahamgp account because it
determines the allowed electric charge of a monopole as aledibcuss in a moment. It
is thus very interesting to know how the holomorphic chaféscts the fusion of single
monopoles into multi-monopole configurations.

If we want to take the holomorphic charges into account weukhoonsider the strata
within the framed moduli spaces. These strata were intrediirc section 3.2.1. For a
given stratunty, is fixed up to the action of the residual gauge group and hérechdlo-
morphic components aof are given up to Weyl transformations. The dimensionality of
the stratum corresponding gocan be expressed in terms of the reduced magnetic charge
as was shown by Murray and Singer [44].

Let g be any charge in the Murray cone afidts reduced magnetic charge. Remember
thatg is simply the lowest charge in the orbit gfunder the action of the residual Weyl
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group. The reduced magnetic charge can thus be expressed as:

g=> miol+ Y hjal. (3.37)
i=1 j=s+1

The dimensionality of the corresponding stratut), in the framed moduli spack1(7, ®¢, m;)
is given by:

dim Mg => 4m;+ > 4h;+dim C(®o) — dim C(29) N C(Go).  (3.38)
i=1 j=s+1

C(®g) € G is the centralizer subgroup of the Higgs VEV, i.e. it is signfiie residual
gauge groud. Similarly, C(Gy) € G is the centralizer of the magnetic charge. Hence
the fourth term in the equation above equals the dimenstgrdithe subgroup i that
leaves, invariant. So the last two terms in equation (3.38) expriessitmension of the
orbit of the magnetic charg@, under the action of the residual gauge group.
In figure 3.3 we have worked out formula (3.38) 8t/ (3) — U(2) for each charge in
the Murray cone. In this particular case tHeorbits of the magnetic charges are either
2-spheres or they are trivial.

14 18 18 14

10 12 10

\VAVAVAV.

Figure 3.3: Dimensions for the strata of the framed moduli spacesSfdK3) broken toU (2).

The next goal is to relate the dimensions of the strata to¢negtors of the Murray cone
found in section 3.1.1, the monopoles with unit topologid@rges. In the abelian case
discussed previously such a relation is obvious. Sincethier no stratifications the mod-
uli space dimensions are proportional to the topologicalgés. In the true non-abelian
case such a simple relation is distorted by the centralerend in formula (3.38). This is
easy to see in th€U (3) example in figure 3.3. Therefore we shall have to leave these
centralizer terms out in our analysis. Since the centralerens correspond to the orbit of
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3.2. Moduli spaces for smooth BPS monopoles

the magnetic charges under the action of residual gaugegdiscarding the centralizer
terms amounts to restricting to the fully framed moduli gsiatroduced in section 3.2.1.

There are good arguments to discard the centralizer terrtiteeipresent discussion or
at least to treat them on a different footing than the remginérms in (3.38). The cen-
tralizer terms count the dimensions of the orbit of the méigrobarge under the action of
the electric group. Naively one would thus expect that thistds related to the electrical
properties of the monopoles. Such a picture is flawed be@dresmly at the classical level
there is a topological obstruction for implementing thé fesidual electric group/ C G
globally as has been proven by various authors [24, 26, 25287 This obstruction is
directly related to the fact that a magnetic monopole definesn-trivial H bundle on a
sphere at infinity. A subgrouff’ ¢ H C G is implementable as a global symmetry in
the background of a monopole if the transition function 2.5

e
G(p) = exp (2—Gos0) (3.39)
7T
is homotopic to a loop in
Zy(H'Y={h € H:hh' =h'h VW' € H} (3.40)

the centralizer o’ C H. Note that the maximal toru§ (1) C H is always imple-
mentable. As as rule of thumb one finds ti#&t can be non-abelian if up to unbroken
coroots the magnetic charge has one or more vanishing veeigtit respect to the non-
abelian component dff. This follows from the fact that the holomorphic componeafts
the magnetic charge are not conserved under smooth defonsat

There is an even stronger condition on the electric symnthai/can be realized in the
monopole background. One can show [26] that the action ofdhiglual electric group
maps finite energy configurations to monopole configuratwitis infinite energy if the
magnetic charge is not invariant. The interpretation i¢ &ilaBPS configurations with
finite energy whose magnetic charges lie on the same elechitare separated by an
infinite energy barrier.

Classically one thus finds that only if the generators of #edual gauge group H com-
mute with the magnetic charge one can define a global rigidraof H. In other words
the monopole effectively breaks the symmetry further dowthst only the centralizer
group can be realized as a symmetry group. For example irageethatsU (3) is broken

to U(2) monopoles with magnetic charge= 2«2 can only carry electric charges under
U(1)2, while monopoles in the same framed moduli space wite 2a2 + a; might
carry charges under the full residUa(2) group. These obstructions persist at the semi-
classical level [23, 24, 65].

The dimensions of the fully framed moduli spaces have a sinegpression in terms
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of the topological and holomorphic components of the reduneagnetic chargg [44]:

dim M(p, ®9, Go) = Z4mz+ Z 4h;. (3.41)
j=s+1
12 16 16 12
8 12 8
4 4

Figure 3.4: Dimensions for the fully framed moduli spaces & (3) broken toU(2), and the
generators of the Murray cone. The dimensions are only addif one moves along the central
axis of the cone or away from it.

Figure3.5: The fundamental Murray cone f6fU/ (3) broken toU (2). In this example the magnetic
charge lattice is interpreted as the weight latticeld{2). The fundamental Murray cone is the
intersection of the full cone with the fundamental Weyl dbanof theU (2) weight lattice. The
dimensions of the fully framed moduli spaces are additideuthe composition of the generators
depicted by the arrows.

Previously we have found that the Murray cone is spanneddynidignetic charges with
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3.2. Moduli spaces for smooth BPS monopoles

unit topological charges. We might hope that the dimensidrike fully framed moduli
spaces behave additively with respect to the expansionhiese indecomposable charges
as was the case for the framed moduli space. Such additiavimeln does indeed occur,
but only partially. For instance the case$¥ (3) — U(2) is worked out in figure 3.4.
The additivity of the moduli space dimensions still hold$aamy as we stick to one of the
Weyl chambers of the cone, defined with respect to the relsitlegl action.

Apparently the dimensions of the fully framed moduli spaaesnot compatible with the
Murray cone in general. However, as we will prove below thdisgensions are compati-
ble with the fundamental Murray cone.

In the abelian case this is obviously true. The Weyl grouphefresidual group is now
trivial and there is no additional identification within tikene. Therefore we can refer
back to the previous sections where we found that the gengretarges have unit topo-
logical charge and that the dimensionality of the modulcgpia proportional to the total
topological charge. Our favourite example in the truly radrelian cas&U(3) — U(2)

is worked out in figure 3.5. The generators of the fundamevitaray cone are easily
recognized and the additivity of dimensions is easily comdid.

We claim that the additivity of the moduli space dimensioithwespect to a decomposi-
tion in generating charges of the fundamental Murray cordshio general. Without an
explicit set of generators it seems we cannot prove thictjteHowever, it suffices to
check the additivity for every pair of charges in the fundatakcone.

Proposition 3.4 For any pair of magnetic chargegand ¢’ in the fundamental Murray
cone we have for the fully framed moduli spagea M, + dim My = dim Mg,y .

Proof. Recall from equation (3.41) that the dimensions of the firyned moduli space
are proportional to the topological and holomorphic chargéthe reduced magnetic
charge. We thus have to show that the topological and holphiocharges add. These
charges are given by the inner product of the reduced magok&rge with respec-
tively the broken and unbroken fundamental weights as @xgxdhin section 2.3.3 and
2.3.4. For examplen; = ); - g. Next we note that there exists a Weyl transformation
w € W(H) c W(G) that maps the fundamental Weyl chamber to the anti-fundéahen
Weyl chamber. Thus ifj, ¢’, ¢’ lie in the fundamental Murray cone amd = g + ¢’
the reduced magnetic charges sat&fy= w(g”) = w(g) + w(¢’) = g+ §’. As a last
step we find thatn] = A, - §” = A - (§ + §') = m; + m}. Similar results hold for the
holomorphic charges. O

The dimensions of the fully framed moduli spaces only respiez addition of charges
in the Murray cone if the charges are restricted to one Weghdber, for example the
fundamental Weyl chamber. This is consistent with our casioh at the end of section
2.3.4 that the magnetic charge sectors are labelled by weeigithe fundamental Weyl
chamber of the residual dual group.
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In this section we have established a non-abelian genatializof Weinberg's analysis
for abelian monopoles: we have shown that the dimensioniseofully framed moduli
spaces respect the addition of magnetic charges withinuhdaimental Murray cone.
Just as Weinberg we are now led to the conclusion that therdiginguished set of basic
monopoles. The charges of these basic monopoles correspdhd generators of the
fundamental Murray cone. The remaining charges in the fomesdial Murray cone are
then associated with multi-monopole solutions.

For maximal symmetry breaking the set of basic monopolesités with the monopoles
with unit topological charge. In our proposal this is nottin the general case. There can
be basic monopoles with non-minimal topological chargesthe next section we shall
discuss additional evidence to support our conclusiontiaaic monopoles are always
indecomposable, even if they have non-minimal topologibarges.
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3.3 FUSION PROPERTIESOF NON-ABELIAN MONOPOLES

In the previous sections we argued that smooth BPS monoptiesion-trivial charges
can consistently be viewed as multi-monopole solution# bui of BPS configurations
with minimal charges. These classical fusion rules canhays be verified directly be-
cause of the complexity of the BPS equations. In this chapéenave therefore gathered
all available circumstantial evidence. These consistehegks can be organized into four
different themes: the existence of generating chargesrencdonsistent counting of mod-
uli space parameters have been discussed in the previdimse®elow in section 3.3.1
and 3.3.2 we shall study some examples where one can veeifgldissical fusion rules
directly. For singular BPS monopoles there is a similar $gemerating charges, a con-
sistent counting of parameters and a consistent way to p#dshical solutions together
as we discuss in section 3.3.3. These analogies form a reflarkint suggesting that
the classical fusion rules we have found for smooth BPS molespare indeed correct.
Finally in section 3.3.4 we look ahead and discuss how thidogy between singular
and smooth BPS monopoles might help us to derive the semssickl fusion rules of
smooth BPS monopoles and conversely how to get a better stadding of the general-
ized electric-magnetic fusion rules in the singular case.

3.3.1 PATCHING SMOOTH BPS SOLUTIONS

The first hint revealing the existence of multi-monopoleitiohs built out of certain min-
imal monopoles comes from the fact that there is a small sietdefcomposable charges
generating the full set of magnetic charges. In this seatieruse results of Taubes ob-
tained in [52] to show that certain monopoles with non-&ivdharges are indeed multi-
monopole solutions respecting the decomposition of theragcharge into generating
charges. We shall first discuss maximal symmetry breakinghit case all monopoles
with higher topological charges are manifestly seen to béifmonopoles. Second we
shall deal with non-abelian residual gauge groups. In e daubes’ result gives a con-
sistency check for the classical fusion rules.

For maximal symmetry breaking the set of magnetic charge®sponds to the Mur-

ray cone and is generated by the broken simple coroots. br &athese coroots an
exact solution is known. These are spherically symméiti¢2) monopoles [40, 22, 65].

For G equal toSU(2) one has the usual 't Hooft-Polyakov monopole [6, 7], while fo
higher rank gauge groups one can embed 't Hooft-Polyakovopoles via the broken

simple roots. Since these monopoles have unit topologltalges they are manifestly
indecomposable.

Exact solutions are also known in other cases. It was showrahpes [52] that there

are solutions to the BPS equation for any chayge m;a; with m; > 0. Hence for all
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charges in the Murray cone solutions exist. These solu@wasconstructed out of su-
perpositions of embedde$i/ (2) monopoles. The constituents are chosen such that the
sum of the individual charges matches the total charge. &selsitions become smooth
solutions of the BPS equations if the constituents are sefffily separated. This proves
that for all magnetic charges with higher topological clegrghulti-monopole solutions
exist.

One might wonder if all solutions with higher topologicalacthes are indeed multi-
monopole solutions. For any given topological charge thenfd moduli space is con-
nected. Thus any point in this moduli space is connecteddthan point corresponding
to a widely separated superposition as described by Tadingsnonopole configuration
can thus be smoothly deformed so that the individual compisreee manifest. This does
indeed show that any smooth abelian BPS monopole can cemntydbe viewed as multi-
monopole configuration built out of indecomposable monegol

The multi-monopole picture above for maximal symmetry kie@ can be generalized
to arbitrary symmetry breaking. For any given topologidaige there exist smooth so-
lutions of widely separated monopoles. According to Taubesuilding blocks of these
smooth solutions correspond to t§&(2) monopoles embedded via the broken simple
roots. The framed moduli space does not depend on the fulhetagcharge, but only
on the topological components. Moreover the framed moghalcs is always connected.
We now find that any solution of the BPS equation with highg@otogical charges can
be deformed to a configuration which is manifestly a multinopole solution.

However, this decomposition via widely separated multinopole solutions does not
respect the additive structure of the Murray cone unlessameptetely ignore the holo-
morphic charges. In the previous section we argued thatités not make sense from a
physical perspective because the allowed electric eimimtepend on the holomorphic
charges. Moreover we have found that if we take these holphiocharges into account
we should restrict the magnetic charges to lie in the fundaatélurray cone. The ap-
propriate moduli spaces to consider in this situation aeeftily framed moduli spaces.
The question now is if these fully framed moduli spaces dartanfigurations which can
be interpreted as widely separated monopoles.

With the results of Taubes we can answer this question urgarobsly for one of the fully
framed moduli spaces in the set of spaces defined by the @ipalecharge. We start out
with a magnetic charge that is equal to a sum of unbroken simqoots. Such a charge
does not lie in the fundamental Murray cone, but instead énathti-fundamental Weyl
chamber of the Murray cone. This implies that there is a Weyldformation that maps
such a magnetic charge to the fundamental Murray cone. &imithere is a related large
gauge transformation that maps Taubes’ multi-monopolégoarations to new solutions
of the BPS equation. These transformed configurations aie agdely separated super-
positions, but now the buildings blocks correspondtd(2) monopoles embedded via
the Weyl transformed broken roots. Note that magnetic @wsod these constituents are
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precisely the generators of the fundamental Murray conle wiit topological charges.

We thus obtain the following result: lgtequal a sum of generators of the fundamental
Murray cone with unit topological charges. The fully franradduli space corresponding
to g has a subset of configurations that are manifestly multi-opote solutions. Since the
fully framed moduli space is connected any monopole withrghacan be interpreted as
a multi-monopole solution.

The considerations above only involved indecomposablesacorresponding to simple
coroots. For a maximally broken gauge group this is suffidieprovide convincing evi-
dence for the multi-monopole picture. In the non-abeliaseaane should also take other
generators into account. We will come back to this in the sextion.

3.3.2 MURRAY CONE VS FUNDAMENTAL MURRAY CONE

One problem we encounter in this thesis is that it is not cetepy} clear what the full set
of magnetic charges is supposed to be, either the Murray@othe fundamental Murray
cone. By the same token it is a priori not clear what the trafleicomposable monopoles
are, the fundamental monopoles or the basic monopoles. ufftafmental Murray cone
is slightly favoured because the large gauge transformatiave been modded out. On
the other hand not all generating charges of the fundamihtaby cone have unit topo-
logical charges, while the fundamental monopoles gemaydltie Murray cone do. This
suggest that the monopoles corresponding to the genegdttre fundamental Murray
cone, the basic monopoles might be decomposable into fuedkairmonopoles related
to the generators of the Murray cone. What seems to setteigbile though is that
there is only a consistent counting of moduli space parammédteve restrict to the funda-
mental Murray cone. The indecomposability for the basic apmes with non-minimal
topological charges can be understood from the existense-otlled cloud parameters.
These clouds emerge as soon as one attempts to split a basipate into fundamental
monopoles. Below we explain this for the case tiat SU (3) is broken toU (2).

The caseSU(3) — U(2) is an interesting example to discuss issues regarding com-
position and decomposition because some of the correspgndn-trivial moduli spaces
have been thoroughly investigated. Specificallyfee 2a5 + a1, one of the generators

of the fundamental Murray cone, the 12 dimensional fullyxfeal moduli space and its
metric have been found Dancer [66]. Determining the isoieetf the metric reveals the
nature of almost all of the 12 parameters. Three parametenrekated tdR?, the center

of mass position in space. The action6f2) x SO(3) shows the presence of three rota-
tional degrees of freedom and four large gauge modes. Afeeramoval of translations,
gauge freedom and rotations one is left with a two-dimeradiepace. This space turns
out to be parameterized byand D with 0 < k¥ < 1 and0 < D < 2K(k), where
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K (k) denotes the first complete elliptic integigl k) = fo% (1 — k2sin?(0))~'/2d6 [66].
The interpretation of these two parameters seems somewfsi¢nous. To understand
their significance, the behaviour of the BPS solutions haentstudied numerically for
various values of these parameters [67, 68, 69]. See s&bfi70] and section III.B of
[71] for a review.

There is a subset of solutions where the energy density ltasibima symmetrically po-
sitioned about the center of mass. If the paramBtés increased the peaks of the energy
density becomes more pronounced and move further from titercef mass. This seems
to indicate that certain solutions can be viewed as a pairidély separated particles.
The question that comes to mind now is the following: do theiskely spaced lumps cor-
respond to a pair of monopoles with unit topological chargethis particular case there
is only one broken simple root, and hence there is only oresaé embeddedU (2)
monopoles with unit topological charge giving rise to a 4 @irsional fully framed mod-
uli space. Taubes has shown that such solutions can be datapether yielding widely
separated solutions with higher topological charges [32pair of these patched solu-
tions with magnetic chargg = a2 + «; would give a configuration with total charge
2ai5 + 2a1. We thus see that these solutions do not lie in the 12 dimeakidancer
moduli space but in the neighbouring 8 dimensional fullyrferl moduli space. Before
drawing any conclusions we recall one subtle point. All nooles of equal topological
charge lie in one connected moduli space, which is dividethtgpstrata. By dividing
out large gauge transformations these strata reduce tolfliidrimed moduli spaces we
discussed here. To be more precise the 8 dimensional fallgdd moduli space related
to g = 2as + 2a4 lies in a 10 dimensional stratum which is the boundary of taadzr
moduli space. A measure for the distance to the boundaryeob#mcer moduli space
is given byl/a wherea = D/(K (k) — 3D). The widely separated monopoles in the
Dancer moduli space, and as a matter of fact any configuriatibie Dancer moduli space
can be deformed into widely separated monopoles discusséallbes. As we explained
in section 3.3.1 this decomposition does not respect thigiaeldtructure of the Murray
cone nor the addition of charges in the fundamental MurrayecdVhat is even more
striking is that this deformation will give rise to highly ndocalized degrees of freedom
in the form of a non-abelian cloud.

A rather insightful computation to illustrate the appeaanf the non-abelian cloud as
one moves to the boundary of the Dancer moduli space is disdusy Irwin [69]. In his
paper Irwin computes the asymptotic behaviour for the magfield of axially symmet-
ric trigonometric monopoleg:(= 0) in the Dancer moduli space as— oco. In the string
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3.3. Fusion properties of non-abelian monopoles

gauge the asymptotic fields in this limit are given by:

1 1
=0y — —tg— ————t
0" e er(1+r/a) 3
1 1+2r/a 1 .
F=—tydr+ ————F5t3dr+ ——+————5 (t1df — sinOtad 3.42
i o2 09T ¥ er?(1+r/a)? i ear?(1+r/a)? (t sinftzdp) - (3.42)

1 1
A=— gcosﬁ(to—i-tg)dgo— A ta/m
The expectation valu@, is proportional tot,. The matriceg; are the generators of
the residual gauge groug(2) c SU(3): tog = (a1 + 2a3) - H = /3Hy, t; =
2 (Fay + E—a,) to = =1 (Ea, — E_q,) andts = a1 - H = Hy. With these conven-
tions the commutation relations for ti$8/(2) generators are given l¥;, ¢,;] = ie; rts.
Obviously we also havi, t;] = 0. As a side remark we note that (3.42) gives an exact
solution of the BPS equations fof(2) which is singular at r=0.
The behaviour of the solution above shows that the non-ab&élds penetrate outside the
core of the monopoles up to some finite distance determingdeparametes. Beyond
this distance the magnetic field becomes abelian, whichagieement with the bound-
ary condition at infinity. The interpretation of this obsation is that the monopoles are
surrounded by a non-abelian cloud screening the non-abetiarge. As one moves all
the way to the boundary of the Dancer moduli spaceaibecomes infinite the cloud gets
diluted so that the non-abelian field yields to infinity resg in non-vanishing holomor-
phic charges.

(t2d9 + sin 9t1 ng) .

This whole exposition does lead us to an important conchustbe behaviour of the
Dancer monopoles shows us that these configurations caadruke split up into sepa-
rate lumps. At the same time this separation yields a noalilced degree of freedom.
Since this cloud parameter does not correspond to one m@opthe other, the two

widely spaced lumps are not the same as they would be on tiweir @herefore the

Dancer monopoles cannot be decomposed. In this partickéangle we thus see that
basic monopoles are indeed indecomposable. We expectithitdrsarguments should
hold in general.

3.3.3 PATCHING SINGULAR BPS SOLUTIONS

There are striking similarities between the results olat@iim this thesis for smooth BPS
monopoles and results obtained by Kapustin and Witten daggsingular BPS monopoles
[18]. In the context of singular monopoles we shall dischgsexistence of fundamental
and basic monopoles, consistent counting of moduli spa@eeters, patching of classi-
cal solutions and the indecomposability of basic monopwaiéis non-trivial topological
charges.
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Chapter 3. Fusion rules for smooth BPS monopoles

The magnetic charge lattice for singular monopoles in a gdhgory with gauge group
H is determined by the Dirac quantization condition. As wedeeed in section 2.3.1
this lattice can be identified with the weight lattiéé 7 *) of the GNO or Langlands dual
group. The magnetic weight lattice contains an importabssy the set of magnetic
charge sectors, which is obtained by modding out the Weylgod H*. This subset can
thus be identified with the fundamental Weyl chambeA & *). Modding out the Weyl
group of H* is natural because a magnetic chakge A(H*) is only defined up to Weyl
transformations. Note that these Weyl transformatiorsagtarge gauge transformations
on the BPS solutions.

The existence of generating charges within the weighthatti( 7*) of the dual gauge
group and within its fundamental Weyl chamber has been d&gmiiin sections 3.1.2 and
3.1.3. These generating charges correspond to what we dsfiegpectively fundamental
monopoles and basic monopoles. The basic monopoles, niatrtdemental monopoles,
form the building blocks of singular multi-monopole soris of the BPS equations just
as we concluded for smooth BPS solutions. This is seen icttiirey analyzing the mod-
uli space parameters.

The moduli spaces for singular BPS monopoles introduced dgyuistin and Witten are
spaces of so-called Hecke modifications and correspondttsan the affine Grassman-
nian. For further details we refer to [18] and referencesdime It is important that these
moduli spaces are labelled by a dominant integral weightiénaeight lattice of the dual
gauge groupH*. We also note that these moduli spaces are closed underdargge
transformations, hence magnetic charges on one Weyl abitgpond to the same mod-
uli space. For completeness we mention that the compadiifitseof these moduli spaces
are singular. The singular subspacesif), correspond to the moduli spacés,. where
N <A

The dimensionality of an orbiM in the affine Grassmannian labelled by a dominant
integral weight\ € A(H*) is given by [72]:

dim My = 2X - p, (3.43)

wherep is the Weyl vector off and thus equals half the sum of the simple root& pkee
e.g. [73] for a brief summary. We now immediately find for arpzfidominant integral
weights\ and\':

dim My +dim My =dim M ;. (3.44)

Here we use the fact that sum of two dominant integral weigtagain a dominant inte-
gral weight. We thus see that the moduli space dimensiopscethe addition of charges
in the fundamental Weyl chamber &f*. It is not difficult to see that these dimensions are
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3.3. Fusion properties of non-abelian monopoles

not consistent with the addition of charges in the completgytt lattice of H*. Similar
results where obtained in section 3.2.3 for the Murray carethe fundamental Murray
cone.

