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Abstract

In this thesis we consider the quantisation of Chern Simons theories.
The interpretation of Chern Simons theory as a theory of gravity, if we con-
sider gauge groups ISO(3 − p, p), ISO(4 − p, p), provides an extra motivation
for studying quantisations, so we investigate the theory of gravity in 2+1 di-
mensions as a topological Chern Simons theory.
The nature of phase space is that of functions on multiple copies of the group,
which implies the need of a description in terms of Hopf algebra’s.
Through the dual picture of the Hopf algebra of functions on the group, the
Hopf algebra called the universal enveloping algebra, a mathematical structure
is described which allows for a deformation quantisation scheme. Crucial, al-
ready on a classical level on which it directly describes a Poisson bracket, is
the existence of an element of the tensor product of two copies of the gauge
algebra, called the r-matrix. This Lie bialgebra structure defining object is the
main object of study in a formalised discussion of different deformation quan-
tisations of a theory.
A deformation quantisation of the originally commuting algebra of functions on
a group (or multiple copies of it), turning it into a noncommuting algebra, is
characterised by the universal R-element. This R-element can be expanded in
powers of a quantum parameter h, which is 0 in the classical limit, where the
first order part in h is the classical r-matrix.
The quantisation of Chern Simons theory with gauge group ISO(3), equivalent
to Euclidean gravity without cosmological constant, as argued from different
reasoning than