The formalism in which Kapustin and Witten work is so powéthat one can quite ex-
plicitly see that all singular monopoles with non-basicrgjes are indeed multi-monopole
solutions. This is related to the fact that the singulasititthe compactified moduli spaces
can be blown-up in a very specific way. We briefly sketch how #rks. Singular BPS
monopoles correspond to 't Hooft operators which creatdltheof a Dirac monopole
with a singularity at a poinp € R3. These 't Hooft operators can in turn be identified
with Hecke operators. The Hecke operators act on vectorlesmderC in this case in
such a way that the trivialization outside a preferred pomC is respected. To achieve
this relationR? is identified withC x R. For a non-zero magnetic charge the Hecke
operator maps a trivial bundle to a non-trivial bundle. g0 bundles ovet are iden-
tified with pullback bundles of the non-trivial bundle ow&t \ {p} corresponding to the
singular BPS configuration. The two embedding€ofre chosen at opposite sides of
p € C x R. Note that the isomorphism class of the resulting modifieddbedoes not
only depend on the magnetic charge but also in a certain walgeotrivialization of the
trivial bundle one started out with. This why one Hecke opmrgives rise to a space of
Hecke modifications.

A relevant but actually not very deep observation is thaHaitke operators can be de-
composed as a sequence of basic Hecke operators and thuld@dift operators can be
decomposed as sequence of basic 't Hooft operators. Thege dyerators create the
flux of a Dirac monopole associated to a basic charge in thegfiorental Weyl chamber
of H*. An important as well as deep consequence of the identticati 't Hooft oper-
ators and Hecke operators is that the resulting sequencasaf th Hooft operators can
be separated in space. Each basic 't Hooft operator is posili between two copies of
C c R3 and the associated Hecke operators map one bundleCoteethe other bundle
at the reverse side of the singularity. The resulting bundierC can be considered as
a series of pullback bundles in a bundle oR&rcorresponding to a series of smoothly
patched BPS solutions.

Singular BPS solutions corresponding to basic monopoles lma&e non-trivial topo-
logical charges just as we have seen for smooth BPS soluti@ms might again wonder
if such basic monopoles can be split up into fundamental mpoles which do have unit
topological charges. Intuitively this does not seem diffic@ne would expect that there
exists an exact multi-monopole solution of widely sepatdtendamental monopoles in
the same topological sector. Because all spaces of Heckdicatidns in one topological
sector are connected one can now deform the original moedptd a manifest multi-
monopole solution. Just as for smooth monopoles this defttom does not respect the
holomorphic charges. There is also a more subtle way to lodkis holomorphic ob-
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Chapter 3. Fusion rules for smooth BPS monopoles

struction.

As an example we considéf* = U(2). This case has been worked out in quite some
detail by Kapustin and Witten. The basic monopole with uafidlogical charge cor-
responds to the highest weightof the fundamental representation@{2). The basic
monopole with topological charge equal to 2 has a magneticgehgiven by2)\ — «,
where« is the simple root ofSU(2). The compactification of\5, is given by the
singular spac8VCP,(1,1,2). The singularity corresponds to tliedimensional space
Max_q. The singularity of WCPy(1, 1, 2) can be blown-up to obtaiP; x CP;. Since
CP; = M the blow-up obviously gives the moduli space of two sepadréaadamen-
tal monopoles. On thus sees that the a basic monopole withamipal charge 2 can
be deformed into two separate monopoles only if one ateeixtra degrees of free-
dom by embedding the moduli space as a singularity in a lagace and only if these
degrees of freedom are changed in a non-trivial way by blgwip the singularity. It fol-
lows for U(2) that classically basic monopoles are not truly separalitefimdamental
monopoles. For general monopoles similar arguments shmiét

Note that for smooth monopoles we used the emergence ofauatided degrees of free-
dom to show that the basic¢(2)-monopoles are indeed indecomposable. Though the
motivation via clouds is quite different from the argumesed right above in the singular
case the result is the same: the charges of the indecompasablopoles in the smooth
theory are subset of the indecomposable charges for singolaopoles. In that sense the
classical fusion rules for smooth BPS monopoles are camistith those for singular
BPS monopoles.

3.3.4 TOWARDS SEMI-CLASSICAL FUSION RULES

In the literature it has often been assumed that the BPS@adutorresponding to weights
of the fundamental representation 8f give rise to a singlé?*-multiplet [40, 74, 75,
76, 77, 70, 78] as would be favourable to the conjecture tietd monopoles can be re-
garded as massive gauge particles of the dual theory. Thopal runs into trouble in
particularly for non-simply laced gauge groups becauseltngric action on the classical
solutions does clearly not commute with the magnetic aaifahe residual dual group on
the magnetic charges. From the classical fusion rules weliidsmooth BPS solutions,
and actually also singular BPS solutions, are labelled byidant integral weights in the
weight lattice of the residual dual group*. This suggest that each electric orbit in the
magnetic charge lattice df * thus gives rise to a uniqué*-multiplet. This form of the
GNO duality conjecture has been proven by Kapustin and Wittehe case of singular
BPS monopoles [18]. They show that the semi-classical fusites for singular BPS
monopoles are indeed the fusion rulestof. Since the classical fusion rules for singu-
lar and smooth BPS monopoles are completely analogous aadigethe semi-classical
fusion rules must also agree one can expect that a similaoapip can be used to derive
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3.3. Fusion properties of non-abelian monopoles

the semi-classical fusion rules in the smooth case. It ismotediately clear though how
such a program can be realized and some major hurdles haeedeebcome. We shall
discuss this shortly.

In the Kapustin-Witten approach the semi-classical fusides are found from the quan-
tum mechanics on the moduli spaces. A similar strategy hilit aviess ambitious goal in
mind was adopted in the case of smooth monopoles by Doreyiet[@l7]. These authors
tried to give a consistent counting of states, an attemptdinaed out not to be completely
successful. In hindsight we can understand that the probiesrcaused by the fact Dorey
et al. did not use the same moduli spaces as Kapustin anchwWittee moduli spaces used
by Kapustin and Witten can be identified with orbits in theraffGrassmannian labelled
by the magnetic charges in the weight lattice/tf. These orbits do contain the orbits of
the magnetic charge if, the Lie algebra of{, under the action of the gauge groip
as used in [77]. Only if the magnetic charge labels a so-@¢alieuscule representation
the orbit in the affine Grassmannian is isomorphic to thetanbihe Lie algebra ofd.

In these cases the number of ground states of the quantunmameston the orbit in the
Lie algebra agrees with the dimension of the irreducibleasgntation labelled by the
magnetic charge. In other cases the orblj is a hon-trivial subspace within the orbit in
the affine Grassmannian. The degeneracy of the ground d$tdte quantum mechanics
on the orbit inh under-estimates the dimension of the magnetic represamat

If one wants to retrieve a counting of states consistent withirreducible representa-
tions of H* as well as the fusion rules df* one is forced to consider the orbits in the
affine Grassmannian. The problem is that it is only partialgar how these magnetic
moduli spaces are to appear within the full moduli spacesradath BPS monopoles.
What is consistent though is that the orbits of the magnéticges under the electric ac-
tion, which are part of the related orbits in the affine Gramsnian, have to be treated on
a different footing within the framed moduli spaces as weuised in section 3.2.3.
Another hint that shows the relevance of the affine Grassraariar smooth monopoles
comes from considering non-abelian vortex solutions. Inigaar the moduli space of
axially symmetric vortices with winding number 2 in a cent&i(2) gauge theory equals
WCPy(1,1,2) [79]. These vortex solutions can be identified with a co-ae@mposite
of two fundamental vortices and the moduli space reducéstox CP; in the widely
separated situation. Each of the@B, -factors corresponds to the moduli space of a fun-
damental vortex. As the vortex and monopole moduli areedlay a homotopy matching
argument [80] it seems natural to assume that¥d&P, (1, 1, 2) is the appropriate moduli
space for smooth monopoles with topological charge 2 in aryhewhere the gauge group
SU(3) is broken down td/(2).

One of the drawbacks of the approach used by Kapustin anémigtthat it is not clear
how to deal with electric excitations of magnetic monopaesn though one can in-
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Chapter 3. Fusion rules for smooth BPS monopoles

troduce general Wilson-'t Hooft operators in for exampleaie A/ = 2 gauge theories
[81]. If one manages for smooth monopoles to introduce tipeagriate magnetic moduli
spaces in combination with the fully framed moduli spacemntbne obtains an interest-
ing model to study electric-magnetic symmetry. This wowddalp important achievement
because it is not known what this unified electric-magngtieraetry is. Itis clear though
that this symmetry is not the grouf x H* as originally proposed in [2] because the
magnetic charge effectively breaks the electric group adis@issed in section 3.2.3. In
[78] a unified electric-magnetic group was introducedfbe= U (n) which does respect
this interaction between electric representations anchetagcharges. We will eleborate
on this in chapter 4.

66



CHAPTER 4

FUSION RULES FOR DYONS

In this chapter we try to find an answer to the question whatkbetric-magnetic symme-
try in a non-abelian gauge theory amounts to. This questiaylme paraphrased in many
ways, varying in physical content and mathematical sojglaison. Our main goal is to
find a consistent large distance description of the eleatnagnetic and dyonic degrees
of freedom. We would like to uncover the hidden algebraioctire which governs the
labelling and the fusion rules of the charge sectors in gémguge theories.

Even though electric degrees fall into irreducible repnéstions of the grougs and
magnetic sectors correspond to irredicible represemsidd the dual groug-*, dyonic
charge sectors are not labelled byrax G* representation. Since in a give monopole
background the electric symmetry is restricted to the ediser in G of the magnetic
charge as discussed in the previous chapter, dyonic sexiastead characterised (up
to gauge transformations) by a magnetic charge and anieleetitraliser representation.
As we review in section 4.2 there is an equivalent labellihgymnic charge sectors by
elements in the sgtA x A*)/WW, whereW is the Weyl group which isomorphic fa¥
andG* andA andA* are the weight lattices of respectivelyandG*.

In section 4.3 we introduce a candidate for a unified elecirdgnetic symmetry group
in Yang-Mills theory, which we call the skeleton group. A stamtial part of this section
is taken up by a detailed exposition of various aspects oSkiedeton group which are
needed in subsequent sections. The first important restiisofhapter is that in section
4.4 we provide evidence for the relevance of the skeletonghy relating the represen-
tation theory of the skeleton group to the labelling anddnsules of charge sectors. In
particular we show that the labels of electric, magnetic@yahic sectors in a non-abelian
Yang-Mills theory can be interpreted in terms of irredueilbépresentations of the skele-
ton group. Decomposing tensor products of irreducibleesgntations of the skeleton
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Chapter 4. Fusion rules for Dyons

group thus gives candidate fusion rules for these chargersedVe demonstrate consis-
tency of these fusion rules with the known fusion rules offibeely electric or magnetic
sectors, and extract new predictions for the fusion rulegdywiic sectors in particular
cases.

One should expect the dyonic sectors and fusion rules totnest@nd in particular in-
dependent on the dynamical details of the particular motieince, in this chapter we
will not focus on special models. Nonetheless our resultstine consistent with what is
known for example about S-duality &f = 4 super Yang-Mills theories. After giving a
brief review of S-duality and its action on dyonic chargetsesin section 4.5 we there-
fore show that the fusion rules obtained from the skeletongicommute with S-duality.
In section 4.6 we come to a final piece of evidence for the egleg of the skeleton group
which goes beyond the consistency checks of the preceduipiss. For this purpose
we introduce the skeleton gauge which is a minimal genatédis of 't Hooft’s abelian
gauge [29]. We argue that the skeleton group plays the roendéffective symmetry
in the skeleton gauge. Moreover we proof that the skeletaggéncorporates intrinsi-
cally non-abelian configurations, so-called Alice fluxebjah are excluded in the abelian
gauge. Hence, compared to the abelian gauge, the skeletge gaparticularly useful
for exploring non-abelian phases of the theory which gdiserdlice electrodynamics
[30, 31, 32] and phases, as listed at the end of the sectianetherge from generalised
Alice phases by condensation or confinement. The skeletogegs thus necessary to
reveil certain phases of the theory which get “out of viewthie abelian gauge. An im-
portant example is a peculiar phase we find where particles hast” their charges.

4.1 LIE ALGEBRA CONVENTIONS

As explained in e.g. chaper 6 of [82], the Lie algebraf the gauge groug: of rankr
can be written as a sum of vector spaces

9= @ga- (4.1)

The Cartan subalgebra (CS#y is r-dimensional and from here on we shall denote it by
t. The remaining one dimensional subspagesre defined by:

[H, X]=a(H)X (4.2)
forall H € tand allX € g,. In the Cartan-Weyl basis gfwe have:

Hi Ea) = 0iEa [Ea E_o) = 22201 4.3)
@)
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where for eaclw the eigenvaluey; := «(H;) is non-vanishing for at least one valueiof
Ther-dimensional vectora = («;);=1....» are nothing but the roots gfand each root
« can thus thus be naturally interpreted as an elemetit in

a:t— C. (4.4)

Intstead of the basi6H;) for t as used in equation (4.3) one can choose a basis for the
CSAvia

Hy =2a* - H (4.5)

wherea* = a/a?. We now find
[Ho, Egl = 2a™ - BEg [Ew, E—o] = Hq. (4.6)

The corootdd,, span the coroot lattick.,. C t and the roots span the root lattide C t*.
The dual lattice of the coroot lattice is the weight lattitg C t* of g generated by the
fundamental weights. The dual lattice of the root latticthis so-called magnetic weight
lattice A,,,,, C t. Note that the weight latticA (G) of G satisfiesA, C A(G) C Ay,
while the dual weight latticd*(G) of G satisfies\A.,, C A*(G) C Ay It turns out [2]
thatA*(G) can be identified with the weight lattice(G*) of GNO dual groupz*. The
roots of G* correspond to the coroot 6f while the fundamental weights 6f* spanA,,,.,.

4.2 CHARGE SECTORSOF THE THEORY

One of the key features of the skeleton group is that it repeed the dyonic charge
sectors of a Yang-Mills theory. To appreciate this one nsedse basic understanding of
the electric and magnetic charge lattices and the set ofidghiarge sectors.

421 ELECTRIC CHARGE LATTICES

To define the electric content of a gauge theory one startshbgsing an appropriate
electric charge lattice. Choosing an electric charge lattice corresponds to chgasi
gauge grou- such that\ equals the weight lattick(G) of G. The electric charge lattice
A can vary from the root lattica,. to the weight lattice\,, of g. This corresponds to the
fact that for a fixed the Lie algebgaone can vary the Lie grou@ from G all the way
to G, whered is the universal covering group 6f andG is the so-called adjoint group,
which is the covering group divided by the cen@(r@). Note that the possible electric
gauge groups are are not related as subgroups but rathedibg tpiotients.
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4.2.2 MAGNETIC CHARGE LATTICES

Once the electric grou@' is chosen one is free to choose the magnetic content as long as
the generalised Dirac quantisation condition [1, 2] is ee$pd. The magnetic content is
defined by fixing a magnetic charge lattit&. Just like on the electric side a choice for
the magnetic charge lattice corresponds to a unique chbaeagnetic groug* whose
weight latticeA(G*) equalsA*. Again G* can vary all the way fronG; ", the universal
cover ofG*, to G* which is the adjoint of7*. This variation amounts to taking the mag-
netic charge lattice from the weight lattidg,,,, to the root latticeA ., of the fixed Lie
algebrag* of G*.

Even thoughz does neither completely fi&* nor vice versa, the generalised quantisa-
tion condition as reviewed in section 2.3.1, does put sommgtcondition on the pair
(G,G™). First of all the Lie algebrg of G uniquely fixes the Lie algebrg of G* and
vice versa. Hence the universal covering gro@panda* are uniquely related. More-
over, oncd? is fixed, the quantisation condition defines a maximal stib&in A,,,,,, the
weight lattice ofG". This special weight lattice equals the dual weight latii¢€G) of

G. TakingA* equal toA*(G) amount to choosing:* to be the GNO dual group aF.

We thus see that oneg is fixed G* can vary between the adjoint gro(irf and the GNO
dual group ofG. Analogously, ifG* is fixed G can vary between the GNO dual 6
and the adjoint groug’ without violating the generalised Dirac quantisation dtiod.

Unless stated otherwise we shall takeandG* to be their respective GNO duals. Note
that if the fields present in the Lagrangian are only adjo&ltfi and one only wants to
consider smooth monopoles it is natural to restda@ndG* to be adjoint groups.

4.2.3 DYONIC CHARGE SECTORS

It was observed in [23, 24, 25, 26, 27, 28] that in a monopobkdeound the global gauge
symmetry is restricted to the centraliggy of the magnetic charge. This implies that
the charges of dyons are given by a p@airR,) whereg is the usual magnetic charge
corresponding to an element in the Lie algebr&adnd R, is an irreducible representa-
tion of C; C G. Itis explained in [48] how these dyonic sectors can be edlad in a
convenient way. We shall give a brief review.

Since the magnetic charge is an element of the Lie algebraameffectively viewC, as
the residual gauge group that arises from adjoint symme&ghking where the Lie alge-
bra valued Higgs VEV is replaced by the magnetic charge. Thealgebra ofy, of C; is
easily determined. One can choose a gauge where the magmnetie lies in the CSA of
G. Note that this not fixy uniquely since the intersection of its gauge orbit and th& CS
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corresponds to a complete Weyl orbit. Now since the genesatg of the CSA commute
one immediately finds that the complete CSATs contained in the Lie algebra 6f,.
The remaining basis elements gf are given byE,, whith o perpendicular tg. This
follows from the fact thaF,,, Hs] = 2(« - 3) /3% E,. We thus see that the weight lattice
of C, is identical to the weight lattice o, whereas the roots @, are a subset of the
roots ofGG. Consequently the Weyl groyy, of Cj is the subgroup in the Wey! groly
of G generated by the reflections in the hyperplanes perperadituthe roots ot’,,.

An irreducible representatioR of Cy is uniquely labelled by a Weyl orbit\] in the
weight lattice ofCy. Hence such a representation is fixed By/g orbit in the weight lat-
tice of G. Now remembey itself is fixed up to Weyl transformations. Sin€g = C,,,(,)
for all w € W we find that(R), g) is uniquely fixed by an equivalence cld3sg| under
the diagonal action ofl/.

The ultimate goal of this paper is to find the fusion rules ofy. We have explained
that dyons are classified by an equivalence class of paig) € A(G) x A(G*) under
the action ofW. By fusion rules we mean a set of rules of the form:

(Rais91) @ (Rag 02) = ED N5, g1 00 (B0 9) (4.7)
R
where the Coeff|C|ent$\7/\ g/\z 1.9, Are positive or vanishing integers. Only for a finite

number of terms these integers do not vanish. One may alsecefpat the product
in equation (4.7) to be commutative and associative. Biralle should expect that the
fusion rules ofG andG* are respected for at least the purely electric and resgdgtive
purely magnetic cases.

4.3 SKELETON GROUP

In an abelian gauge theory with gauge grdiiphe global electric symmetry is not re-
stricted by any monopole background. The electric-magrsstinmetry is in that case
thus described by" x T*. The global electric symmetry that can be realised in any
monopole background is the maximal toffigenerated by the CSA ¢f. The magnetic
charges can be identified with representations of the duas 6*. Hence the electric-
magnetic symmetry governing the gauge theory must cofitairi’*. In the abelian case

T x T* is the complete symmetry group whereas in the non-abelsmtteere must exist
some extension of’ x T* that respects the dyonic charge sectors. The simplest non-
abelian extension df' x T respecting the dyonic charge sectors is the proto skeleton
groupW x (T x T™*). Since the proto skeleton group contains the maximal tofi ahd

G* while its product depends on the Weyl group action on thasgt®irreducible repre-
sentations are labelled by the dyonic charge sectors of ding-¥ills theory with gauge
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groupG, as we shall explain in detail in section 4.4. However, theducible representa-
tions are only fixed once the so-called centraliser changegigen. It might be possible to
assign some physical significance to these centralisegebéfrthe proto skeleton group
is contained in the unified electric-magnetic symmetry &f theory. However, in that
case one should expect that the electric penk T is a subgroup of the electric grop

Weyl group W* =W  ~W*/D* ~ W*/D* ~ W /D"
1 7 1
Lift Weyl group W*cG* — w* C G* — W ca”
Dual torus T =R" /Ay — T =R"/A — T =R"/A,
N N N
Dual group G =G )z* — G* — G
! ) !
Dual weight latt. A = Aer C A* C AN = Acw

1 Magnetic f

| Electric |

—

|

|

|
—

|

|

|
—

Weigt lattice A=Ay D A D A=A,
! ! !
Gauge Group G — G — G = CNT'/Z
U U U
Maximal torus T = R"/Acr — T=R"/A" — T = R"/Amw
Lift Weyl group Wcda — W cCcd — WcaG
! 1 !
Weyl group W =~ W/D ~ W/D ~ W /D
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Usually this does not hold. In fact even the Weyl grotptself is usually not a subgroup
of G. Nonetheless some important features of the proto sketgtmup are shared with
the skeleton group whose electric subgroup does indeedtléwi. We shall thus build
up the construction of the skeleton group from the definitbthe proto skeleton group
and take advantage of the simplicity of the latter to exp&me relevant properties of
the skeleton group throughout the remainder of this paper.

4.3.1 SEMI-DIRECT PRODUCTS

The proto skeleton group and the skeleton group itself ate Asemi-direct product.
Here we shall recapitulate the definition of a semi-direotpict.

One of several equivalent definitions is thatAf is a subgroup ofy and N a normal
subgroup such th&t = NH andH NN = {e} thenG is a semi-direct product @ and
N. Note that in contrast to the case with the direct producgnaislirect product of two
groups is in general not unique;@ andG’ are both semi-direct products & and N
then it does not follow that? andG’ are isomorphic. Howeve€; is fixed up to isomor-
phism by the action off on N. Let us denoté € H : n € N — h>n = hnh~! € N.
Note that sinceV is a normal subgroup aff this action is well defined. Now define
H x N as the group whose elements are given by thd#&set N and whose product is
given by:

(h1,n1)(h2,n2) = (h1h2,n1ha >na). (4.8)

The inverse ofh, n) is given by(h=1, A=t >n=1). H x {ex} is a subgroup isomorphic
to H while {eg} x N is a normal subgroup isomorphic 16 since

(h,en)(em,n)(h,en)™ = (e, h>n). (4.9)
The intersectiod NN equals{(ex, e,,)}. Finally each elemerit:, n) € H x N satisfies
(h,n) = (emr,n)(h,en) € NH. (4.10)

Hence, the full groud? x N is a semi-direct product dff and NV in the sense above.

4.3.2 MAXIMAL TORUSAND ITS DUAL

The relevant normal group in the (proto) skeleton group ésptoduct of the maximal
torus of the gauge group and its dual. We shall describe toesaelow.

Consider a particular gauge groGpand its Cartan subalgehraThe weight lattice\ (G)
of G is defined as follows: first define the lattid€ (G) C t as the kernel of the map

H et exp(2miH) € G. (4.11)
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Chapter 4. Fusion rules for Dyons

The weight latticeA (G) C t* is the dual lattice oA *(G). Also note that
A CAG)C A, C (4.12)

and
Aoy CAY(G) C Ay C t. (4.13)

So far, all vector spaces where considered @uerdowever, by declaring the basig/,, }
of t real and considering its real span we obtain a real vectaredpa Similarly, the real
span of the roots is a real vector space, denoted#jyin the following. We then define
the maximal torus of7 via:

T =tg/(21A*(G)) (4.14)

and the dual torus via
= t3/(27A(G)). (4.15)

A convenient way to represefitis as follows. Let( be the universal cover af. The
dual weight latticeA*(G) for G equals the coroot lattic&., (G). The generators of this
lattice are the coroot#l,,, with o; a simple root. One thus finds tha; is explicitly
parametrised byl = 37/, 0;H,, wherer = rank(g) with 6; € [0, 27). Note that the
image of7 in G defined byH +— exp(2mH) is isomorphic tdlz. The set of irreducible
representaﬂons of the abelian grdljp C Gis given by the We|ght latticd.,, of G.

Let us return ta which is isomorphic ta7/Z, whereZ is the groupA*(G) /A, C Ts.
Similarly T = Tz /Z. The irreducible representations B, are given by those df
which represent trivially. This set of representations correspondatér).

The dual torusl™ is isomorphic to the maximal torus of the GNO dual graslp of
G. The roots ofG* are precisely the coroots® of G and the coroot$/,- of G* corre-
spond to the roota of G. Using analogous arguments we thus find that any eleffient
can be uniquely representedd$ = >"_, 07 H,- up to an elementi* = A(G)/A,.
Note that the irreducible representatlonéwfcorrespond to the sét*(G) = A(G*).

If we take the magnetic grou@™* not equal to the GNO dual @ but instead to some
guotient then we defing™ to be the maximal torus of*. T* is then found from the
maximal torus of the GNO dual group by using the same disgnetep that relate&’*

itself to the GNO dual group af.

4.3.3 WEYL GROUP ACTION

The semi-direct product that plays a role in the definitiothef (proto) skeleton group is
defined with respect to the action of the Weyl group on the makiorus ofG and its
dual torus. We shall briefly discuss this action.
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4.3. Skeleton Group

The Weyl group is a subgroup of the automorphism group of dlo¢ system generated
by the Weyl reflections
Weq - ﬂ — ﬂ - 202ﬂ
«
By linearity the action of the Weyl group can be extended #®wole root lattice, the
weight lattice and*.

a. (4.16)

200\
2

Wo t A= A — a. (4.17)

Note thatw, simply corresponds to the reflection in the hyperplang iarthonormal to
the roota.

Remember that* is the dual space df the CSA ofG. The action ofw € WonH € t
is defined byn(w(H)) = w~!(a)(H). From this relation one finds

_ 2(H,Ha)
In particular one finds
*\ * 2ﬂ* : CY* *
and
w (Hy) =w ' (20" H) = 2w(a*) - H = Hy(q). (4.20)

Remember that the maximal torus Gfis, up to discrete identifications, isomorphic to
U(1)" where eacti/(1) factor is generated by ond,. Consequently there is a natural
action of the Weyl group on the maximal torus given by

weW :exp(i0;H,,) € T — exp (i@in(m)) eT. (4.21)

Analogously one can define the action of the Weyl group on tla @rus

wE W :exp (inHa;) €T* — exp (i@;‘Hm(a:)) eT*. (4.22)

4.3.4 PROTO SKELETON GROUP

The proto skeleton group associatedxds defined as
Wi (T xT"), (4.23)

whereW is the Weyl group ofG. T andT* are the maximal torus off and G* as
discussed in section 4.3.2. The semi-direct product whigiears in the definiion of the
proto skeleton group is given by:

weW: (t,t°) € T x T* — (w(t),w(t")) € T x T* (4.24)

75



Chapter 4. Fusion rules for Dyons

wherew(t) andw(t*) are defined as in equation (4.21) and (4.22). Equivalertily, t
proto skeleton group equal®3V x T') x T™* if one defines the action of¥ x T on T*

by (w,t) > t* — w(t*), where the action o}V on T* is again defined as above. Note
that the definition of the proto skeleton group is complesgiynmetric with respect to the

interchange of electric and magnetic groups.

4.3.5 DEFINITION OF THE SKELETON GROUP

The proto skeleton group contains the maximal toiizcdindG* while the group product
depends on the Weyl group action on these tori. Hence, @duible representations are
labelled by the dyonic charge sectors of the Yang-Mills thiegith gauge group, as
we shall explain in detail in section 4.4. However, the iueithle representations are only
fixed up to so-called centraliser charges. It might be péssibassign some physical sig-
nificance to these centraliser charges if the proto skelgtonp could be argued to be a
subgroup of the full symmetry of the theory. However, in ttage one should expect that
the electric partV x T'is a subgroup of the electric groda We might also require that
the magnetic pantV x T to be a subgroup of the magnetic graGp. Usually neither
of these requirements is fulfilled. In fact even the Weyl grow itself is usually not a
subgroup of7 or G*. However, recall that the Weyl group is isomorphic to thenaliser
of T" in G moduli the centraliser df’. This implies that the Weyl group can be lifted to
G and, since the Weyl group only depends on the Lie algebraniactually be lifted to
any Lie group with this fixed algebra. We will use this fact bow that we can define the
skeleton group such that its electric part is indeed a sulpodG.

According to [83], a natural finite lifi¥’ of W into the group of automorphisms gf
is defined as follows. For any simple raebf G, we define a lifao,, of the Weyl reflec-
tion w,, by

We, = Ad(z4) (4.25)

with .
T = exp <%(Ea + E_a)> . (4.26)

Thew,, generatél, which is a finite subgroup of the automorphism group.dfiote that
W is a also a subgroup of the adjoint groGof G. W has an abelian normal subgroup
D generated by the elementd, and we haveV = W /D.

If one wants to lift)V into the groupG itself, rather than into its adjoint representation,
one can do this by liftingV ¢ G/Z¢ into G. Such a liftiW’ of W can be defined as
the preimage of¥’ under the projection froré: to its adjoint group/ Z. Alternatively,
one can define a liftt’ of VW into G as the group generated by the elemant®f G. In
general, we might hav®” # W', although it is clear thal’ ¢ W’. In the remainder
of this paper we shall ignore this possible subtlety and oohysider the lifil’. We shall
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4.4. Representation theory of the skeleton group

also use the abelian normal subgrdopc W defined byD = W N T.

We now introduce the skeleton groSpas
S=Wx (TxT*)/D, (4.27)

where the action of € D is by simultaneous left multiplication d% x T'. The action of
W on the two maximal tori is the usual conjugation action arfddtors over the quotient
W of W, i.e. every elementy € W acts just like the corresponding element of the Weyl
groupW. Note that equivalently we can write:

WwxT

S = )

x T*. (4.28)
We define the electric subgrowj; of S as
Se={s€eS|s=(wt,1)D, weW, teT}. (4.29)
One may now defing : W x T" — G by
d(w,t) = wt™t. (4.30)

It is easy to check thap is a homomorphism intdv;: C G, the normaliser off’. The
kernel of¢ is precisely the set of elemen(ig, d) € W x T', with necessarilyl € D. As
aresult,S,; is isomorphic to the image af, which is in turn a subgroup a¥r C G and
we have achieved our goal to make the electric part of theekelgroup a subgroup of
the electric group.

With the definition above one should not expect the magnebgmups,,,,, defined as

Smag ={s€S|s=(w,,t") D, we W, t* €T} (4.31)

to be a subgroup af* sinceS;,., = W x T and the Weyl groupV of G andG* is in
general not a subgroup 6f*. However, one can introduce the dual grdiipand define
it to be the skeleton group @¥*. The electric subgroug, is then of course a subgroup
of G*.

4.4 REPRESENTATION THEORY OF THE SKELETON GROUP

In this section we discuss some general properties of theseptations of the (proto)
skeleton group and its fusion rules. We focus in particulaiSéd/(2) as an example.
Further detailed examples are worked out in appendix C and D.
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4.4.1 REPRESENTATION THEORY FOR SEMI-DIRECT PRODUCTS

The classification of the irreducible representations afraisdirect product involving an
abelian normal subgroup is well known, see e.g. [84]. A @mitmensional) irreducible
representation off x N, whereN is abelian, is up to unitary equivalence determined
by an irreducible representation 8f and a so-called centraliser representation. This
centraliser representation is defined as follows: siNds abelian each of its irreducible
representations is given by a functian: N — C that respects the group product, i.e.
each irreducible representation is a characte¥ ofrhe action of on NV with respect to
which the semi-direct product is defined can be lifted to dioa®n the characters:

heH:X— h(\) (4.32)

where
h(A):n € N — ANh ton)eC. (4.33)

Let H, C H be the centraliser group of such that for allh € Hy h(\) = A. For any
irreducible representationof H, one can easily check that

I} : (h,n) — A(n)7y(h) (4.34)

defines an irreducible representationtHf x V.

A representation off x N can now be constructed as an induced representation, see
e.g. section 3.3 of [50]. For a general gradpne starts with a matrix representatipof

a subgrou/ C G acting on a vector spadé. We shall assume thét/ H is a finite set.
One can now construct a unique finite dimensional repre&entﬁg/H of G by intro-
ducing the vector space,cc,u V., WhereV,, is a copy ofV for each coset € G/H.
While H simply acts on each cogy, simultaneously, all elemengsoutsideXd also mix

up these copies by their action on the cosets.

By choosing a representatiyg for each coset one can construct the induced representa-
tion explicitly. Giveng in G one hagyg,, = g,h for some coset and somé € H. Hence

g mapsV,, to V,, with an additional action of. Consequently the matrix corresponding
to g only has diagonal elements if for some coget) = o, i.e. g5 g9, € H. Therefore
the charactex s of the induced representation can be computed from the cieasg; of

the representation one started out with:

xa(9) = Y xul(9;"990). (4.35)

g(o)=0o

As a first step we can use the method described above to cortsietinduced representa-
tion of the centraliser representatipnNote thatf / H is precisely the7-orbit[\] in the
set of characters aV. Let V' be the vector space on which the centraliser representation
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4.4. Representation theory of the skeleton group

~ of H acts. We denote the elementslgfby | 1, v) where we understand € [\] and

v € V. For each coset itf / H) and hence for each € [\] we choose a representative
h, € H such thati,(\) = p. Givenh € H we havehh, = h,h’ with v = h(u) € [A]
andh’ € Hy. We can now define the induced representaﬂéfﬁ for H by

N (h)| p,v) = v,y (hy, " hhy)v). (4.36)

Arepresentation off x N is found just as easily. Note thatx N/H) x N = H/H) =
[A]. This implies that one can choose the representants of et the semi-direct
product to be of the fornih,,, e) with € [A]. From the semi-direct product (4.8) we
now find

(hy,n)(hy,e) = (hyh',n) = (hy,e) (k' h,t >n) (4.37)

whereh’ = h;;'hh,. We thus find and induced representaﬂﬂﬁ] of HQ defined by
Y (h,n)| v = [, I (hy  hby, byt e n)o) = v(n)| v,y (b thhy)v).  (4.38)

Note that we used equation (4.33) to rewrité:, 'n) = h,(\)(n) = v(n). We thus see
that each//,, defines a representation &f since

Y (e, )| p,0) = p(n)| p,v). (4.39)

It is easily seen that,,c(yV,, does not contain any invariant subspaces and thus that
H[{\] is an irreducible representation &f x N. Equation (4.38) clearly shows that this
representation only depends on the ofhjtand the centraliser representatipibut not

on the initial choice for the representandf [\]. One can also check that up to unitary
transformationsﬂ[{\] does not depend on the choice of representants for the elgiinen
H/H,. Finally, it turns out that all irreducible representasaf H x N can be obtained

in this way.

The decomposition of a tensor product representationirgdiicible representations can
be computed With the inner product of the characters. Theackers for an irreducible
representatlonH of H x N can be found from equation (4.35):

X[)\] h, n Z 5h(,u) ,uX»y e)(han)(huvn))
HE[N]
— b) (b by, by i)
h(w) Xy (h o Il 'n
nel (4.40)
=) Onguyuxy(hy hh)A(hy )
HE[N]
= Z Sn(ye),u Xy (g Ry ) ().
HE[N]
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One can check that these characters are orthogonal:

<x[”],x£€]> = / X (h, n)x* 19 (h, n)dhdn
K HxN K
/ Z Sy Xy (hy 'hh,,) Z On(w)wXa(h Sthh,)v* (n)dhdn
HXN HE(p] vElo]

SN / v*(n)dn /H Sh(0), 1 On ()0 Xy (e Ty, ) (hy P h, )d

nelp] velo]
= >y 5#,,/ dn/ Sh(p) Xy (hy "Ry )Xo (R, YRy, )dh (4.41)
nelp] velo]
= O] Z/dn/ Xy (W) x5 (1) dh
KE[p]
= S0 D / dhdn
HE[p]

= 5[p][g]57a dlm(H X N)

Fora =11, b = Hg” andc = H[Vp] we find:

(Xes Xamn) = / Xelha )X ()X (h, m)dhdn
HxN

/HXNzawxw Uhhy)i(n)x

HE[p]

> OnywXalhy " hh)VE(n) D bnie).ox5(hE B ST (n)dhdn

vElo] ¢

=3 3 3 [t o | i s

pElp] vE[o] CE[n]

X~(h lhhu)Xa(hylhhu)X (h clth)dh

=>. > D b vc/ N5h(u) uOn(w) wOR(¢),¢ X

n€lpl velo] ¢ (4.42)
X (B Bhy) X (B Bl ) x5 (he P ) dhdn.

We thus see that the fusion rules@fix N can be expressed in terms of the multiplica-

tion in the character group df and integrals involving the characters of the centraliser
representations.
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4.4. Representation theory of the skeleton group

4.4.2 WEYL ORBITS AND CENTRALISER REPRESENTATIONS

Since the maximal tori off andG* are abelian and the Weyl group@fis a finite group,
the results of section 4.4.1 can be applied directly to tlégskeleton group. Below we
shall work out some general properties of its irreduciblgresentations and prove our
claim that these representations reproduce the chargersedtthe gauge theory with
gauge grou-. For explicit examples we refer to section C.

Anirreducible representation & x (T'x T*) is labelled by an orbit in character group of
T x T* and by a centraliser representation. The character grauphe set of irreducible
representations &f x T is precisely given byA(G) x A(G*) as follows from the dis-
cussion in section 4.3.2. The diagonal action of the Weyligrdefining the semi-direct
product of the proto skeleton group induces a diagonal aatithe character group:

weW:(\g) € AG) x A*(G) — (w(N),w(g)) € AG) x A*(G) (4.43)
where
(W), wlg)) : (1) €T xT* —  Mw ' (t)g(w™'(t") € C (4.44)
(exp(ibiHa, ), exp(ify Har))  +—  exp(ifi2w(X) - af +i6;2w(g) - ;).
Here we used equations (4.21) and (4.22) together with
Huy(ol A) =2X - w(a®)|A) =207 (A) - a*| X)), (4.45)

and similarly
Hyan|g) =2g-w(a)lg) = 2w (g) - alg). (4.46)
We thus see that an irreducible representation of the pkaiet®n group carries a label

that corresponds to an orlpit, ¢g] in A(G) x A(G*). These labels are precisely the dyonic
charge sectors of Kapustin [48] as discussed in sectio8.4.2.

Let us discuss the centraliser representations in some detad. These representations
are irreducible representations of the centrali$gg ,y C W of the dyonic chargé), g).
Sincew(], g) is (w(A), w(g)) we see thaWWy 5 = Wx N W, C W,. W, is the Weyl
group of the centraliser groug, C G introduced in section 4.2.3. Similari, ,) is

the Weyl group of some Lie grou@, 4 C C,. Since the dyonic charge secfar g] cor-
responds to a unique pdiRy, g), whereR) is an irreducible representation 6f,, one
would now expect that the allowed centraliser represamtation/V, ,y C Wx (T'xT™*)

fit into an irreducible representatidiy, of C;, C G. Unfortunately, such a relation be-
tween representations is in principle absent since in géhgiis not a subgroup off and

W is not a subgroup of';. However, the skeleton group is constructed in such a way
that this relation with the centraliser groupGhcan be established, as we shall discuss in
the next section.
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4.4.3 REPRESENTATIONS OF THE SKELETON GROUP

Important features of the skeleton gra$ire that it is an extension @f x 7 respecting

the dyonic charge sectors and moreover that its electriorf&g; is a subgroup ofs. This
implies that representations 6Gfdecompose into irreducible representations of the skele-
ton group with trivial magnetic charges. In this section wesdatibe the representations of
the skeleton group in general terms and clarify the relatidh G-representations. The
SU(2)-case is worked out explicitly in section 4.4.5. More exagsptan be found in
appendix D.

The representations ¢f correspond precisely to the representation8lok (T x T*)
whose kernel contain the normal subgrdapSinceW x (7' x T*) is a semidirect prod-
uct and the liftW acts in the same way dii x 7™ as the Weyl group?/, its irreducible
representations are labelled by¥-orbit in the weight lattice of” x 7 and by an irre-
ducible representation of the centraliseFihof this orbit. Explicitely, lef)\, g] denote the
Wh-orbit containing( )\, g) and lety denote an irreducible representation of the centraliser
Nrg) € Wof (A, g). Now for any(u, h) € [A, g, choose some(,, ;) € W’ such that
T(un (N g) = (u,h) and defineVV[A’g] to be the vector space spanned{y, h.e])},
where{e]'} is a basis for the vector spadé on which~ acts. If we apply equation
(4.38) for the induced representation of a semi-direct pevde find that the irreducible
representatiofil;"* of W x (T x T*) acts oV as follows:

TEM (w,8,87) 1, by 0) = w(pn) (Ow(R) () w(p), Y(a g wan)v).  (4.47)

The irreducible representations Bf x (7' x T*) with trivial centraliser labels are in
one-to-one relation with the electric-magnetic chargemscjust as is the case for the
irreducible representations of the proto skeleton groupwever, in general not all of
these representations are representatiorss dhe allowed representations satisfy

M9 (d, d, 1) p, b, v) = |, b, v), (4.48)
which implies
d(u)(d)d(h)(1)| d(p), d(h), Y (x5, dzp)v) = |, h, ). (4.49)
Sinced € T we haved(n) = p and we find thaﬂ?’g] is a representation o if
()| oy (2t dao) = [pho o) Y pohov) € VML (4.50)

This condition is satisfied iD acts trivially on all vectors of the form\, v ). To show
this we note thap(t) = x,(\)(t) = A}, >t) = Az, 'tx,). As mentioned in section
4.3.5D is a normal subgroup div, i.e. x;lda:# = d’ € D. Hence for the action ab
on| u,v ) we thus have

pld)| p, (@ demu)o) = M), y(d o) = [ )X )y (d)]v). (4.51)
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Now if
MDA, v(d)v) = [MAd)y(d)]|v) = [A)[v) (4.52)

forall d € D we find thatD acts trivially onVW[A’g]. The question that remains is if there
always exists centraliser representatioof W, ,y C W that satisfies this constaint.
Note that equation (4.52) is precisely the constraint onelavobtain for representations
of the electric par(WW x T") / D of the skeleton group except thatvould be an irreducible
representation of a possible larger subgrélip C W, i.e. W, 5y C Wy. This means
however that the restrictiony,, .~ of an allowed electric centraliser representatjoof
W, automatically satisfies (4.52). Consequently there exgistgreducible represention
of S for a given orbit]\, ¢] if there exists an irreducible representationSef for a given
orbit [A].

It is easily seen that an irreducible representatiof pflabelled by[)\] exists if A lies in
the weight lattice ofz. As proven in section 4.3.5,; is a subgroup o7 and thus alll
representations of the gauge group fall apart into reptadens ofS.;. Moreover both
the gauge group and the skeleton group contain the maximad 16 Hence all repre-
sentations of”’ that appear in the restriction 6f-representations must also appear in the
restriction of a representation 6f; to 7. From the representation theoryGfwe know
that all irreducible representations dfcome up in this way and hence all Weyl orbits
in the weight lattice of7 give rise to a representation of the skeleton group. We finall
note that an irreducible representation(dfvith highest weight\ leads to a representa-
tion of S.; which has a one-dimensional centraliser representati@arepresention ofr
has a weight with multiplicity greater than one it may givgerto an allowed centraliser
representation acting on a space which has more dimensions.

4.4.4 FUSION RULES

Here we discuss some general properties of the fusion riitee ¢proto) skeleton group.
We shall restrict our discussion to the electric-magndtarges and ignore the centraliser
representation for the most part. The fusion rules of thenityoharges are found by
combining the Weyl orbits of the representations. An elégaty do deal with this com-
binatorics is the use a group ring.

Below we define a homomorphism, denoted by “Char” from theesgntation ring of
the (proto) skeleton group to the Weyl invariant paA]" of the group ringZ[A x A*]
whereA x A* is the weight lattice of” x 7. This group ring has an additive basis given
by the elements, 4 with (\,g) € A x A*. The multiplication of the group ring is
defined bye(x, 4,)€(xs,92) = €(n1+22.91490)- FiNAlly the action of the Weyl group on the
weight lattice induces an action on the group ring given by

weW: €(x,g) ™ Cw(N),w(g)- (453)
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A natural basis for the ring[A x A*]" is the set of elements of the form

e[)\_’g] = Z e(#,h), (4.54)
(,h)E[Ng]
where[}, g] is a Weyl orbit in the weight lattice.
The homomorphism Char of the representation ring of thei¢pskeleton group t&[A x
A*] is defined by mappindgu, h,v) € VV[A"’] to e, n) € Z[A x A*]. Consequently
for an irreducible representatidﬁ?’g] of the (proto) skeleton group we havg ) in
Z[A x AV
Char: TIM — dim(V; ey g)- (4.55)
Note that ifv is a trivial centraliser representation or at least 1-disi@mal then Char
maps to a basis element of the group algebra.
Char respects the addition and multiplication in the regméstion ring since

Char - H[Y);hgl] ® H[Y);%gﬂ = dlm(v’h )8[)\1,91] + dim(V’YQ)e[)\zxgﬂ (4.56)
Char : Tl 9] @ T2 9] i dim(V,, )dim(Vy, e, gy €ppage). (4.57)

We can use this to retrieve the fusion rules for the dyoniagdaectors since the ex-
pansion of skeleton group representations in irreducigasentations corresponds to
expanding products in the Weyl invariant group ring intoibaements:

€[A1,91]€[N2,92] = Z N>>\\17{,7>\2-,91,g26[>\-,9]' (4.58)
(A9]

If one restricts to the purely electric sector, ige= 0, such that the centralis€r, C G
equalsG itself, one should expect to retrieve the fusion rule€sofAs was noticed by
Kapustin in [81] equation (4.58) does not correspond to #epgosition of tensor prod-
ucts of G representations. However, the fusion rules of the (prdteleton group does
also involve the centraliser representations. In padicthle dimensions of the centraliser
representations satisfy

A1, A2,92] _ TGS A,
H[%L_th] ® H[V22'g2] - @ N)\l?Az-,gl,gm’Yl-,’mH[V 4 (4'59)
[(\.gly

such that

Zﬁx\,g,v dim(V,) = dim(V,Yl)dim(VW)N’\’g (4.60)

A1,A2,91,92,71,72 A1,A2,91,92°
~

If we restrict to the purely electric sector where= 0 we still do not have an immediate
agreement with the fusion rules f&f. However as far as it concerns the skeleton group
the restriction to trivial magnetic charge gives rise toresentations ob.;, which is a
subgroup ofGG. This relation will be reflected on the fusion rules as we Isbeé for

G = SU(2) in section 4.4.5.
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4.45 FUSION RULES FOR THE SKELETON GROUP OF SU(2)

We shall compute the complete set of irreducible reprefentgand their fusion rules
for the skeleton group ofU(2). From these fusion rules we shall find that the skeleton
group is the maximal electric-magnetic symmetry group tiaatrealised simultaneously
in all dyonic charge sectors of the theory. Finally we conepauir computations with
similar results obtained by Kapustin and Saulina [85].

The skeleton group can be expressedias (T' x T*) modded out by a normal sub-
groupD C W x T as explained in section 4.3.5. For thé/(n)-caselV and D are
computed in appendix D.1 and f6iU (2) they equal respectivelf, andZ,. The latter
group is precisely the centre 61/(2).

The irreducible representations.8ffor SU(2) correspond to a subset of irreducible rep-
resentations o, x (17" x T*) which represenb trivially. This leads to a constraint on
the centraliser charges and the electric charge as givequatien (4.52).

If both the electric charge and magnetic charge vanishe ¢néraliser isZ, which is

generated by
0 ¢
x = ( JE ) . (4.61)

The allowed centraliser representations are the two igibthirepresentations that send
22 to 1. One of these representations is the trivial repretientaThis leads to the triv-
ial representation of the skeleton group which we denotéy0, 0]). The remaining
non-trivial centraliser representations mas —1 and gives a 1-dimensional irreducible
representation of the skeleton group which we shall denpte-b|0, 0]).

If either the electric or the magnetic charge does not vahistorbit under th&., action
has two elements and the centraliser group.isc Z, generated by:2. The irreducible
representations df, that satisfies equation (4.52) is uniquely fixed by the electrarge

A labelling the equivalence clasy, ¢]. Itis the trivial representation if the electric charge
is even and it is the non-trivial representation if the eleatharge is odd. We can thus
denote the resulting irreducible skeleton group represiemt by [\, g] with A or g non-
vanishing. Note that these representations are 2-dimealsio

The electric-magnetic charge sectors appearing in decsitiggoof a tensor product of
irreducible representations of the skeleton group can baddrom the fusion rules of
Z[A x A*] as discussed in section 4.4.4. Ignoring the centraliseigelsethis gives the
following fusion rules:

[0,0] ® [0,0] = [0, 0] (4.62)
[0,0] @ [A, g] = [ g] (4.63)
A1, 91] ® [A2, g2] = [A1 + A2, 91 + g2] © [A1 — A2, 91 — 92]. (4.64)

85



Chapter 4. Fusion rules for Dyons

To retrieve the fusion rules of the skeleton group itself sheuld take into account the
centraliser representations. However for all chargesg{@g0] the centraliser represen-
tations is uniquely determined. If we restrict [th 0] charges we obviously obtaif,
fusion rules. This leads to:

(81, [0, 0]) & (82, [0, 0]) = (8182, [0, 0]) (465)
(57 [07 O]) ® [)‘ag] = [/\79] (4.66)
[A1, 91] @ [A2, 92] = [A1 + A2, 91 + g2] © [\ — A2, 91 — g2]- (4.67)

If in the last line the electric-magnetic charges are paralb that[0, 0] appears at the
right hand side we have to interpret this as a 2-dimensi@thlaible representation. Its
decomposition into irreducible representations can bepeted using equation (4.42):

(X(.10,0))> X[\gl@[hg)) = diM(Zy x T x T*). (4.68)

Hence we get

[/\79] ® [/\79] = [2/\7 29] D (_7 [07 O]) @ (+7 [07 0]) (4.69)

An important question is if the fusion rules obtained heevjte a hint about an extended
electric-magnetic symmetry. The representations of sugymanmetry should be uniquely
labelled by the dyonic charges and do not carry additionahtium numbers. Moreover
the representations with vanishing magnetic charge quorebto representations of the
electric group. From this perspective the skeleton grompeentations=+, [0,0]) are
part of odd dimensional representations$5df(2). In this way one can at least reconstruct
the fusion rules 05U (2) in the magnetically neutral sector. As an example we conside
equation (4.69) with\ equal the the fundamental weight®/(2) andg = 0:

A, 0] ® [A, 0] = [2A,0] @ (—, [0,0]) @ (+,0,0]). (4.70)

First we identify all representations with representagionsS,; by “forgetting” the mag-
netic charge. Second we note that sit:e C SU(2) as proven in section 4.3.5 the
representation of the latter fall apart into irreduciblpresentations of the former. In par-
ticular the trivial representations 68U (2) can be identified with the trivial representation
of S¢; while the triplet falls apart int¢2\] & (—, [0]), with 2\ equal to the highest weight
of the triplet representation. Equation (4.70) is thus géinconsequence of the fact that

2®2=3d1. 4.71)

One could try to push this line of thought through fpr# 0. Unfortunately in this
case[2), 0] does not appear in equation (4.69). Adding this term by haadily leads
to problems since this forces one to add corresponding temisft hand side. In this
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case one should replage g] by [, g] @ [\, —g]. This implies thaf), ¢] could never be
an irreducible representation for an extended electrigimaic symmetry containing the
skeleton group since it would have to be paired idth—g] which labels an inequivalent
charge sector as discussed in section 4.2.3. Consequeatkéleton group should be
interpreted as the maximal electric-magnetic symmetrygithat can be realised in all
dyonic charge sectors. In a set of dyonic charge sectorssticlised under fusion, such
as for example the magnetically neutral sectors, the @eeart of skeleton group can
be extended to the centraliser grougdrof the magnetic charges of that particular set of
sectors. One might wonder if this implies that the skeletaupg does not respect gauge
invariance. We shall come back to that discussion in seétién

Another approach to give a unified description of an eledrimup G and a magnetic
groupG* is to consider the OPE algebra of mixed Wilson-'t Hooft opers. Such oper-
ators are labelled by the dyonic charge sectors as explbinkdpustin in [48]. Moreover
the OPE's of Wilson operators are given by the fusion rule§ efhile the OPE’s for 't
Hooft operators correspond to the fusion rule&df These facts were used by Kapustin
and Witten [18] to prove that magnetic monopoles transfosiyarepresentations. It is
thus natural to ask what controls the product of mixed WH&d#ooft operators. The
answer must somehow unify the represntation theor§g @nd G*. Consequently one
might also expect it sheds some light one the fusion ruleyons.

For a twistedV' = 4 SYM with gauge grou0(3) products of Wilson-'t Hooft operators
have been computed by Kapustin and Saulina [85]. In termgaiid charge sectors they
found for example:

n,0]-[0,1] = [n— 24, 1]. (4.72)
j=0

This rule can easily be understood from the fusion rules eftteleton group fofO(3)
or SU(2). First we note that fo& = SO(3) A can be identified with the even integers.
Th magnetic weight latticd* for the G* = SU(2) is then given byZ. The[n, 0] corre-
sponds to the magnetically neutral sector and thus ta:thel-dimensional irreducible
representation a§O(3) or SU(2). This representation falls apart into a sum irreducible
representations of.;. In terms of magnetically neutral representations of thedetkn
group this sum of irreducibel representations is given by

n—1

Pln — 24,01+ (s,[0,0]). (4.73)

j=0
Note that the centralizer labelin (4.73) depends uniquely on The 't Hooft operator
labelled by][0, 1] can be uniquely related to the irreducible representdtion] of the
skeleton group. Simalarly for the Wilson-'t Hooft operat@ppearing at the right hand
side of equation (4.72) there is also a unique identificatiih skeleton group represen-
tations. Finally we note that the decomposition of the tepsoducts of|0, 1] with the
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reducible representations (4.73) into irreducible regmégtion of the skeleton group is
given by the right hand side of equation (4.72).

A second product rule obtained in [85] which is consitentwthie results [18] can be
written in terms of electrially nuetral charge sectors as:

[0,1] - [0,1] = [0, 2] + [0, 0] (4.74)

This product rule cannot be understood from the fuson ruleékeoskelton groups of
SO(3). It is however consistent with the fusion rules of the duadlston groupS*
introduced in section 4.3.5. In this particular c&sds the skeleton group U (2). The
product rule (4.74) can be identified with t§é/(2) tensor product decompaosition given
in (4.71). Itis explained above that this fusion rule is deest with the fsuion rules of
the skeleton group &SU (2).

The last OPE product rule found in [85] can be represented as

2n,1] - [0,1] = [2n, 2] + [2n,0] — [0,0] — [2n — 2, 0], (4.75)

while from equation (4.67) we find for the related tensor pridiecompostion of skele-
ton group representations;

2n,1] - [0,1] = [2n, 2] @ [2n, 0], (4.76)

One observes that the terms missing in this last equatiorsimond to the terms in (4.75)
with a minus sign. However, such negative terms can occwralit in the K-theory
approach as used in [85] but can never occur in a tensor prddaompaosition.

We conclude that fusion rules of the skeleton group are tcesextent consistent with the
OPE algebra discussed by Kapustin and Saulina. The adwaotalgeir appraoch is first
that there is never need to restrict the gauge groups t@onestibgroups as we effectively
do with the skeleton group. Also, the OPE’s of Wilson-'t hbgperators do indeed give
a unified electric-magnetic algebra, whereas in the skelgtoup approach one does still
needs the dual skeleton group. Nonetheless, because afd¢heeace of negative terms
the OPE algebra cannot be interpreted as a set of physiéahfudes for dyons like we
can with the tensor product decompostion of the skeletongamd its dual.

45 S-DUALITY

To check the validity of the skeleton group we shall show that standard S-duality
action on the complex coupling of the gauge theory and thetrgtemagnetic charges
is respected by the skeleton group. We shall first recapégame details of-duality.
Second, we discuss its action on the dyonic charge sectdrreatly we prove that there
is a well-definedS-duality action on the skeleton group representations.
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45.1 S-DUALITY FOR SIMPLE LIE GROUPS

In for exampleN = 4 SYM theoryS-duality leaves by definition the BPS mass invariant.
The universal mass formula for BPS saturated states [3]lreary with gauge grougr

can be written as:
4
Mgy = UWW- A+ 79)|- (4.77)

The electric charga takes value in the weight lattice(G) C t* while g is an element in
the weight latticeA (G*) C t of the GNO dual group. The complex couplings defined

as
0 4i

ot
A discussion of the action of S-duality groups on the eleatnagnetic charges is dis-
cussed by Kapustin in [48], see also [86, 87]. First we chdleseshort coroots to have
lengthv/2, i.e.

(4.78)

T

(Hyo, Hy) = 2. (4.79)
Now define a map acting on the CSA of7 and its dual
E:HaEtHH;:LFQEt*
Tliaett - aof = 2Ha et (80
<Hoca Hoz> .
This map is implicitly used in the definition of the BPS masgsriala since
v-Hy = Mv (4.81)
which indeed leads to the usual degeneracy in the BPS massiape
Now consider the following actions of the generators:
C:t—r (A g) = (=X —9) (4.82)
T:7—1+1 Ng)— (A—g%,9) (4.83)
1
ST —— (A, g) = (g%, —=A"). (4.84)
-

One can easily check that the action of these generatorsteaBPS mass formula (4.77)
invariant. Moreover it should be clear from the action ondbmplex coupling that’, T’
andsS are the familiar generators 6f.(2, Z). Unfortunately the electric-magnetic charge
lattice A(G) x A(G™) is in general not invariant under the action$k(2, Z). However
As explained in section 4.2 it is very natural in for exampl&a= 4 gauge theory with
smooth monopoles to take bothand G* to be adjoint groups and thereby restrict the
electric charges to the root lattice and the magnetic clsamthe coroot lattice. One can
show that lattice\, x A, is invariant under some subgroup$£L(2,7).
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A long corootH,, is mapped to a multiple af since the length-squared of a long coroot
is an integral multiple of the length-squared for a shorbotr Consequently, the image
of A, under/ is contained in the root lattick, and hence also in the weight lattidéG)
of G.
We want to check i¥ ' maps the root lattice aff into the coroot lattice. Note that the
long roots are mapped on the short coroots. This means thaenigth-squared of the
image of a short roots has length-squared smaller2hatence the root lattice is mapped
into the coroot lattice by~ only if G is simply-laced.
One finds that the action of the generatodoes not leave,. x A, invariantin the non-
simply laced case, but even then one can still consider #mesfiormationS7'?.S which
acts as

STIS : (X, g) — (=X, —g\* — g). (4.85)

For ¢ sufficiently largeg\* is always an element of the coroot lattice, hence there is a
subgrouply(¢) C SL(2,Z) that generated by', T and STS that leavesA, x A,
invariant. The largest possible duality group for e §O(2n + 1), Sp(2n) and F; is
T'o(2) while for Gy itis I'g(3).

45.2 S-DUALITY ON CHARGE SECTORS

We have seen above that there is an actiofibf2, Z) or at least an action of a subgroup
To(q) if we restrict the electric-magnetic charge latticeMfox A..,.. The restriction of the
charge lattice also defines a restriction of the dyonic amegctors tdA, x A..)/W.
Here we shall show that the duality transformations give H defined action on these
charge sectors.

The generators of the duality group may mapg) to a different equivalence class under
the action of the Weyl group and hence to a different chargmseHowever the duality
transformation maps all charges in one Weyl orbit to yet glsiWeyl orbit as follows
from the fact that the action of the generatorsSdf(2, Z) commute with the diagonal
action of the Weyl group [48]. This is obvious faf sincewC (A, g) = w(—\,—g) =
(—w(N), —w(g)) = Cw(A, g). ForT andw € W we havewT' (), g) = w(\ + g%, g) =
(w(A) +w(g*), w(g)) = (w(A) +w(g)*, w(g)) = T(w(A), w(g)) = Tw(A,g). Finally
for S we havewS(\, g) = w(—g*, A*) = (—w(g)*,w(N)*) = Sw(A, g).

45.3 S-DUALITY AND SKELETON GROUP REPRESENTATIONS

Since there is a consistent action of the duality group ondffanic charge sectors on
may also try to extend this action to the set of represemsitid the skeleton group which
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are labelled by the dyonic charge sectors and by centrabgeesentations of the lifted
Weyl group. We shall assume that the duality action does not affect éméraliser
labels. This is consistent if, one, it maps an irreducibfereésentation to another irre-
ducible representation and, two, if the action respects$usien rules. Note that we are
not considering all representations of the skeleton gratbly those that correspond to
the root and coroot lattice. Effectively we thus have modihedskeleton group out by a
discrete group.

To prove the consistency of the duality group action we shsdl the following ingre-
dients. First, the action of, 7" and S, and hence also the action of the duality group
commutes with the action of the lifted Weyl group. This felloimmediately from the
fact that the duality group commutes with the Weyl group ashase shown in the pre-
vious section. Second, the centraliser subgrougyins invariant under the action of the
duality group on the electric and magnetic charge.

Since the action ofV and thus als® on the electric-magnetic charges is linear it should
be clear that charge conjugation does not change the deatral

The fact thatl” does leave the centraliser grou, ,y C W invariant is seen a follows:
let W, C W be the centraliser of so that for everyw € W, w(g) = g. The cen-
traliser of (A, g) consists of elements in € W, satisfyingw(A) = X. Similarly the
elementsw € Wiy, 4 o) satisfyw(g) = g and thusw(g*) = g*. Finally one should
havew(\ + ¢g*) = A + g*. But sincew(X + ¢g*) = w(\) + w(g*) one finds thatv must
leave\ invariant. HenceV g+ o) = W N W, = W(, 4. Similarly the action ofS

is seen to leave the lead®, , invariant sinceW. = Wy andW_,. = W, so that
W_g* NWy =WinN Wg.

An irreducible representation of the skeleton group is @efiby an orbit in the electric-
magnetic charge lattice and an irreducible representatighe centraliser ifd of an
element in the orbit. Since th&€L(2,Z)-action commutes with the action of the lifted
Weyl group alW-orbit is mapped to anothé#’ -orbit. We define the centraliser repre-
sentation to be invariant under the duality transformattbis is consistent because the
centraliser subgroup itself is invariant undek (2,7). We thus find that an irreducible
representation of the skeleton group is mapped to anotiegiticible representation under
the duality transformations.

Finally we prove that S-duality transformations respeet filsion rules of the skeleton
group. The claim is that if for irreducible representatidhsof the skeleton group one
has

I, ® I, = n&, I, (4.86)

then for any element in the duality group one should have
M) ® Uy = ngplls(e)- (4.87)
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By inspecting equation (4.42) we can proof this equalitystiive note that since com-
mutes with the lifted Weyl group we have for afy’, h’) € [s(\, g)] (', h') = s(u, h)
forauniqueu, k) € [, g]. Inthat sense the summation over the orpitg] and[s(A, g)]

is equivalent. Next we see that singés an invertible linear map on the dyonic charges
s(us,93) = s(p1, 1) + s(p2, g2) if and only if (u3, g3) = (p1,91) + (p2, g2). Similarly
we findhs(u, g) = s(u, g) ifand only if h(u, g) = (1, g). Finally we note that if one de-
finesz(, ) € Wbyx, 1) (A g) = (i, k) thenz, pys(A, g) = s(z(u,n) (N g)) = s(u, h)
and hencer(, ») = z(,,n)- Under the assumption that tiSeduality action does not af-
fect the centraliser charges we now find

<X(27 Xa®b> = <XS(C)7 Xs(a)®s(b)> . (488)

This proves (4.87).

4.6 GAUGE FIXING AND NON-ABELIAN PHASES

One of the basic motivations to find fusion rules that cong¥rtsoth the electric, magnetic
and dyonic charge sectors, is to obtain tools to understamglase structure of gauge
theories and possible transitions between these phasese Akall argue below dyonic
phases correspondgeneralised Alice phase$he appearance of such Alice phases may
be understood from a beautiful idea of 't Hooft [29]. The pkibphy is that the physically
relevant parameters in a particular phase can be isolatggbye fixing with so-called
non-propagatinggauge conditions. A well known example of such a phase-geelge
tion is the Coulomb phase and the abelian gauge. In this géaegeon-abelian theory
is effectively described by an abelian theory. We shall galise this idea and argue that
there is a non-propagating gauge particularly suitableeszdbe dyonic phases in which
at long range the manifest symmetry is neither purely détentsr purely magnetic. The
effective description of the non-abelian theory in thislet@a gauge is very similar to the
theory in the abelian gauge except for an additional discsgtnmetry generalising the
charge conjugation symmetry from Alice electrodynamid &L, 32].

46.1 THE COULOMB PHASE AND THE ABELIAN GAUGE

In this subsection we recall some well known facts aboutélation between the Coulomb
phase and the non-propagating abelian gauge fé&tlaf2) or SO(3) theory.

In a gauge theory we are confronted with an infinite (locaggsymmetry which im-
plies that the description of the true physical degreesesfdom can be done in different

92



4.6. Gauge Fixing and non-abelian phases

formulations, by employing different choices of gauge. Whnatters is that the physical
observables are gauge invariant. The physically distihelsps of gauge theories there-
fore all respect the full local gauge invariance, in spiteéhaf fact that their spectra may
differ as well as their topological structure. As we menédibefore, to study a particular
phase it can be advantageous to choose a gauge which stagdalihe physics of that
phase. In particular the expected low energy effective rifgsan of that phase usually
suggests what this parametrisation should be. Yet, siris@itly a gauge choice, it also
allows one to study the other phases from this particulartpdiview. These gauges may
offer new perspectives on some of the elusive features ajeytheories.

Important results in this direction were obtained for puaeige theories by 't Hooft [29]
by introducing the notion of a so-called non-propagatingggg in particular thabelian
gauge He showed that by choosing a particular gauge fixing he caavidite the non-
abelian theory as an effective abelian theory with magrmatoopoles corresponding
to the singularities in the gauge. The abelian gauge is thergarticularly suitable to
study the Coulomb phase where the long-range forces arednalgelian. Nonetheless,
approximate models of this sort have been successfully@mehted in certain lattice for-
mulations to investigate the confining phase, exploitirgfict that a strongly coupled
U (1) with monopoles does indeed confine, through a dual HiggstgB88].

Let us discuss the unified electric-magnetic symmetry inatbelian gauge. An abelian
gauge theory with monopoles has a manifest electric gaumepdr = U (1) and a topo-
logical conservation law for the magnetic charge. To acttanthe magnetic part of the
spectrum we can assume the theory to have a hidden ditbal U (1). One can also in-
troduce a second gauge potential makitigocal, but then one has to impose a constraint
to ensure that the second gauge field does not carry physigates of freedom, as the
theory has only a single photon. This can be done and was fatedlin e.g. [89] in an
attempt to make a consistent quantum field theory involvint§ kelectrically charged par-
ticles and magnetic monopoles. So the conclusion is thahtary in the abelian gauge
has in fact dl" x T* symmetry. However let us make an observation at this poinénE
accepting the hidde@™* symmetry the spectrum of states has still a symmetry between
particles with electric-magnetic charges equal up to amaih&ign. This is obvious from

in the original gauge theory with gauge groipas discussed in section 4.2.3. From the
T x T* perspective on the other hand the degeneracy signals thet@bipresence of a
hidden symmetry. This symmetry is nothing but a (local) gearonjugation symmetry
common from Alice phases.
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4.6.2 THE ALICE PHASE AND THE SKELETON GAUGE

We briefly discuss the prototype Alice phase in a theory withge grougs = SO(3)
and explain how it is related to the skeleton group. Furtltoeee explain how the Alice
phase is related to a particular non-propagating gaugeitimmdor SO(3). Finally we
generalise these concepts to a theory with an arbitraryaf@fian gauge group. Along
the way we classify the singularities that can arise by géiMgey with a non-propagating
gauge condition and argue when such singularties obsheatiplementation a particluar
non-propagating gauge condition in 8 (2) or SO(3) gauge theory.

The Alice phase can be described as a Higgs phase with a ceatdémthe 5-dimensional
irreducible representation 6fO(3) [30, 31, 32]. The expectation value of the Higgs field
can be identified with the traceless symmetric tensor:

1
(@i) = minj — 307k, (4.89)

wheren = n;0; and(o;);=1,....3 the Pauli matrices. Ify is nonzero thd/(1)-group of
rotations around the vectaerleave by definitiory invariant and hence the Higgs VEV
invariant. The latter is also invariant under the reflectionr» —7. These two parts of
the residual symmetry for nonvanishinglo not commute and the full residual symmetry
groupH is Z, x U(1), the electric subgroug,; of the skeleton group fafO(3).

The topology of the model allows for monopoles just likethg ) phase because (G/H) =
Z, but also allows a non-triviali, flux solution becauser; (G/H) = Z». Such a
smooth flux solution has been constructed in [90], see alsh [The ansatz for this
solution is due to Schwarz [31]. In cylindrical coordinathe asymptotic Higgs field
®(r,0,2) = ¢(7) + O(r~1) is determined in terms of via equation (4.89) by

wheren(0) ~ o3 andR;;(¢) corresponds to a rotation around thexis over an angle.
TheU(1)-factor of the residual gauge group at some point on an iefiniarge cylinder
is generated by(6). If one goes around the flux this generator is transformed By-a
action sincey(27) = —n(0). Itis important to note that the flux solution itself is pextiy
smooth at) = 0, i.e. the Higgs field, and actually also the gauge field, isxglsivalued
function.

In general one can associate to every flux solution a speddfinent’ in the residual
gauge group defined by a Wilson loop around the flux:

h = Pef Aunde" (4.91)

The element, can in principle be any element i, but the flux is topologically stable
if it lies in a subset off which does not contain the unit. In this particular case westh
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find that up to &/ (1) element this so-called Alice fluk equals the generator @h. This
implies that if an electrically charged particle is moveduard the Alice flux, its charge
is conjugated by th&, action. The important conclusion is that it is not possiblgive

a single valued definition for the electri¢(1) charges in the presence of an Alice flux.
In other words thé/ (1) generator is not single valued and changes sign if one takes i
around theZs flux as we have seen in the example above. In that sense the gtiese

is an abelian theory with a local charge conjugation symyn&imilarly, in the presence
of an Alice flux the sign of the magnetic charge is not uniquid§ined. The heuristic
argument for this is that the magnetic charge is defined mgaf thel/ (1) generator and
thus its sign flips if we take it around th&-flux. More precise arguments for this are
based on topology [92].

Because there is only one typef flux it should be clear that if we take a dyon around
it the electric as well as the magnetic charge changes sijth@rcharge conjugation acts
diagonally on dyonic charges. Finally note that if unédgrgauge transformations the
charges change sign, also the magnetic and electric fietdmersign so that (locally) the
physics remains unaffected by the gauge transformatidms. mieans that there must be
two distinct one-dimensional neutral representations,fonthe vacuum sector and one
for the photon.

The degeneracies of the Alice phase are accurately reflattdn: representation the-
ory of the skeleton group. For non-vanishing charges theglircible representations are
2-dimensional and the electric-magnetic charges of thestonstituting such a repre-
sentation are related by, reflection. In the neutral sector there are two irreducible
representations, the trivial representatfen [0, 0]) corresponding to the vacuum and the
non-trivial representatiof—, [0, 0]) related to the photon. This is important in our view,
because in the abelian phase this is not the case.

Finally note that locally the physics in Alice electrodynamis not different from ordi-
nary electrodynamics. Nonetheless on a global level theswies are profoundly differ-
ent because the Alice fluxes mediate topological interastisee e.g. [92].

To understand the relevance of the skeleton gauge one nexgswsiderstanding of the
abelian gauge. In 't Hooft’s proposal a non-propagatinggges introduced by means of
some tensoX transforming in the adjoint of the gauge group. The ordeapeterX can
either be a fundamental field of the theory or be constructedba composit field. In a
pure Yang-Mills theory one can take for exampleto be contained in the tensor product
F,, ® F*¥. Note though that in the case th@tequalsSU (2) or SO(3) the decompo-
sition of the symmetric tensor product of the adjoint inteducible representations does
not contain the adjoint represention and one needs somefilito defineX.

One can now fix a gauge by requiridg to be a diagonal matrix, i.e. by taking in the
CSA. However, to obtain the abelian gauge where the resmguade group equals the
maximal torusI’ one also has to fix the order of the eigenvalues. In the casé/¢f)
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we can restrictX to be of the form diaf\q, ..., A,) with Ay > --- > ),)). Since the
eigenvalues ofX are gauge invariant the abelian gauge is the strongest ropagating
gauge condition that can be implemented. If we leave out tliitianal constraint we
obtain a non-propagating gauge condition where the eideesare ordered up to Weyl
transformations. In this gauge the residual symmetr$©f3) is thus the electric sub-
group of the skeleton group, x U(1), i.e. it is a minimal non-abelian extension of the
maximal torud/(1).

An important aspect of the abelian gauge is that is givestdsgingularities. To see
this one can start out from a configurationXfthat for the sake of simplicity is smooth
overR?, i.e. X defines a trivial adjoint bundle associated to a trivial pipal G-bundle
overR3. One may now wonder if for such a configuration there alwayssmooth or at
least continuous gauge transformation that rotafesto the CSA with a fixed order of
eigenvalues. If this can be done one ends up with triViddundle oveiR? and in partic-
ular with a trivial T-bundle over any spherg® C R3. We know already that there are
configurations corresponding to a trivi@bundle ovelR? for which such a gauge trans-
formation does not exist. These are related to a non-tfiibundles over a 2-sphere.

An example forG = SU(2) (or G = SO(3)) directly related to the 't Hooft-Polyakov
monopole [6, 7] is ifX equals the “hedgehog” configurationo;h(r) with h(r) ap-
proaching some constant value for small values.ofNote that the stabiliser ok at
each point inR3 is a subgrougd/(1) C SU(2) generated by;o;, except at the origin
where X vanishes and the residual gauge group is restorétii(®). There is a gauge
transformation that maps the hedgehog configuratiar;té.(r) which is discontinuous
along the negative-axis (including the origin). This Dirac string is just a gguartifact
as can be seen by adopting the Wu-Yang description [37]ethisp exists another gauge
transformation mapping;o; to o3 which is discontinuous on the positizeaxis. These
two SU(2) gauge transformations are related by a non-tri¥/ial) gauge transformation
which is well-defined ofiR® except for thez:-axis. Consequently the hedgehog configura-
tion defines a non-trivial’ (1) bundle one eack? centred around the origin. The Dirac
strings are now accounted for by using a separate gaugédraraion on the two hemi-
spheres o62. Nonetheless the patched gauge transformatidiis still singular at the
origin where the full gauge group is restored.

In general there exist smooth configurations)6fwhich define a non-trivial winding
numbers inme (SU(2)/U(1)) ~ w1 (U(1)) and can therefore not be rotated into the CSA
without introducing point-like singularities whei®dJ(2) is restored. All these singular-
ities have to be added as extra degrees of freedom to thdiedféiceory in the abelian
gauge.

It is reasonable to ask if there are not any other types ofutamigies which one has
to add to the effective theory. We have already seen that terstring-like objects such

as the Dirac string which are merely gauge artifacts. The stbany particle in the the-
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ory remains unchanged if the particle is moved around a Birding. Alice fluxes on the
other hand are string-like objects which are truly physiddle state is transformed by a
Zs-transformation if the particle is moved around it. Say wevistart out from a smooth
configuration corresponding to an Alice flux so tBéat= 7;(r, 0)c;«(r) with, for large
valuesr, n; as defined in equation (4.90). There certainly exists a gtnageformation
that rotatesX into the CSA. This gauge transformation, which is essdntiaven by the
the rotation matrix®(6/2), is discontinuous & = 0 and thus gives rise to a plane-like
singularity bounded by the-axis. Again this singularity is just a gauge artifact thanc
be circumvented by using a two-patched gauge transforma@me now obtains a non-
trivial bundle on each cylinder centred around thaxis which is essentially a Mobius
strip. But even in this description the singularity at thaxis itself remains and hence the
Alice flux has to be added to to effective theory in the nongagating gauge just as is
the case with monopoles. The appearance of such a striaglliject was in some sense
already foreseen by 't Hooft, see section 3 of [29].

Itis nice to note that at the string singularity the f6ll7 (2) group is not restored. Instead
the stabiliser ofX equals thé/ (1) group generated by; [91]. What is crucial, however,
is that X is not single valued as we already noted earlier. This mdaaighough in an
Alice flux configurationX can be rotated into the CSA, its eigenvalues cannot be atdere
since they are permuted as one goes around the flux. Bothirgdexppear simultane-
ously. Consequently the abelian gauge cannot be implemhantiee the background of an
Alice flux, the strongest gauge condition that can be useuadiskeleton gauge in which
the ordering condition is left out and the gauge is fixed onlydking X to be diagonal.

If one insists on using the abelian gauge this means one tdisremard Alice flux con-
figurations thereby ignoring a relevant sector of the th@owyhich its non-abelian nature
is manifest.

Another way to implement the skeleton gauge is not to use dargrarameter in the
adjoint representation but instead an order parametereirbtdimensional irreducible
representation. As follows from the discussion earlierhiis section such an order pa-
rameter is single valued in an Alice flux background. Moredkies order parameter can
also be used in a purgU(2) or SO(3) Yang-Mills theory because, as opposed to the
adjoint representation, the 5-dimensional represemtatpears in the decomposition of
the symmetric part 03 ® 3. Also note that for non-zero values &f the residual gauge
symmetry equals the electric part of the skeleton groupwisiZ. x U(1) in the SO(3)
case. General smooth configurations of suchXam the 5-dimensional representations
which correspond to a non-trivial equivalence classiSO(3)/(Z2 x U(1)) = mo(Z2)
give rise to string-like singularities which have to be aditie the effective theory in the
skeleton gauge. Also point-like singularities appearimtghie skeleton gauge have to be
taken into account. The smooth configurations from whicketsngularities arise define
non-trivial elements inr2 (S0(3)/(Za x U(1)) = m1(Z2) x m (U(1)). Sincemy((Z2)) is
trivial such point-like singularties are directly relatexdthe monopole singularities in the
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abelian gauge with the difference that the sign of the moleogtwarge is only defined up
to a sign in an Alice flux background.

Besides point-like and string-like singularities thereghtialso be plane-like singulari-
ties in the skeleton gauge or in the abelian gauge. We hazadliseen such singularities
in the skeleton gauge which correspond to a discontinuithef/(1)-generator in the
flux background. Such singularties can only be truly physi¢hey arise from a smooth
configuration defining a non-trivial element i (G/H). SinceG is connected in the
case we consider here, this homotopy group vanishes. Theaugethat all plane-like
singularities must be gauge artifacts.

Just as the abelian gauge cannot always implemented fog Alig configurations there
may be configurations which obstruct the implementatiorhef skeleton gauge. Such
configurations do indeed exist and correspond to topoldigistable flux solutions in
theories where the gauge group is broken a discrete (ndimapsubgroup ofSO(3)
which is not a subgroup df, x U(1). If one goes around such a flug, = 7,0, is
transformed to A¢h)(n) with h ¢ Zy x U(1) andn ~ o3 is mapped out of the CSA.
Note however that a suitabale gauge fixing parameter thatgéesvalued in the presence
of such a flux, transforms in some higher dimensional repttaiens and can in general
thus be not constructed as a composite field in a pure Yanig-tiory. Moreover, even
if a suitable parameteX can be constructed or X corresponds to a fundamental field,
monopoles will be confined in such a flux sector because thecfimfiguration corre-
sponds to an electric condensate that manifestly br&dks c SO(3). We thus have to
conclude that even though the skeleton gauge does not piiceei@rs of the theory and
thereby does not show its complete non-abelian symmetysitfficient to describe all
dyonic charge sectors.

The question is what theory is effectively described by #(3) Yang-Mills theory
in the skeleton gauge. The skeleton gauge is related to tletek phase as the abelian
gauge is related to the Coulomb phase. Hence the obviousded@ds Alice electrody-
namics. So itis an abelian theory together with a local ogajion symmetry. But just as
in the abelian gauge the theory contains extra degreesextdra corresponding to mag-
netic monopoles. In the skeleton gauge the effective thalsy involves an Alice flux.
We thus see that even though the residual gauge group ish®iasathe effective theory
should still be “manageable” since the non-abelian fagtonly manifest via topological
interactions mediated by the Alice flux.

The Alice phase o50(3) as well as the skeleton gauge are easily generalised to other
gauge groups. A generalised Alice phase is per definitionug@aheory with gauge
groupG broken to its electric skeleton growj;. It has an abelian subgroup correspond-
ing to the maximal toru§” but in addition features non-trivial (non-abelian) topgtal
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interactions. These topological interactions are indungdiscrete Alice fluxes which
correspond to the disconnected components of the skeletupg Note that two ele-
ments in the lift of the Weyl groupl” C S; are connected if they differ by an element in
T. Hence the Alice fluxes can be labelled by elements in the \§ipVV = W/D of
G,whereD =W nNT.

The appropriate Higgs field which generalises the symmutaeless Higgs used in the
SO(3) case is described as follows.NAfis the highest weight of the adjoint representation
of G then the Higgs should transform in the irreducible repres@mn with highest weight
2. The connection with th&O(3) case is seen from the fact that thie representation
is part of the symmetric tensor product Sn® ). Moreover to prove that this Higgs
does indeed breai to S.; one can use the fact that ea8lV(2) or SO(3) subgroup
corresponding to a simple root is broken dowriZq x U(1))/Zs or Zs x U(1).

The set of monopoles in the generalised Alice phase is iclrtt the set of monopoles
in the Coulomb phase where the residual symmetry edial¥he difference with the
Coulomb case lies in the fact that because of the presencédicef #uxes, monopoles
with charges related by Weyl transformations should betitled. We thus find that the
unified electric-magnetic symmetry in a generalised Alicage corresponds to the skele-
ton group ofG.

To introduce the generalised skeleton gauge one startagusttheSO(3)-case with an
adjoint tensotX and imposes the non-propagating gauge condition thatghsot should
be diagonal. As opposed to 't Hooft's proposal we do not g additional ordering
conditions. This implies that the eigenvaluesare ordered up to transformations given
by the Weyl group/. Consequently the residual gauge symmetry in the skeletogeagis
given by the maximal torus and in addition some discrete grhich does not commute
with T'. The elements of this discrete group are elements acting on the eigenvalues
of X as the Weyl group, i.e. they are elements in theWiftof V. The total residual
gauge group coincides wittV x T') /D, the electric subgroup of the skeleton group. A
more suitable gauge fixing parameter to define the skeletogegaould be to take& in
the same representation as the Higgs field used to introtieageneralised Alice phase,
since this order parameter is invariant under the actioh@eyl group.

We now claim that the effective theory for the Yang-Mills ¢ing with gauge grou- in
the skeleton gauge is a gauge theory generalising the Aleary described above. This
theory is up to (lifted) Weyl transformations an abelianatyewith additional monopoles.
The non-abelian character of the theory is locally invisiahd can only be observed in
topological interactions mediated by the expected Alicags.

From a fundamental point of view, where we want to uncoverdt@ electric magnetic
structure of non-abelian gauge theories it now becomestlahcompared to the abelian
gauge the skeleton gauge offers a richer perspective oryatlicicharge sectors of the
theory. It explicitly reflects the non-abelian nature of thigyinal theory by organising the
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spectrum of magnetically and electrically charged fieldsamplete Weyl orbits which
as we know are indeed degenerate. Also the neutral secpugr@distinctive quantum
numbers corresponding to irreducible representationeefeyl groupV. Since it is
merely just a gauge choice the skeleton gauge may in pranalpb be used to study other
phases than generalised Alice phases.

4.6.3 PHASE TRANSITIONS: CONDENSATES AND CONFINEMENT

In this subsection we want to determine phases af@xi3) gauge theory related to an
Alice phase and study the effect of condensates in sectoefida by the representations
of the skeleton group. Here we encounter an interestingalagbetween group breaking
and topological features, leading to an understanding veltam parts of the spectrum
are “swallowed” by the vacuum, while others become confitiedhe remainder of this
section we systematically analyse a number of conceivalridensates and describe the
phases associated with them.

Starting from the generalised Alice phase, let us considercase where the neutral
vector particle condenses, i.e. a condensate in the sgetd®, 0]). Such a conden-
sate breaks$ to T'® T* . This phase is indeed different from the original Alice phas
because the Alice string is confined. This means that pessibked loops of Alice
string, which had an energy proportional to length in theleth@ phase, become pan-
cakes with energy proportional to the minimal area spanydtidloop. The topological
argument is simple: in the new phase topological domainsialim, these are labelled
by mo(G/H) = mo(S/(T x T*)) = mo(Zz2) = Za, and the Alice loops will become the
boundaries of these walls. Since the Alice fluxes disappear the bulk opposite electric
and magnetic charges are no longer equivalent and thertbkeleton representations
split intoT" x T™* representations. This is the Coulomb phase, and as suckdnmdh-
ing but the abelian gauge description of & (2) theory given by 't Hooft as discussed
above.

Let us now assume that in addition a charged vector bosoreimepresentatiof2, 0)
condenses. Note that this consenstate bréaksS completely and hence we end up in a
Higgs phase. The residual symmetry group is givefi’byand topology is changed since
now one has a spectrum of magnetic fluxes corresponding to

(T x T*)/T*) = my(T) = Z. (4.92)

This implies that the theory is in a phase where magnetic $laxe forced into magnetic
flux-tubes. These flux tubes match the allowed magnetic elsdargthe theory and one
should expect all monopoles to become confined. More pigcidee minimal confined

flux equals one fundamental flux quantum corresponding tbuthgamental weight of the
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magnetic dual groupU(2). The derivation of this fact is closely related to the deriva
tion of the Dirac quantisation condition for the allowed matic charges as discussed in
section 2.3.1. If we move a particle with electric chadge 7Z around a flux tube with
flux e*9™ € U(1) the state of the system picks up a phase factst™. Hence if we move
the charged vector boson around a fundamental flux tube gvith 1, the state of the
system is single valued and one can consistently think of¢lector boson a absorbed by
the vacuum. This observation about single-valuednessshafldourse for any particle
whose electric-magnetic charge is an integer multipl€20f)) and hence if a charged
vector boson condenses the complete purely electric sactoally condenses. A dyon
with charge()\, gy, whereg # 0, becomes confined. This follows from the fact that such
a dyon originates from the tensor product representétion) @ (0, g).

Note that a monopole with unit charge will have a single fllbetattached which reaches
to infinity, while a monopole with charge 2, correspondingteroot ofSU (2), can have
two fluxtubes. These observations are the three-dimerisioabogue of what is encoun-
tered in two-dimensional situations studied in for exanj®8j.

Itis interesting to see what would happen on the boundarg. Urtit flux in the bulk de-
fines the unit flux on the boundary. In the boundary theory tbeaopole is an instanton
in the sense that tunnelling of a unit flux is allowed via a n@rie-antimonopole pair in
the bulk. Consequently on the boundary there is no noratnwagnetic flux sector. Since
in the bulk theory all electric charges are condensed, atgdnsectors in the boundary
theory are identified with the vacuum. The boundary theothus trivial.

We shall see that the boundary theory becomes non-triviakifconsider a bulk con-
densate in thd4, 0)-representation which break x T* to Z; x T*. The minimal
confined flux is now half the unit flux; if we move(d, 0) state around this minimal flux
the state of the system does not pick up a non-trivial phagerfand(4, 0) can consis-
tently be identified with the vacuum representat{on0). Note that this actually holds
for any(4n, 0)-representation as consistent with the fact that gaugepgsdwroken down
to Zo x T*. We again see that all monopoles are confined but the unit paladas
two flux tubes attached instead of only one, which implies tha minimal confined flux
tube cannot break up into a series of monopole-anti monggaits. This gives rise to a
non-trivial flux sector with half a unit flux. Together withgtunneling of unit fluxes via
monopole-antimonopoles pairs in the bulk this gives risa tnagneticZ, factor of the
boundary theory.

To understand the electric content of the boundary theorfinsemake some observa-
tions about the bulk theory. The condensation of electyicdlarged particles means that
at long range their charges are screened. Since all sudblesiinteract via the same
Coulomb field we should actually say that this field and theebCoulomb interactions
are screened at large disctances. Nonetheless, as prahertivo-dimensional case [94],
one should expect all topological interactions, mediatethb magnetic fluxes, to survive
at longe range. If we move a particle with electric chatgearound the minimally con-
fined flux tube, the state of the system pick up the phase factor which is non-trvial
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forn = 1 modulo2. Particles that can pick up a non-trivial phase factor ateaondensed
and give rise to one non-trivial charge sector in the bounttegory. The complete pic-
ture is that on the boundaryZ, discrete gauge theory [34]. This is consistent with the
arguments which one may separately apply to the boundaoyytfi@3].

We should make the following remark: there are phases tleadlifficult to describe in
this language, or better in this gauge. For example the befisan phases, corresponding
to discrete gauge theories. Cert&ip and D,, models are accessible because their group
can be embedded ifl,;. The other electric discrete non-abelian phases can beamsd h
been studied starting from the electric theory [34].

One could also break tHE* by a monopole condensate in say the2) representation of
T xT* C S. Now electric flux tubes develop which are quantised thatimtite possible
electric charges in the theory. In this phase one shouldekpsct that electric charges
are confined.

Here applies a fortiori what we said about the non-abelianrdie phases. We have not
proven the existence of a non-abelian purely magnetic syingimough undoing the
abelian gauge to the magnetic side one could imagine torobtaih a phase. Our find-
ings in previous sections about the skeleton group and & ahe certainly consistent
with this hypothesis.

We also want to see what happens with dyonic condensatesusLééfine an exterior
product notation between two representatiofasb] A [c,d] = ad — be. If we identity
the weight lattice 0ofSO(3) with the even integers we can write the generalised Dirac
condition for dyons simply as the condition that the wedgedpct equal®n for some

n € Z. The condition for confinement given a condensat&:06] is now that a repre-
sentation[c, d] will be confined if|[a, b] A [¢,d]| > 2. This is so because exactly those
combined electric-magnetic fluxes allow a single valueduuat state. Conversely, the
only representations that anet confined are those for which the exterior product with
the condensate vanishes, which implies the conditibr bc = 0 ora/b = ¢/d, in other
words the electric-magnetic vectors have to be paralleé Jéneralisation to higher di-
mensions should be similar but now we have the inner prodattgeen vectors o and

A* in the exterior product{a, b] A [¢,d] = @ - d — b - & The condition for confinement
that the norm of the exterior product must be larger or eduat £ remains roughly the
same. Note however that the condition to not be confined alfowmany more solutions
in this situation.

The attentive reader will no doubt have noticed that we haxerflooked” one possi-
ble phase that should be part of our analysis. The questishas happens if in our Alice
phase the Alice strings themselves condense? This paissitzis been considered before
[95], but the physical implications of such a condensateeweat. The crucial property
in the unbroken phase is that electric and magnetic chaayede:localise into so-called
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Cheshire charges, which are rings of Alice flux carrying a-fomalised charge, meaning
that any closed surface containing the ring may contain eciréd or magnetic charge,
but it cannot be localised any further. This makes clear watituation is like when
the Alice strings condense: both the notions of electric lmwagnetic charge lose their
physical meaning. Another way of saying this would be to $&t both types of charge
can spread (non-localisable) and neutralise any sourisemibans that both electric and
magnetic charges will be completely screened. The pastilevive as neutral particles.
Another way to look at this is from the skeleton group breglinint of view [93] where
oppositely charged representations would be identifiedearetfective low energy theory,
and the photon would acquire some screening mass linkea tgEv of the Alice loop
operator.

We finally note that it is very interesting to investigate pbs that emerge from a con-

densate that partially breaks the (lifted) Weyl group syrmnia the case of higher rank
groups.
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APPENDIX A

THE ALGEBRA UNDERLYING
THE MURRAY CONE

As announced in section 3.1.4 we shall construct an algebigect whose set of irre-
ducible representations corresponds to the fundamentablylaone. We do this in such
a way that the fusion rules respect the fusion rules of thielwasdual groupHd*. We
shall start out from what is roughly speaking the group algeif H*. Next we intro-
duce its dualF'(H*). By dualizing again we find an objeét*(H*) which again should
be thought of as the group algebra@f. The difference, however, is that in this new
form the group algebra can explicitly be truncateditp(H*) in such a way that the
irreducible representations are automatically restlitbethe fundamental Murray cone.
The nice feature of our construction is that it is very gehe8sarting out from any Lie
group and any subset of irreducible representations closddr fusion we can construct
a bi-algebra which has a full set of irreducible represématcorresponding to the subset
one started out with and whose fusion rules match those @frthg one started out with.
At the end we briefly discuss the group-like objéft which has the same irreducible
representations and the same fusion ruleBag7*). For most common consistent trun-
cations of the weight lattice a7 * one knows that7; is obtained fromi* by modding
out a finite group. If one restricts the weight lattice to tharkhy cone, however]; is
not a group any more.

As a groupH* has a natural product and coproduct:

h,l X h,Q = hlhg (Al)
A(h) =h® h. (A.2)
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In addition there is a natural unit co-unite and antipodeS by

l=ec H" (A.3)
e:h—1eC (A.4)
S:hws h7l (A.5)

For a finite group one can immediately define the linear ext@sf these maps on the
group algebra off*. For a continuous groups there are several ways to definetarvec
space with this Hopf algebra structure. We shall circumttdatdiscussion by considering
another algebra which is manifestly seen to be a vector spettis is the Hopf algebra
corresponding to the matrix entries of the irreducible espntations off*. Let 7* be
such a representation. For the matrix entries we have:

TN 2 h € H = (7 (h)) g € C. (A.6)

The set of finite linear combinations of such maps is obvipaslector space. The result-
ing set turns out to be a Hopf algebra and inherits a natucalymt, coproduct, co-unit
and antipode fron# *.

The product inF'(H*) is directly related to the product of representations amdlcas be
expressed in terms of Clebsch-Gordan coefficients, see<éongle chapter 3 of [96] for
the SU(2) case. The coproductis much simpler because ityrreftects the fact that the
product of H* is respected by the representations. To see this note that

A A A A
7Tmllml % 7Tm22m2(h) =T 11 ] ®7Tm22m,2(A(h)) =

A _ )\ A _
mlm, ®m 22 (h®h)= ”mllml (h)7rm22m,2 (h) = (A.7)
A1 A2 A A1 A2 A A
Z C'ml1 72n2 m1+m2Cm11,12nQ,m +m 7Tm1+m2,m +m (h)
and
A( mm’)(hl ® h2) - 7TWVm’(hl X h2)
h1h2 Z 7Tms Tsm/ Z Tms ® 7T hl ® h ) (A8)
The product and coproduct dni( H*) are thus completely defined by:
A A A1 A2 A A1 A2 A A
ﬂ—mllm'l X 7Tm22m/2 = Z Cm11772n27m1+m2 lel 72112 my+m/, Ty +ma,m)+m} (A.9)
A(r),) = Z V- % A (A.10)

To find the unitl € F(H*) and the co-unit of"(H*) we note that these are defined in

106



terms of their dual counterparts by:

1(h)=eh)=1€C (A.11)
e(mh ) =10 (€)= Smms € C. (A.12)

mm/’

From the first equation it follows that the unit ii(H*) is given by the matrix entry of
the trivial irreducible representation &* while the co-unit of F(H*) is related to the
entries of the unit matrix in th&-representation off *.

The antipode of"(H*) is defined byS(w), )(h) = 7). . (h~1). In the end, however,
we will only be interested in the bi-algebra structure. Toidwnnecessary complication
we will ignore the antipode.

To retrieve the group algebra éf* we shall again take the du@l*(H*) of F(H*).
This space of linear functionals is generated by the baeiaerhtsfﬁ’. These are defined
in the standard way by:

fllf/ : 7T7>;Lm/ e F(H*) — fill(ﬁzlm/) = 0\ 0imOrm: € C. (A.13)

The product and coproduct &f*(H*) can be defined in terms of their counterparts in
F(H*).

11l l2l] A 11l I21] A
#11 b X f#222(7rmm’) = #11 ! ® f#222(A(Trmm’))
110} 21, A A IV Ialh /X
= Nlll ®fﬂ«222 (Zﬂms@)ﬂ-sm/) :Zfﬂlll(ﬂms) P«222(7Tsm/)
s s

= E 11 AO13m 01 5015 X015 501 m! = Oy s 014 15 0 1o AOLy m Oty
S

(A.14)

-5 5 Ll A
= Opap2Olla J p2 (ﬂ-mm/)

i A A e _x A
A(fﬂ )(T‘—mllm’1 ® ﬂ—ngm;) = fﬂ (7T17111m’1 x ﬂ—ngm;)

_ A1z A1 A2 A Wi _x
- Z Cm1-,mz,m1+m2cm’1,m’2,m’1+m’2fu (ﬂ—ml—l—mg,m’l—i—mé)
A

— E A1A2A A1 A2
- Cm1 yMz,m1+msz Om’l ;mb,m +ml 5#”‘5“”1 +ma O my+my
A

_ s A1 dag (A.15)

!’ ’ !’
mi,m2,mi+ma~'m} ,mbH,m}+m} 51-,m1+m2 4 ,mi+ml

— K12 b YL 2 [

= g Cltot Ol 041200 1441 O 3 O ma Oty g Opao 3o Oty Oty
_ A2 b Y 2 Il A laly ¢ As

= E 011,1271 Ozfl,1'2,1/5l,ll+lz5l’,l’1+l’2fm (ﬂ-mlm’l) B2 (ﬂ-mlm’l)

— O o2l g ) il ®fl2l/2( A1 ® A2 )
= Ui,la,l U1 LI +029007,1 415 J pa 2 ﬂ-mlm’l ﬂ-m2m’2
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The product and coproduct di* (H*) are thus completely defined by:
ll‘llll x fl2l N1M26l/l2 lll (A.lG)
f”, Z Cﬁlzzucﬁlﬁzﬁél l1+l12 61’ U +14 1 & f,llt22l27 (Al?)

where the sum in the last line is ovir l2, 11,1}, 11 andus. Note that this sum has an
infinite number of non-vanishing terms corresponding tophas of irreducible repre-
sentationg 111, p2) whose tensor product contains the irreducible repredentaf H*
labelled byy..

One can easily check that the unit and co-unit6{ H*) are given by:

1=> ! (A.18)

Ll
(/1) = 8,0010010- (A.19)

Just as the coproduct, the unit is not properly defined bedaissa sums over an infinite
number of basis elements with non-vanishing coefficientss & just a formal problem
because the finite dimensional representatiords*¢f *) will only pick out a finite num-
ber of elements as we shall see below.

We can now truncaté™(H*) to F; (H*) by projecting out all functionalﬁm' that
do not satisfy the Murray condition faF — H. This means that we will project out
all functionals withy not in the Murray cone\,. The Murray condition can thus be
implemented by using the following linear projection ogera

. emm/ mm'y _ 0 If:u’¢A+
P fmm e P(fT )_{ e Ay (A.20)

The product and coproduct of this truncated bi-algebra &engoy:

111} 121}

T 12 = 6Oy, (A.21)
f” ZC{?{;Q“CM?% L1200 1y 41, P (f Ll Y@ P(f, l2l 2), (A.22)
Similarly, we have for the unit and co-unit:
1= P(fh (A.23)
il
E(f,lfl) = 6,00100170- (A.24)

We shall now turn to the representationsfof(H*) and F'; (H). First we will introduce
the set{7*} of representations of*(H*), where{\} is the set of irreducible represen-
tations of H*. We define these representationdtf H*) by:

N f e Y, (A.25)
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where the matrix entries are given by
(WD) = ). (A.26)

This definition ensures that the representatigms} respect the product df* (H*). The
representations® defined here can thus be identified with the irreducible sgrations
of H*. Below we shall prove that” itself is actually an irreducible representation of
F*(H*) and moreover we will find that these representations canstthe full set of
irreducible representation éf*(H*).

Next we want to consider if the representatiorisof [*(H*) are also representations
of the truncated algeb&; (). For ['*(H*) the representations above all satisfy

1) = 7 (Z ff}) ~ I (A.27)

However, in F'} (H*) we find for the representations labelled hynot satisfying the
Murray condition:

(1) = (Z P(f}j)) —0. (A.28)

Since suchr* does not respect the identity this is not a representatidff ¢ *). Hence
for F'¥ (H*) we must restrict to the truncated set of representat{antg satisfying the
Murray condition. This last set of representations is obslipin one-to-one relation with
the magnetic charges in the fundamental Murray coné;fer H. Below we shall prove
that this is the complete set of irreducible representatafd’; ().

We will construct the irreducible representationg'df(/7*) and F'; (H*) out of the rep-
resentations of a set of subalgebras. Eg&tdenote eithed™ (H*) or F'{ (H*). The
subalgebras denoted iy C F* are generated b{/fil'} with fixed dominant integral
weight\. In the case of; (I{*) we of course restrick to be a dominant integral weight
in A;. Note thatUy Fy = F*. It follows from the product rule (A.16) or (A.21) that;

is indeed closed under multiplication. The identityin F is expressed as:

Lo=> f. (A.29)
l
These elementk, € F* satisfy:
fx1Ly=1yxf VfEF* (A30)
> l=1p- (A.31)
A
1)\ X 1)\/ = 5)\)\/1)\. (A32)

We can use these properties to characterize the irredueiptesentations of . Let V'
be any irreducible representation Bf. It is easy to see that for any the imageV,
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Appendix A. The algebra underlying the Murray cone

of V under the action of  is itself a representation af*. This follows from the fact
that anyf € F* commutes withl, as expressed by equation (A.30). thus contains
invariant subspaced/, }. For irreducible representations all invariant subspanest be
trivial, i.e. equal eithe{0} or V. Since any representation 6 respects the identity
17- we find from (A.31) that for at least onewe must havé/, # {0}, henceV, = V.
Note that) is unique sincé’y, = {0} for X’ # A as follows from (A.32). Consequently
any irreducible representation 6 is labelled by a dominant integral weight It now
follows from the product rule of™* that any £ e F}, with X’ # \ acts trivially onV,.

An irreducible representation df* thus corresponds to an irreducible representation of
Fy. Fortunately the irreducible representationgfare easily found.

Note that the label$ and!’ of F} take integer values if1, ..., n} wheren is the di-
mension of the irreducible representatiohof H*. As it turns outF;' is ann x n matrix
algebra and itis a well known fact that such an algebra hasgmeirreducible represen-
tation of dimensiom. For completeness we shall prove this now.

Fy has a commutative subalgebﬁﬁdiagj generated by the elemenf§. Let us con-
struct the irreducible representationsl@jdiag. Since the algebra is commutative its
irreducible representations are 1-dimensional. tdie such a representation. From
m(fIH? = 7(fl x i) = () we find thatr(fL!) equals either 0 or 1. If we assume
the latter for a fixed valué of [ then we have fot # k:

m(f) = 7 (fN)m () = m(£3F x f) = sun(f) = 0. (A.33)

Note that since the unit af; % must be respected(f{) cannot vanish for all. The
irreducible representations &% %29 are thus given by:

e fﬁ\ll, — 0. (A.34)

Any non-trivial irreducible representatign, V') of F;; can be decomposed into a sum of
irreducible representations 65929, Hence there isa® € V such thatr(f2)v* = §0".
Let us define a set of vectors inV by v™ = 7(f{**)v*. The span ofv™} defines an
invariant subspace df. This follows again from the product rule:

w w kv, k w ky, K
m(fx )" =a(f3)m(fI)T =N x )

(A.35)
= Spmm (FE)OF = Syl

Sincer is irreducible the span dfu™} is V.

The claim is thatV’ is n-dimensional. In order to prove this we have to show that the
vectorsv™ are linearly independent. If

> amv™ =0 (A.36)
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one finds from (A.35):
Y (Z %v’”) = ap! = 0. (A.37)

So eithera; = 0 orv' = 0. However,u! = 0 together with the product rule and the
definition of v™ implies thatv™ = 7(f{*)v! = 0. This would mean that’ = {0}
contradicting the fact thadt is non-trivial i.e. at least one dimensional. We thus find tha
an irreducible representation 6% is n-dimensional and moreover it follows from the ex-
plicit action on a basis of” as in equation (A.35) that such an irreducible representati
is unique up to isomorphy.

We have found that an irreducible representatior'dfis completely fixed by a domi-
nant integral weighi in the appropriate weight lattice. The dimension of suchreet i
ducible representation is given by the dimension of thaliroible representation df *
with highest weight\. To find the fusion rules for these representations we go back
the representationgt*} introduced in formula (A.25) and (A.26) via the matrix easi
of the original H*-representations. The dimensions of these represergati@ngiven
by the dimensions of the corresponding highest weight ssprations of{ *. Moreover
they satisMA(le/) = 0 for u # A, i.e. 7 defines a representation 6. By compar-
ing (A.26) and (A.35) one finds that* corresponds precisely to the unique non-trivial
irreducible representation d@f;. We conclude that the representatidns } are the irre-
ducible representations @f*. Since the labels, the matrix elements and hence also the
dimensions of these irreducible representations matcdethbthe irreducible representa-
tions of H* is seems very likely that the fusion rules for these repriegiems of F'* are
also identical to the fusion rules of the correspondifigrepresentations.

We have seen that the representatiorF¢f H*) are identical to the representations of
H*. One might thus wonder to what exteHt and F*(H) are equivalent. IfH* is a
finite group one would find that™*(H*) being a double dual c€H* is isomorphic to
the group algebr& H*. Since in our case&l* is a continuous group one has to take
care in taking the dual. Nonetheless one can ddfi(l*) as the dual off * via the irre-
ducible representations éf*. Similarly, one can retriev& * from the co-representations
of F*(H). These co-representations are nothing but the represergtatf 7'(H) which

is the dual ofF™* (H). Let us illustrate this foid* = U(1).

An irreducible representation éf(1) is uniquely labelled by an integer number. It is not
very hard to check from equation (A.7) that the produck¢¥/ (1)) can be expressed as:

oo =gt (A.38)

SinceF(U (1)) is commutative its irreducible representations are 1-dsianal. An ir-
reducible representation thus sendsto somez € C. It follows from (A.38) that the
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Appendix A. The algebra underlying the Murray cone

representation is completely defined ay
z:m"— 2" e C. (A.39)

Not all values ofz give a representation df (U (1)) though. To give an example we note
thatr—! is mapped ta—!. This goes wrong fot = 0. For eachx € C\ {0} one does find
a proper representation. Itis easy to check@\af0} is a group. Obviously this is not the
groupU (1). As matter of fact we have reconstructed the complexificdtil )c of U (1).

To understand this we note thd{1) has an involution which takés— h* = h=1. The
representations df (1) respect this involution in the sense thiat'(h))* = 7™ (h*). We
therefore have a natural involution é# (U (1)) defined by(7™)* = #—™. Again one can
define the representationsB{U (1)) to respect the involution, i.¢z(7™))* = z((7™)*).
This results in the condition® = ~~! which restricts: to the unit circle inC, i.e. toU (1).

For SU(2) broken toU (1) the Murray cone is the set of all non-negative integers. This
implies that the duak (U (1)) of F'{ (U(1)) is generated byn™ : n > 0}. The product

is still given by (A.38) and hencg, (U(1)) is a commutative algebra. Again we define
an irreducible representation by — = € C. Since the representation should respect the
product we find that the choice efcompletely fixes the representation, ke.x" — 2.
One might again wonder if all values efgive a representation. Note th&t (U(1))

is not closed under inversion just as the Murray cone is ragerl under inversion. For
exampler—! ¢ F, (U(1)). The representation labelled by= 0 is thus not immediately
ruled out. Note that for = 0 we haver™ — 0 for all n > 0. The image ofr® seems
undetermined, nonetheless we canzget’) = z € C for = = 0. The representation we
now obtain does respect the product if and only,iequals eithed or 1. But sincer? is

the unit of the algebra it should be mapped to the uni.oHence we find that(7°) = 1

for all z € C and in particular foe = 0.

We have found that we should identij(1) with C. The complex numbers are indeed
closed under multiplication and moreover this multiplioatis associative. On the other
hand there is no inverse. We thus see tigt) is a semi-group and not a group as
U(1). Let us finally connect both ends of the circle and see if tharoatative alge-
bralU(1); = C has the appropriate irreducible representations. Oblidiiél), has
representations™ for n. > 0 defined by:

"z 2" (A.40)

Representations with < 0 do not exist because the image:of 0 would not be defined.
Finally the representatiorf’ is a bit tricky. One can, however, simply defin&(0) = z,.

It follows from the product orC that z, equals eithef) or 1. If, however, we restrict all
representations to be continuous we figd= 1. It is now almost trivial to check that
the fusion rules ot/ (1) correspond precisely to the fusion rulestofl). It would be
interesting to study if a smooth semi-grofiff can be defined for every possible residual
dual gauge groupl *.
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APPENDIX B

WEYL GROUPS

In this appendix we first review and list the Weyl groups of ttessical groups. For

some simple examples we consider their irreducible reptatiens. For a more detailed
discussion we refer to e.g. [97]. These are used in appentixy@rk out some examples
of proto skeleton group representations. The charactéhedfeyl group representations
can be used to determine the fusion rules for the related gkatieton groups.

B.1 WEYL GROUPS OF CLASSICAL LIE ALGEBRAS

The Weyl group is generated by reflections in the hyperplartesgonal to the roots and
thus consist only of orthogonal transformations. This igylie structure of the Weyl
group becomes particularly evident when an orthonormakhafsthe weight space is
used. To streamline matters even more one can put an additeouirement on such a
basis, namely that the coordinates of any root are integedveden -2 and 2. Such a basis
exists for every classical Lie algebra except = su(r + 1). However in this case it is
still possible to accommodate this requirement by chooamgmbedding of the weight
space inR"*!. Thus will of course not give the familiar roots sfi(r + 1) in R", but
this more unusual embedding is particular convenient foivitgy the Weyl group. In
table B.1 below we have listed these roots in terms of theseddar the classical groups,
while in figure B.1 we have drawn the root diagrams for the $&sipcases. For these
examples it is quite simple to find the Weyl groups, and usiregroots as expressed in
table B.1 it does not require much more effort to generatiseny rank. First fosu(r+1)
we see that the fundamental reflectionin the hyperplane orthogonal to the simple root
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Appendix B. Weyl groups

g Dynkin diagram simple roots positive roots
A | O—0O--0——0 |e—ey 1<i<r ei—e 1<i<j<r+4l
e; — e; 1<i<r—1|e+e; 1<i<j<r
B, | O—0O---0>=0 +1 J J
Er €4 1§’L§T‘
e; — €; 1<i<r—1|exe; 1<i<ji<r
c | O—0O—0=0 +1 j J
2e, 2e; 1<i<r
D. O<8 ei—eir1 1<i<r—1|ezxe 1<i<j<r
6r—1+6r
Table B.1: Roots in the orthonormal basis
su(2) s0(4)

50(5)

sp(4)

FigureB.1: Root diagrams in the orthonormal basis
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B.1. Weyl groups of classical Lie algebras

o; = e; — e;11 acts on the orthonormal basis as

€ < €i41
N B.1
W { ejr—e; forj#di+1. (B.1)

In other words the fundamental reflectiansinterchange the coordinates of a weight
wi s A= (A1, A At A1) = (A, A, Ady e Arpn) (B.2)

and thereby generate all possible permutations of thel coordinates. We thus see that
the orthonormal basis is convenient to derive the commomnbunkfact that/V(su(n)) =

S,,. For the other classical Lie groups, the first 1 fundamental reflections again gener-
ate all permutations of the coordinates of the weights. The reflection in the hyperplane
orthogonal to the'th root however also involves a sign change. For hgif2r) and
so0(2r + 1) we have

Wyt A=A, A ) = (A, =), (B.3)
While therth fundamental reflection iV (so(2r) we actually have two sign flips since
Wy : A= (/\17 . 7)\7”—17 /\r) = ()\1, ey _)\T—la —)\T). (B4)

We conclude that the Weyl groups of these three Lie algelntasygpermuting the coor-
dinates in the orthonormal basis and multiplying them bysig=or\V(so(2r) we have
the additional condition that only an even number of sigrsflgpallowed. The transfor-
mations with only a single sign change are actually the syirieseof the roots system
induced by th&Z, symmetry of the Dynkin diagram.

It is very important to note that the permutations and thae §ligs are not independent.
Pick any elementv in the Weyl group that only changes signs:= (s1,...,s,) with

s; € Zs. Conjugation of this group element by a pure permutatioaturns again a pure
sign flip element. But the positions where the sign flips ot@awe been permuted:

ﬂ-(Sla tee 57’)71'_1 = (571'(1)3 R ST((T‘))' (Bs)

From these considerations it follows that the Weyl groupp@r), so(2r+1) andso(2r)
have the structure of a semi-direct product as given in thie taelow’

g w
su(n) Sn
s0(2r+1) | S x Z5.
sp(2r) | S, x 73
s0(2r) | S, x Z5?

INote that there are exceptions. Obviously the Weyl groupo¢) = su(2) is not a semi-direct product.
Forso(4) = su(2) x su(2) the action of the permutation group is also trivial.
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B.2 REPRESENTATIONSOF THE WEYL GROUP

The Weyl group ofSU (n) is the symmetric groug,,. The irreducible representations
of the symmetric group are well known. The simplest nonatigase isSy ~ Z,. This
group has two 1-dimensional irreducible representatigvesshall denote the trivial rep-
resentation byl,. For the non trivial representation we shall wiite. Computing tensor
products ofZ, representations is very eady; ® II; = IIy. BesidesS; we shall be using
S3 in some of the examples in the upcoming sections. Thereferbave summarised
some facts basic facts in the character tables of these glmipw.

I, 1L
Sa T H
e 1 1
w1 1 -1
S I I, I
{e} 1 1 2
{wl, wa, wg} 1 -1 0
{wiws, wows} 1 1 -1

Except in the case U (n) the Weyl groups of classical groups are semi-direct praduct
of the symmetric group and a normal subgroup that equals gonver ofZ,. Hence to
find their irreducible representations one can use the rdathnduced representations
as reviewed in section 4.4.1. In practice this means thatanessign either a trivial or

a non trivial representation to eaZh factor. These factors are permuted by the action of
the symmetric group and their representations are intagdgthaccordingly. Hence the
representation of the Weyl group will have an additionakgkaorresponding to the sub-
group of permutations that do not interchange trivial and-trivial Z, representations.

We finish this section with an example which we will be usingtan. We shall com-
pute the character table ¥9(Sp(4)) = Sz x (Z2 x Z3). This Weyl groups is actually
the dihedral groupD,, the symmetry group of the square spanned by the fundamental
representation a$p(4), see figure B.2. This group has 8 elements which we denote by
(m,51,82) € Sa X Zso X Zs. The semi-direct product structure shows op in the muitipli
cation of 2 elements(r, s1, s2) (7', 51, 85) = (77, 5187, 5287 (5))-

The 8 group elements fall into 5 different conjugacy clasge&h can be represented by
the following group elements: = (1,1,1), w; = (1,—1,1), wy = (—1,1,1), wiwy =
(—=1,—1,1) and finallywywowwe = (1,—1,—1), wherew; andw- are the reflections

2Since the Weyl group a$O(2r) has has on&, factor less, its irreducible representations will havergua
tum numbers corresponding to some subgroug,of .
3Notice the change in ordering of the simple roots with respetable B.1.
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in the axes perpendicular to, andas. wyws is a rotation overr/2. ConsequentlyD,
has 5 irreducible representations.

Four of these irreducible representations are quite eadindo They correspond to
Zo x Zs charges that are left invariant by ti¥ action, i.e. these representations have
a quantum number corresponding to the &l group. Thereby we find the following
one-dimensional representations:

H(i1,i2,i2) : (71', S1, 52) = Hh (W)Hlé (Sl)Hi2 (52)' (BG)

Two remarks should be made. First note that these repréiserstare invariant under the
Ss action, they do not depend on the ordersgfands,. It is therefore trivial that these
representations respect the group multiplication of thmigbrect product. Second, the
characters for these representations can be computedysimgiounting signs, see the
table below.

To find the last irreducible representation Bf, one starts withZ, charges(iy,iz) =
(1,0). First note this pair is only invariant under the action d# thvial element inSs.
This implies that we have an irreducible representatiohaevit an additional,, which

we shall denote byl o). Furthermore it is good to remember that the representation
with charges in an orbit af; are equivalent, e.dl(; o) = Il (g 1)-

To find the characters of this last irreducible represemtatine can use equation (4.35)
with ox € H4/(ZQ X Zg) =&,. Since(w, S1, SQ)O'ﬂ—/ = Orn/, WE find

0 form#e

B.7
S x (T (s1,82)7) = 51+ 52 form =e. 87

(w2 = {

FigureB.2: The fundamental representation.®f(4).
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Sa X (Za xZa) | Hiooo) Haoo Heoay oy g
(+1,+1,+1) 1 1 1 1 2
(+1,+1,51) 1 1 1 1 0
(=1, +1,+1) 1 1 1 1 0
(—1,+1,51) 1 1 1 1 0
(+1,-1, 1) 1 1 1 1 2

Table B.2: Character table of the Weyl group &f(4) andso(5).

118



APPENDIX C

PROTO SKELETON GROUP FOR
CLASSICAL LIE GROUPS

Below the representation theory is considered fro the pshébeton group associated to
the groupsSU (2), SU(3) andSp(4).

C.1 PROTO SKELETON GROUP FOR SU(2)

In this section we compute the irreducible representationkthe characters of the proto
skeleton groupV x (T' x T*) starting out from a Yang-Mills theory withy = SU(2).
The Weyl group ofSU(2) is of courseZ,. The maximal torug” of SU(2) is simply
the subgroud/(1) C SU(2) generated by, = o3. The dual group ofSU(2) is
SO(3) = SU(2)/Z,. We thus find thaf™* can be identified witt/ (1) /Z, whereU (1)

is generated by; andZ, is generated by-I. We thus see that if we identify the electric
weight lattice with the integer numbers the magnetic welgttice is given by the even
integers.

An irreducible representation @f x T is labelled by a paif2), 2g) = (n,n*) € Z x Z
with n* even. The Weyl groufd, acts on these pairs 48,n*) — (—n,—n*). Hence
only (n,n*) = (0,0) has a non-trivialZ,-centraliser. In this case the centraliser actu-
ally equalsZ,, and therefore the trivial charges together with the ircéiole centraliser
representation gives us a one-dimensional irreduciblesemtation oZ, x (T x T*):

0,0 ¢ (w, g, 9) = Ii(w). (C.1)
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If either the electric or the magnetic charge is non-trivialwill obtain an irreducible rep-
resentation of the proto skeleton group which is inducethftoell,, ,,-) representation
of T' x T*. As described in section 4.4.1 such an induced representaticonstructed
by using the action of the group on a coset space. In this basgoset space is the proto
skeleton group modded out By x T, which is isomorphic to the Weyl groufs,. Since
there are two cosets the induced representation is two dimegd. \We shall denote these
representations by, .-}

Before we continue to discuss the tensor products of thesdicible representations one
last remark should be made: Irreducible representatiotiiscliarges related by the action
of the Weyl group are equivalent, i.Hy, - = II;_,, _,+). For the pure electric repre-
sentations witm* = 0 this means that the representation is defined unambigubysly
the absolute valups|.

The fusion rules for the proto skeleton group can be comphyeevaluating equation
(4.42). This gives the following results. If the charges z&eo one simply retrieves the
Zo fusion rules. For nonzero charges one finds

(i,[0,0]) ® [n,n*]) = [n,n"] (C.2)

[nla nﬂ ® [nQa n;] = [nl + TLQ,TLT + TL;] D [nl - TLQ,TLT - n;] (CB)

If the charges are equal (up to a Weyl transformation) thegofurule is slightly different
[n,n*] ® [n,n*] = (0,[0,0]) & (1,0, 0]) & [2n, 2n*]. (C.4)

These fusion rules can be understood from two perspectiviest, if we take either the
magnetic or the electric charges zero we obtain the fusis f O(2). This should not
be surprising at all sincg,; x U(1) = O(2). Second, the fusion rules above are nothing
but a logical extension and respect the fusion rule&[df x A*| as discussed in section
4.4.4.

C.2 PROTO SKELETON GROUP FOR SU(3)

The next example we are going to work out corresponds t8@(3) theory. All that
we shall do here is repeating the recipe from the previousosedNonetheless, the Weyl
group ofSU(3) is truly non abelian and therefore the representation thefthe related
proto skeleton group is potentially much more interestiBg.the same token it is also
much more complicated. We shall still be able to work outradiducible representations.
We shall deal with the fusion rules on the other hand on a casase basis.
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C.2. Proto skeleton group for SU(3)

To avoid too much cluttering we shall use a compact notatiohuse? to denotel” x T*.
Thus for the proto skeleton group we write x 7. As before we should start by choos-
ing the charges corresponding to thi€1) factors in7, and determine the centraliser
subgroup. Th& charge which we denote hyhas 2 components, one related to the elec-
tric charge and one to the magnetic charge. Each of theseawnfs correspond to a
point in the weight lattice 06U (3), the magnetic charge however is restricted to the root
lattice. The Weyl group acts on the chayggeTo visualise this action one take 2 copies
of the SU(3) weight lattice. The Weyl group acts on these charges simedtasly. It
follows that the centraliser gf is simply the intersection of the electric and the magnetic
centralisers. We distinguish 3 different classes of Wepltsr with either 1, 3 or 6 ele-
ments, corresponding to 3 different classes of representanf the proto skeleton group.

° @ —/—2 —- ° «
/ \
0-/——-0----%-9
/ AR
0--/1——/-® @5 -
N,y A2 \ A V7
v - —@--F -\ - /
IN SV VAN AN
\/ /

o , /) TR S /V \
WA \ 7N SN N
N @ O @
/\\ A\, NN /Ny P
& N N\ O -F- o
\ \ \ \ 7/ // / /
A Ne-, /-0 &
v \ / // /

0 - -@—x—r—@ 1~
v NN/ / /

\ \ . / /
o--—"--0--~-/-@

\
\ \ / /
° o -=—- /- -@ «

Figure C.1: Weyl orbits in the weight lattice U (3).

The simplest case is when the Weyl orbit is trivial, that isswlthe charges are zero. All
elements in the Weyl group leave this weight fixed which mehasthe centraliser sub-
group isSs itself. Thus by choosing &;-representatiofil; we define a representation of
the complete proto skeleton group:

H(i,[o]) s(w, t) - I (w). (C.5)

If the charge is a multiple of eithéi;, A1) or (A2, A2) the centraliser subgroup is isomor-
phictoZ, C S3. Choosing a charge corresponding to an irreducible reptatien of the

Z4 centraliser group gives us a one dimensional representatid, x 7. From the fact
that in these cases the Weyl orbits of the charges have 3 Bteme conclude that the
induced representiorig; .,y are 3 dimensional. Finally there is a set of charges with
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trivial centralisers. These lead to six dimensional regnégtions of the proto skeleton
group denoted byl,,;.

We shall finally compute some fusion rules for the skelet@mugrofSU(3). If we restrict
to either pure electric case charges we have n\; + m\, for some positive integers
n andm. Here we use the fundamental weights vtk - oj /a3 = d;;. We shall first
compute the fusion rule related3a» 3 in SU(3).

(1, [A1]) @ (i, [M]) = (0, [A2]) @ (1, [A2]) @ (0, [2M1) (C.6)

(i, M) @ (G, [a]) = (0, ) & (L, [Re]) @ (1, 2M]) @ # 5 (C.7)

As for as it concern the electric charges it is clear thatdlgiees witl8 ® 3 = 6 ® 3 for
SU(3).

Some more fusion rules relatedim 3 are given by:
(i, [M]) @ (4, [A2]) = [A1 + Ao] @ (0, [0]) @ (2, [0]) (C.8)

(i, [M]) @ (4, [A2]) = [\ + Ao @ (L, [0]) @ (2,[0) i #J. (C.9)

If we ignore the centraliser charges this correspondsit® = 8 @ 1.

C.3 PROTO SKELETON GROUP FOR SP(4)

In the last case we work out in considerable detail we takedbidual gauge symmetry to
contain a factoSp(4). This example is not much different from ti$%8/(3) case, except
for the fact thatSp(4) is not selfdual. Consequently the magnetic lattice is nceatiy
embedded in the electric weight lattice but correspondbheonteight lattice of the dual
group. Once we have taken this into account we can followtxtte same procedure
as before to compute the irreducible representations anfiifion rules.

As in the previous sections we shall denote the proto skefgtoup byW x 7. WhereT
contains the maximal tori of both the electric gratip(4) and its magnetic duadO(5).
The Weyl group in this particular caselis, = So X (Z2 x Z2) as discussed in appendix
B.1 and B.2. To construct the irreducible representatioediigt choose th€ charge

u = (A, g). The centraliser of: is eitherD4 x 7, Zo x 7 or 7. We shall discuss these
cases separately.

Only if 1 is zero it is invariant under the whole Weyl group. This wéat to irreducible
representationsl; o)) which correspond to representatiolis of D, reviewed in ap-
pendix B.2.

There are several possibilities to realis&Za centraliser. In each case the subgroup
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C.3. Proto skeleton group for Sp(4)

Zo C W is generated by the refectian, that leaves thg -charge fixed. Taking: to
be a simple root is sufficient to capture all the isomorphitasses of irreducible repre-
sentations. This leaves us with two possibilities corresiirng toc; anda; as depicted
in figure B.2. In the first case the centraliser correspondsdign flip in the second case
theZ, subgroup comes from the permutation of the coordinatessofvitight space. Ei-
ther way the resulting Weyl orbits have four elements andesthere are two irreducible
Zo-representations one obtains two inequivalent 4-dimemagiproto skeletongroup rep-
resentations for each such Wey! orbit.

Finally one can have an orbits representeduby A x A* such that: has only a trivial
centraliser. Such orbits thus have 8 elements and corrdsppinreducible representation
II;,) which are 8 dimensional.

Fusion rules for the skeleton group.§f(4) can be computed from formula (4.42) using
the characters ab, listed in table B.2.
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APPENDIX D

SKELETON GROUP FOR
CLASSICAL LIE GROUPS

A subtle part in constructing the skeleton group is deteimgjthe lift of the Weyl group
to Lie group. The main part of this appendix is therefore dat#d to describing these
lifts for the classical groups. We shall also determine #levant normal groups that by
modding out give the Weyl group back.

D.1 SKELETON GROUP FOR SU(N)

Below we work out the construction of the skeleton group @sdieducible representa-
tions in some detail fo; = SU (n).

We shall start by identifying the lift¥’ of the Weyl group. For the maximal tords
of SU(n), we take the subgroup of diagonal matrices. The length ofrdloés is set
to v/2. The raising and lowering operators for the simple rootdleematrices given by
(Ea;)im = 01i0m.i+1 aNd(E_q, ) im = 01,i+10m ;. From this one finds that,, as defined
in equation (4.26) is given by:

(ay)im = Otm (1 — 015 — 01,i1) + ©(0150m,i+1 + 01,i410mi)- (D.1)
From now on we abbreviate,, to z;. One easily shows that
LU? =1, [xi,xj] =0 for |Z — ]| > 1, TiTit1T; = i 1T Ti41- (D2)
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Appendix D. Skeleton group for classical Lie groups

As it stands, this is not the complete set of relationgfarHowever, one may show that
W is fully determined if we add the relations

(2imit1)® = 1. (D.3)

This also makes contact with the presentation of the nosmabf 7" obtained by Tits
[98, 99].

We shall now determine the group. Note that the elements! € W are diagonal
and of order 2. In fact we hav@?);, = im(1 — 26 — 28,.:+1). One thus sees that
the groupK generated by the? is just the group of diagonal matrices with determinant
1 and diagonal entries equal4ol. Since its elements are diagonal we h#&yve- T and
henceK ¢ D = W NT. As a matter of factk = D. To prove this one can check
that conjugation with the; leavesK invariant. Hencex is a normal subgroup d# and
thus the kernel of some homomorphigran W. The image op is the Weyl grougs,, of
SU(n). To see this note thadV// K satisfies the relations of the permutation group (these
are the same as the relations for theabove, but withz? = 1). An explicit realisation

of p: W — S, is given byp(w) : t € T — wtw~!. ObviouslyD C Ker(p) = K,
consequenthD = K.

Let us work out theSU(2) case as small exampleSU (2) has only a simple root and
thus as only one generatarwhich satisfiest* = 1. This givesW = Z,. D is gen-
erated byz? which squares to the indentity and hen@e= Z,. For higher rank¥ is
slightly more complicated bub is simply given by the abelian grou .

In order to determine the representationsSofor SU(n) we need to solve (4.52) and
hence we need to describe hdwis represented on a stdt ) in an arbitrary represen-
tation of SU (n). This turns out to be surprisingly easy. The generating efen¥ of D
acts as the non-trivial central element of % (2) subgroup inSU (n) that corresponds
to ;. Now let()q,..., \,,—1) be the Dynkin labels of the weight Note that); is also
the weight ofA with respect to the&U (2) subgroup corresponding ta. Recall that the
central element 06U (2) is always trivially represented on states with an even weigh
while it acts as-1 on states with an odd weight. Heneg leaves| \ ) invariant if \; is
even and sends\ ) to A(z?)| A ) = —| \) if \; is odd.

For any given orbit\, g] we can solve (4.52) by determininy, , C W and choos-
ing a representation a¥, , which assures that the elemefit$, z?) act trivially on the
vectors| A, v7 ).

If the centraliser of ), g] in W is trivial its centraliserN, 4 in W equalsD = VA

An irreducible representations gfof D is 1-dimensional and satisfiegz?) = +1. The
centraliser representations that satisfy the constr&ifigj are defined by(z?) = A(z?).

If (A, g) = (0,0) such the centraliser #&’. In this case an allowed centraliser representa-
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tions~ satisfiesy(d)|v) = |v), i.e.y is a representation /D = W. The irreducible
representationﬁ[vo’ol of S thus correspond to irreducible representations of the p&rm
tion groups,, .

If N(»,g) is neitherD nor W the situation is more complicated and we will not discuss
this any further.

D.2 SKELETON GROUP FOR SP(2N)

In this section we shall consider the skeleton groupSpf2n). The skeleton group for
the dual grougsO(2n + 1) will be discussed in the next section.

In order to construct the lifti” of the Weyl group taSp(2n) we need to define the Lie al-
gebra, see e.g section 16.1 of [50]. The CSA is generatéa lxy2n matricesH; defined

by
(H;)ki = 0ki01i — Ok.n+iOn—+il- (D.4)

The short simple roots; = e; — ;1 with length\/2 correspond t&,, andE_,, which
are defined as

(Ea, )kl = 0ki0it1,0 — Okyntit10n+i,l (D.5)
(E—a;)kl = 0k,i+10i1 — Ok m+iOntit1,i- (D.6)

The long simple roodv, with length2 is related to the raising and lowering operakr,
andE_,, given by

(B, )kl = Okndon,i (D.7)
(E_o; )kl = 0k 2n0n.1- (D.8)

From this one finds that,, as defined in equation (4.26) is given by:

(o )im = Om(1 =01 — 8141 — Ointi — Olntit1) + (D.9)

1(01i0m.i+1 + 01,i+10mi — Ol n+iOm ntit1 — Ol nt+it10monti)-
While z,,, is given by
(xocn)lm = 5lm(1 — i — 51,2n) + i(5ln5m,2n + 51,2n5mn). (D.10)

To avoid cluttering we abbreviate,, to z; andz,,, toy,,. As follows from the results in
section D.1 forSU (n) thex;s generate a subgrowf, of W which is completely defined

by
£C4 =1, [C,UZ‘, {,Uj] =0 for |Z — ]| > 1, TiTip1T = Tjp1TiTi41 (Dll)
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and
(JJiJJH_l)B =1. (D].Z)

Another subgroup ofV is Z, generated by;,,, which is nothing but the lift oZ, € W
generated by the Weyl reflection in the plane orthogonal,fo Note that\V contains a
subgroupZy. One might thus expect thélt' contains a subgroupy;. This is indeed the
case. We define

(yi)lm = 6lm(1 - 5li - 6l,n+i) + i((sliém,n—&-i + 5l,n+i5mi)~ (D13)

Note thaty} = 1 and[y;,y;] = 0. They;s thus generate a subgro#f in W. More-
over this subgroup is a normal subgroug/®fsince it is invariant under conjugation with
all the generators off’. One can easilycheck that,, is related toy; via conjugation
with z;. One might thus expect that the lift ®V = S,, x Z% is simply S,, x Z}. Note
however thatS,, N Z2 # {e}. To determine the true value of this intersection one ob-
serves that? = y2y2 ;. Consequenthys, N Z. = Z5~" generated by the?s and

W = (S, x Z}) /757,

Next we want to compute the intersectioni&fwith the maximal torug” in Sp(n). One
immediately sees thag is a diagonal matrix and thus an elementlof Since eachy?
generates &, group one finds th&ty C WNT'. Nextwe want to proof thdt’ N1 C Z3.
We use the same approach as in #ié(n) case.Z% is a normal subgroup d¥’. Hence
7% is the kernel of some homomorphism The image of this homomorphism is iso-
morphic toW/Z3. The defining relations of this group can be found from therdedi
relations of W and the equivalence relatiop$ = 1. Note that this equivalence relation
also implies the relation? = 1 and we thus retrieve the defining relations &y x Z3.
An explicit realisation ofp : W — S,, x Z2 is given byp(w) : t € T + wtw™ 1.
ObviouslyW NT C Ker(p) = Z%, consequentyV NT = Z7.

D.3 SKELETON GROUP FOR SO(2N+1)

Here we shall compute the skeleton group$@?(2n + 1) by determining the lift of the
Weyl groupW and its insertsection with the maximal torus.

In order to construct the liftV’ of the Weyl group taSO(2n + 1) we need to define the
Lie algebra, see e.g. section 18.1 of [50]. The CSA is geadiiay(2n + 1) x (2n + 1)
matricesH,; defined by

(H;)kt = 0kib1i — Ok ntiOnri,l- (D.14)
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The long simple roots; with length+/2 correspond td2,,, andE_,,, which are defined
as

(Ea; )kl = 0ki0it1,0 — Ok ntit10n+i,l (D.15)
(E_o; )kl = 0k,i+10i1 — OkntiOntit1,l- (D.16)

The short simple roat,, with length1 is related to the raising and lowering operakr,
andE_,, which in our conventions are given by

(Ea, )kt = V2 (6k,n02n41,0 — Ok 2n+102n,1) (D.17)

(B—a, k1 = V2 (02041001 — Ok 20020411 - (D.18)

From this one finds that,, as defined in equation (4.26) is given by:

(o )im = Om(1 — 01 — 8141 — Ointi — Olntit1) + (D.19)

1(01i0m,i+1 + 01,i+10mi — SintiOmontit1 — Olntit10m,nti)-
While z,,, is given by
(xan)lm == 5lm(1 - 5l,n - 5l,2n - 25l,2n+1) + (5ln5m,2n + 5l,2n5mn)- (DZO)

To avoid cluttering we abbreviate,, to z; andz,,, to y,. As for Sp(2n) we conclude
that thez;s generate a subgrow of . In contrast to theSp(2n) case we havg? = 1,
hence, instead of 44 subgroupy,, simply generates@, subgroup. In addition we define
the generatorg; = z;y;112; . Note thaty? = 1 and[y;, ;] = 0. It should be clear that
they;s generate a normal subgroupl&fwhich equalsZ. One can also check that this
subgroup does not intersect wihy except inl. We thus findV = S,, x Z3.

Next we want to compute the intersection@fwith the maximal torug” in SO(2n + 1).
Note thaty? equals the trivial element iil. On the other hand? is a diagonal matrix not
equal to the unit. By adapting our arguments from.$fi&(n) andSp(2n) cases it should
now be clear thab = W N T is generated by the;s and hence equa@b_l. Moreover
we indeed have thal’/ D equals the Weyl groug,, x Z3 of SO(2n + 1).

D.4 SKELETON GROUP FOR SO(2N)

Finally we shall determine the lift of the Weyl group f60(2n + 1) and its intersection
with the maximal torus. Together with the maximal toruslftsed the dual torus this
fixes the skeleton group.

As can be read off from table B.1 and as illustrated by figurke tBe root diagram of
SO(2n) looks like the root diagrams &fO(2n + 1) andSp(2n) but with the exceptional
roots removed. This similarity is directly reflected upoe thatrix representations, see
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e.g. section 18.1 of [50]. The CSA &fO(2n) is generated b2n x 2n matricesH;
defined by
(H;)ki = Orid1i — Ok,2i02:1- (D.21)

The firstn — 1 simple rootsa; with length+/2 correspond teF,, andE_,, which are
defined as

(Ea, )kl = 0ki0it1,0 — Ok,ntit10n+i,l (D.22)
(E_o; )kl = 0k,i+19i1 — OkntiOntit1,l- (D.23)

Thenth simple root,,, whoseSO(2n + 1) counterpart is actually not simple, is related
to the raising and lowering operatéy,, andE_,,  given by

(Ea, )kl = Ok,n—102n,1 = Ok,n02n—1,1 (D.24)

(E—a, )kt = 0k,200n—1,0 = Ok,2n—10n,1- (D.25)

From this one finds that,,, as defined in equation (4.26) is given by:

(o )im = Om(1 =01 — 81441 — Ointi — Olntit1) + (D.26)

1(01i0m,i+1 + 01,i+10mi — O n+iOm nti+1 — Ol ntit10m,n+i)-
While z,,,, is given by

(Zan)im = Otm(1 =01 n—1 = 01n — Gt2n—1 — O1.2n) + (D.27)

i(él,n—162n,m + 5l,2n5n—l,m - 5l,n62n—1,m - 6l,2n—15n,m)~

We abbreviate,,, toz; withi = 1,--- ,n— 1. Thez;s generate the grou),. We define
Yn—18STy_174, andfinallyy; = z;y;112; . One can check thgf = 1 and[y;, y;] = 0
and in particular that the grou:r);“1 generated by theg;s correspond to the double sign
flips of the Weyl group action as discussed in appendix B.1s ilnportant to note that
Zg‘l is invariant under the action &f,. Itis also not hard to see thﬁ;);mZ’;‘l =e. The
lift of the Weyl groupW is thus given byS,, x Z"~!. Finally we note thaD = W N T
equalsZ; ! generated by the sét:?}.
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APPENDIX E

GENERALISED
TRANSFORMATION GROUP
ALGEBRAS

We have seen that the irreducible representations of a deett product are labelled by
an orbit and a centraliser representation. This propengtsinique. The irreducible rep-
resentations of generalised transformations group adgefiave a similar classification.
This makes it interesting to consider a generalised trameftion group algebra that re-
produces the dyonic charge sectors as the skeleton grogp d&eshall see that such an
generalised transformation group algebra also has the &iom rules as the skeleton
group. One thus might interpret such an algebra as a subalgéa unified electric-
magnetic symmetry. A possible objection is that this trarsfation group algebra is not
group and can thus not be interpreted as an invertible syrgraeting on states. On the
other hand a transformation group algebra does containw@pglgebra, which we can
take to be the group algebra of an electric group.

E.1 |IRREDUCIBLE REPRESENTATIONS

The definition of a general transformation group algebralmafound in [100], see also
[101]. In the definition we will be usind? is a finite group acting on a finite sét
Nonetheless there is a valid generalisation fba locally compact group with a Haar
measure and\ a discrete set.F'(A x H), the set of functions ok x H, is called a

131



Appendix E. Generalised transformation group algebras

transformation group algebra if it is equipped with a muitigtion given by

RO = [ AR o X g . (E.D)
The unit of this algebra is given bydafunction:
1:(Mh)eAX H— b p €C, (E.2)

wheree is the unit ofH.
If Ais also a group thed’'(A x H) can be extended to a Hopf algebra. The coproduct,
counit and antipode are defined by

A(f) (A1 hiz A2, he) = f(AA2, h1)dn, h, (E.3)
e(f) = /feA, )dh (E.4)
S(HHYNR) = fhieARTh. (E.5)

At least if bothH andA are discrete sets there is a convenient basig'for x H) defined
by the projection functions

P\h : (u,g) €eAXHw 5)\_#5}1_’9. (EG)

In terms of these projection operators the Hopf algebravisrgby

Py, hiPayyhy = O, hysae Py hihe (E.7)
A(Ph) = > Py1h@P.h (E.8)
HEA
1 = > P (E.9)
AEA
€(Pah) = Oeqn (E.10)
S(P\h) = Pu-1py-1h™L (E.11)

An intersting set of functions is given by
h:(A\g) e AxHw—d,4eC. (E.12)

One can check that these function generate a subalgeBi@in H) which is isomorphic
to the group algebra dff .

Before we review the the irreducible representations wethice the Hilbert spaces upon
which the representations will act. Lat be a subgroup off, andy a unitary represen-
tation of V acting on the spack,. We define a Hilbert space by the set of maps filgm
to V, that respect the action o¥:

Fy(H,V,)={|¢): H—V,||$)(hn) =v(n~Y)|¢)(h),Yh € H,¥n € N}.
(E.13)
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E.2. Matrix elements and characters

The irreducible representations Bf A x H ) are described as follows. LEY] be an orbit
in A under the action off and letN, be the centraliser of the representarg A. Then,
for each paii([\], ) of an orbit[\] and~ an irreducible representation &f,, we have an
irreducible unitary representati(fﬁy” of F(A x H)onF,(H,V,) is given by

N (£)] 6) (1) = /H F(ho A, )] 6) (g™ h)dg. (E.14)

Moreover, all unitary irreducible representations/(fA x H) are of this form andI[WA]
andI1¥! are equivalent if and only i\ = [1] andy = a.

E.2 MATRIX ELEMENTSAND CHARACTERS

For an irreducible representicﬁw we denote its carrier spade, (H, V) by VWW. The
dimension oﬂ/ym is equal to the produat;,; of the number of elements i\] andd,,

the dimension ofi,. To see this note that the functiohg) € VWW are completely
determined once their value on one element in each ¢asgtof H/N) is chosen. The
number of cosets equafs,; while ¢(h) hasd.,, components. Hence dinA] = djndy.

To define a basis foVWW we choose a basig e} )} for V, andh,, € H for eachu € [)]
such that:, > A = p. The basis elementg 1; ¢] )} are given by the map

lwsel )t hyn € H i 8,,v(n"Y)|el ) eV, (E.15)

The action oiﬂw (f) can be found by evaluating equation (E.14)grfor eachv € [)].

I () pse] Y(h) = /H f(hy > X, 9)| ps el Vg™ hy)dg

= Z . f(l/,hl,nhp_l)|u;ez>(hpn_1)dn
pEN " A

= Z F(w, hunh;M)8,,7(n)| €] )dn
peln A (E.16)

= [ [, hunh;)y(n)|e] Ydn
Ny

= [ f,hunh;Y)y(n)i| €] Ydn
Nx

= [ $ b yrm)gdn] v €] ) (k).
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The matrix elements dﬂ[ﬂ with respect to the basig y; ¢] )} are thus given by
v -
I, = [ F0honhy )y (n);gdn. (E17)
A
In particular forf = P,h we have

o,V —
e (Poh)," = y Poh(v, hynh; ' )y(n)ijdn
A

= 5gﬂy5h’hl/nh;1’y(n)ijdn (E.18)
Ny

= 5U,u5hl>,u,1/7(h’;1hhﬂ)ij'

Consequently the Charactgﬁf\] of H[f] is defined by
Xr Z f (11, by, ) X (n)dn, (E.19)
wherey., denotes the character@f For the projection operators this gives

NGRS / Pyh(ps by, )x (n)dn
neln] VA

= Z . 5V#5h,hunh;1X'Y(n)dn (E.20)
RE[A] ™A

= Z 6M,V6hDV,VX’y (h,jlhhy)
HEN]

One may now define an inner product by the formula

) =Y / V1 (PAR)X3 (Pah)dh. (E.21)
AeA

One may check that the characters of the irreducible reptatsen are orthogonal with
respect to this inner product:

() = 32 [ drbonans (55 ) 3 Gunion (b i)

AEA LE[p] ve(o]
= G 3 | B (B )l
HE[p]
= jyilo] Z/ Xy (n)xa (n (E.22)
HE[p]
= Spllo1va ) /
uelp] ' Ne

= 5[p][0]57a dlm( )
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E.3. Fusionrules

If F(A x H) can be equipped with a co-algebra one can use the charazttain the
fusion rules. We shall consider this in more detail in thetisextion.

E.3 FUSION RULES

In special case thaltis a group (A x H) becomes a Hopf algebra with a co-multiplication
defined by (E.8). The co-multiplication defines the tensodpct of two representations
and thus also the character of the tensor product. Sincehdracters of the irreducible
representations are orthogonal one can compute the destiiop®f the tensor product
into irreducible representations by calculating the irpreduct of the characters of the ir-
reducible representations with the character of the tgmsatuct. In this way one obtains
the fusion rules for the generalised transformation grdgelaa. We shall show that for
A equal to the set of characters of an abelian gi¥upe fusion rules of’(A x H) equal
the fusion rules off x N.

From equation (E.8) one find for the charactgr,; of the representation ® b

Xa@b(PAh) = Xa @ Xp(A(PAR)) = > Xa(Pra-1h)xs(Puk). (E.23)
KEA
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If we take the irreducible representatians- H[a"], b= Hgﬂ andc = H[{’] we get from

equations (E.20) and (E.21):

<X07 Xa®b> = Z / XC(P)\h)XZ(gb(P)\h)dh
xea’H

= Z ~/H XC(P)‘h) Z XZ(PAmlh)Xz (Pnk)dh

AEA KREA

>y

S nOnoa Xy (R hAy) %
KEAXEA HEp]

Z 51/.,)\/1*1 5h>(An*1),AK*1XZ(h;,i—1 hh)\n*1 ) X

veE(o)

Z 5C,n5h>mnx%(h;1hhn)dh
CEM]

:/HZ

HE[p

> Supc-1movw X (hy ' Bhy) Y Snsc.cxs(hg thhe)dh
ve(o] ¢E[n]

- Z Z Z 5##(/ On a1 Onp v, Oh¢ ¢
n€lp) velo] ¢eln) H
Xy (hyy By )X, (hy B ) x5 (B P hig ) dh.

O pa, Xy (h;:lhhu) X
]

(E.24)

Comparing this with equation (4.42), which only differsvén irrelevant constant factor,
we conclude that this does indeed give the fusion ruled of N.

136



[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

BIBLIOGRAPHY

F. Englert and P. WindeyYuantization condition for 't Hooft monopoles in
compact simple Lie groupPhys. RevD14 (1976) 2728.

P. Goddard, J. Nuyts, and D. |. Oliv&auge theories and magnetic chayaucl.
Phys.B125 (1977) 1.

E. B. BogomolnyStability of Classical Solution§ov. J. Nucl. Phy4 (1976)
449,

M. K. Prasad and C. M. Sommerfieldn Exact Classical Solution for the 't Hooft
Monopole and the Julia-Zee DypRhys. Rev. LetB5 (1975) 760-762.

C. Montonen and D. I. OlivelMagnetic monopoles as gauge particleBRys.
Lett. B72 (1977) 117.

G. 't Hooft, Magnetic monopoles in unified gauge theoridacl. PhysB79
(1974) 276-284.

A. M. Polyakov,Particle spectrum in quantum field theodETP Lett.20 (1974)
194-195.

E. J. WeinbergParameter Counting for Multi-Monopole Solutigizhys. Rev.
D20 (1979) 936-944.

H. Osborn,Topological charges for N=4 supersymmetric gauge theaia$
monopoles of spin,Phys. LettB83 (1979) 321.

N. Seiberg and E. Witterklectric-magnetic duality, monopole condensation, and
confinementin N=2 supersymmetric Yang-Mills thedhycl. PhysB426 (1994)
19-52, hep-t h/ 9407087].

G. 't Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge
TheoriesNucl. PhysB153 (1979) 141.

137



Bibliography

[12] S. MandelstamSoliton operators for the quantized sine-Gordon equatiitys.
Rev.D11 (1975) 3026.

[13] A. Klemm, W. Lerche, S. Yankielowicz, and S. Theis&mmple singularities and
N=2 supersymmetric Yang-Mills theqihys. LettB344 (1995) 169-175,
[hep-th/9411048].

[14] P. C. Argyres and A. E. Faragdihe vacuum structure and spectrum of N=2
supersymmetric SU(n) gauge thedPhys. Rev. Let74 (1995) 3931-3934,
[hep-t h/ 9411057].

[15] N. SeibergSupersymmetry and nonperturbative beta functiéhys. LettB206
(1988) 75.

[16] S. Bolognesi and K. KonishNon-abelian magnetic monopoles and dynamics of
confinementNucl. PhysB645 (2002) 337-348 Hep-t h/ 0207161].

[17] R. Auzzi, R. Grena, and K. Konishilmost conformal vacua and confinement
Nucl. PhysB653 (2003) 204—226 Hep-t h/ 0211282].

[18] A. Kapustin and E. WitterElectric-magnetic duality and the geometric
Langlands programCommun. Number Theory Phys(2007), no. 1 1-236,
[hep-th/ 0604151].

[19] A. Sen,Dyon-monopole bound states, selfdual harmonic forms on the
multi-monopole moduli space, asd.(2, /) invariance in string theoryPhys.
Lett. B329 (1994) 217-221 Hep- t h/ 9402032].

[20] C. Vafa and E. WittenA strong coupling test of S-dualjtijucl. PhysB431
(1994) 3—-77,lhep- t h/ 9408074].

[21] J. A. Harvey, G. W. Moore, and A. Stroming&educing S-duality to T-duality
Phys. RevD52 (1995) 7161-7167Hep-t h/ 9501022].

[22] E. J. WeinbergiFundamental monopoles and multi-monopole solutions for
arbitrary simple gauge group®lucl. PhysB167 (1980) 500.

[23] A. AbouelsaoodAre there chromodyons®Rucl. PhysB226 (1983) 309.

[24] A. AbouelsaoodChromodyons and equivariant gauge transformatjditsys.
Lett. B125 (1983) 467.

[25] P. C. Nelson and A. Manohdaglobal color is not always defing@hys. Rev. Lett.
50 (1983) 943.

[26] A. P. Balachandrast. al, Nonabelian monopoles break color. 2. Field theory and
guantum mechani¢®hys. RevD29 (1984) 2936.

138



Bibliography

[27] P. A. Horvathy and J. H. Rawnsldpternal symmetries of nonabelian gauge field
configurationsPhys. RevD32 (1985) 968.

[28] P. A. Horvathy and J. H. Rawnslejhe problem of 'global color’ in gauge
theories J. Math. Phys27 (1986) 982.

[29] G. 't Hooft, Topology of the Gauge Condition and New Confinement Phases in
Nonabelian Gauge Theorigucl. PhysB190 (1981) 455.

[30] J. E. Kiskis,Disconnected gauge groups and the global violation of charg
conservationPhys. RevD17 (1978) 3196.

[31] A. S. SchwarzField theories with no local conservation of the electriaaie,
Nucl. PhysB208 (1982) 141.

[32] M. G. Alford, K. Benson, S. R. Coleman, J. March-Russatid F. WilczekZero
modes of nonabelian vorticeNucl. PhysB349 (1991) 414-438.

[33] J. Preskilland L. M. Kraus$,OCAL DISCRETE SYMMETRY AND QUANTUM
MECHANICAL HAIRNucl. PhysB341 (1990) 50-100.

[34] M. de Wild Propitius and F. A. Baifiscrete gauge theoriet Particles and
fields (Banff, AB, 1994CRM Ser. Math. Phys., pp. 353—439. Springer, New
York, 1999.hep-t h/ 9511201.

[35] M. NakaharaGeometry, topology and physidSraduate Student Series in
Physics. Adam Hilger Ltd., Bristol, 1990.

[36] P. A. M. Dirac,Quantised singularities in the electromagnetic fiétdoc. Roy.
Soc. LondA133 (1931) 60-72.

[37] T. T. Wu and C. N. YangConcept of non-integrable phase factors and global
formulation of gauge field®hys. RevD12 (1975) 3845-3857.

[38] S. R. Coleman, S. J. Parke, A. Neveu, and C. M. Sommerfizld One Dent a
Dyon?, Phys. RevD15 (1977) 544.

[39] E. Witten,Dyons of Charge e theta/2,@?hys. LettB86 (1979) 283-287.

[40] F. A. Bais,Charge - monopole duality in spontaneously broken gaugeribs
Phys. RevD18 (1978) 1206.

[41] S. WeinbergThe quantum theory of fields. Vol. Cambridge University Press,
Cambridge, 2005. Modern applications.

[42] P. Goddard and D. I. Oliveylagnetic monopoles in gauge field theoriBep.
Prog. Phys41 (1978) 1357-1437.

139



Bibliography

[43] S. JarvisEuclidean monopoles and rational masoc. London Math. Soc. (3)
77 (1998), no. 1 170-192.

[44] M. K. Murray and M. A. SingerA note on monopole moduli spacdsMath.
Phys.44 (2003) 3517-3531nfat h- ph/ 0302020].

[45] A.Jaffe and C. Taube¥prtices and monopolesgol. 2 of Progress in Physics
Birkhauser Boston, Mass., 1980. Structure of static gdlugeries.

[46] M. Murray, Stratifying monopoles and rational mggommun. Math. Phy425
(1989) 661-674.

[47] J. E. Humphreydntroduction to Lie algebras and representation thearilew
York, Usa: Springer (1980) 171p.

[48] A. Kapustin,Wilson-'t Hooft operators in four-dimensional gauge thiesrand
S-duality Phys. RevD74 (2006) 025005,§ep- t h/ 0501015].

[49] A.J. Colemaninduced and subduced representatiangGroup theory and its
applications(E. M. Loebl, ed.), pp. 57-118. Academic Press, New York8.96

[50] W. Fulton and J. HarriRepresentation theoyryol. 129 ofGraduate Texts in
Mathematics Springer-Verlag, New York, 1991. A first course, Readings i
Mathematics.

[51] M. F. Atiyah and N. J. HitchinThe geometry and dynamics of magnetic
monopoles. Princeton, USA: Univ. Pr. (1988) 133p.

[52] C. H. TaubesThe existence of multi-monopole solutions to the nonabgelia
Yang-Mills Higgs equations for arbitrary simple gauge gosuCommun. Math.
Phys.80(1981) 343.

[53] N. S. Manton,The force between 't Hooft-Polyakov monopohscl. PhysB126
(1977) 525.

[54] N. S. MantonMonopole Interactions at Long Rangehys. LettB154 (1985)
397.

[55] G. W. Gibbons and N. S. Mantomhe Moduli space metric for well separated
BPS monopole®hys. LettB356 (1995) 32—-38,liep-t h/ 9506052].

[56] R. Bielawski,Monopoles and the Gibbons-Manton met@@mmmun. Math. Phys.
194 (1998) 297-321 Hep-t h/ 9801091].

[57] R. Bielawski,Asymptotic metrics for SU(N)-monopoles with maximal sytmyme
breaking Commun. Math. Phy499 (1998) 297-325Hep-t h/ 9801092].

[58] D. Bak, C. Lee, and K. Led)ynamics of BPS dyons: Effective field theory
approach Phys. RevD57 (1998) 5239-5259hep-t h/ 9708149].

140



Bibliography

[59] K. Lee, E. J. Weinberg, and P. Yihe moduli space of many BPS monopoles for
arbitrary gauge groupsPhys. RevD54 (1996) 16331643,
[hep-th/ 9602167].

[60] S. K. DonaldsonNahm'’s equations and the classification of monopoles
Commun. Math. Phy86 (1984) 387—-407.

[61] J. Hurtubise and M. K. Murraypn the construction of monopoles for the classical
groups Commun. Math. Phy422 (1989) 35-89.

[62] J. HurtubiseThe classification of monopoles for the classical gro@smmun.
Math. Phys120 (1989) 613—-641.

[63] J. Hurtubise and M. K. Murrayvionopoles and their spectral dgt@ommun.
Math. Phys133 (1990) 487-508.

[64] S. JarvisConstruction of Euclidean monopolé&oc. London Math. Soc. (3)7
(1998), no. 1 193-214.

[65] E. J. Weinbergi-undamental monopoles in theories with arbitrary symmetry
breaking Nucl. PhysB203 (1982) 445.

[66] A.S. DancerNahm'’s equations and hyper-Kahler geome@pmmun. Math.
Phys.158 (1993) 545-568.

[67] A. S. DancerNahm data and SU(3) monopole®AMTP-91-44,

[68] A. S. Dancer and R. A. LeesA,numerical study of SU(3) charge-two monopoles
with minimal symmetry breakin@hys. LettB390 (1997) 252—-256.

[69] P. Irwin, SU(3) monopoles and their field3hys. RevD56 (1997) 5200-5208,
[hep-th/ 9704153].

[70] F. A. Bais and B. J. Schroer®uantisation of monopoles with non-abelian
magnetic chargeNucl. PhysB512 (1998) 250—294 Hep- t h/ 9708004].

[71] C.J. Houghton and E. J. WeinbeMulticloud solutions with massless and
massive monopolgBhys. RevD66 (2002) 125002,jep-t h/ 0207141].

[72] G. Lusztig,Singularities, character formulas, andgaanalog of weight
multiplicities in Analysis and topology on singular spaces, I, lll (Lumin§81),
vol. 101 of Asérisque pp. 208—229. Soc. Math. France, Paris, 1983.

[73] A. Braverman and D. Gaitsgor§rystals via the affine Grassmannidduke
Math. J.107 (2001), no. 3 561-575pt h/ 9909077].

[74] P. Goddard and D. I. Olivegharge quantization in theories with an adjoint
representation Higgs mechanishiucl. PhysB191 (1981) 511.

141



Bibliography

[75] P. Goddard and D. I. Olive,he magnetic charges of stable selfdual monopoles
Nucl. PhysB191 (1981) 528.

[76] K. Lee, E. J. Weinberg, and P. YWassive and massless monopoles with
nonabelian magnetic chargeBhys. RevD54 (1996) 63516371,
[hep-t h/ 9605229].

[77] N. Dorey, C. Fraser, T. J. Hollowood, and M. A. C. Kneipjmn-abelian duality
in N=4 supersymmetric gauge theoriéep-t h/ 9512116.

[78] B. J. Schroers and F. A. BaiS;duality in Yang-Mills theory with non-abelian
unbroken gauge groyNucl. PhysB535 (1998) 197-218 Hep-t h/ 9805163].

[79] M. Etoet. al, Non-Abelian vortices of higher winding numbgphys. RevD74
(2006) 065021 ,jep-t h/ 0607070].

[80] M. Etoet. al, Non-Abelian duality from vortex moduli: a dual model of
color-confinemeniNucl. PhysB780 (2007) 161-187 Hep-t h/ 0611313].

[81] A. Kapustin,Holomorphic reduction of N = 2 gauge theories, Wilson-'t Hoo
operators, and S-dualifhep-t h/ 0612119.

[82] J. Fuchs and C. SchweigeBymmetries, Lie algebras and representations: A
graduate course for physicistsCambridge, UK: Univ. Pr. (1997) 438 p.

[83] P. Bouwknegtlie algebra automorphisms, the Weyl group and tables of shif
vectors J. Math. Phys30 (1989) 571.

[84] G.W. Mackeymprimitivity for representations of locally compact g |,
Proc. Nat. Acad. Sci. U. S. 85 (1949) 537-545.

[85] A. Kapustin and N. Saulind,he algebra of Wilson-'t Hooft operatars
ar Xi v: 0710. 2097.

[86] L. Girardello, A. Giveon, M. Porrati, and A. Zaffaror8;duality in N=4
Yang-Mills theories with general gauge groupkicl. PhysB448 (1995)
127-165,hep- t h/ 9502057].

[87] N. Dorey, C. Fraser, T. J. Hollowood, and M. A. C. Kneiduality in N=4
supersymmetric gauge theorj&hys. LettB383 (1996) 422—-428,
[hep-t h/ 9605069].

[88] J. Smitand A. van der Sij$lonopoles and confinemehtucl. PhysB355 (1991)
603-648.

[89] D. ZwanzigerLocal Lagrangian quantum field theory of electric and magnet
chargesPhys. RevD3 (1971) 880.

142



Bibliography

[90] M. PostmaAlice electrodynamigdMaster’s thesis, University of Amsterdam, the
Netherlands, 1997.

[91] J. Striet and F. A. BaisSimple models with Alice fluxe@hys. LettB497 (2000)
172-180, hep-t h/ 0010236].

[92] M. Bucher, H. Lo, and J. Preskill,opological approach to Alice electrodynamjics
Nucl. PhysB386 (1992) 3—-26, fiep- t h/ 9112039].

[93] F. A. Bais, B. J. Schroers, and J. K. SlingerlaBchken quantum symmetry and
confinement phases in planar physiedys. Rev. LetB9 (2002) 181601,
[hep-th/ 0205117].

[94] F. A. Bais, A. Morozov, and M. de Wild Propitiu§harge screening in the Higgs
phase of Chern-Simons electrodynami®isys. Rev. Letf71 (1993) 2383-2386,
[hep-t h/ 9303150].

[95] J. Striet and F. A. Baissimulations of Alice electrodynamics on a lattibkicl.
Phys.B647 (2002) 215-234 Hep- | at / 0210009].

[96] L. C. Biedenharn and J. D. Louckngular momentum in quantum physics
Reading, Usa: Addison-wesley (1981) 716 p. (Encyclopedis&hematics and
Its Applications, 8).

[97] J. Fuchs and C. SchweigeBymmetries, Lie algebras and representations
Cambridge Monographs on Mathematical Physics. Cambridgectsity Press,
Cambridge, 1997. A graduate course for physicists.

[98] J. Tits,Sur les constantes de structure et Ilealeme d’existence d’aébre de lie
semisimplel.H.E.S. Publ. Math31 (1966) 21-55.

[99] J. Tits,Normalisateurs de tores: I. Groupes de CoxedfeendusJ. Algebrad
(1966) 96-5116.

[100] T. H. Koornwinder, F. A. Bais, and N. M. Mullefensor product representations
of the quantum double of a compact gro@@mmun. Math. Phy498 (1998)
157-186,§- al g/ 9712042].

[101] F. A. Bais, B. J. Schroers, and J. K. Slingerladdpf symmetry breaking and
confinementin (2+1)- dimensional gauge theay EP 05 (2003) 068,
[hep-th/ 0205114].

143



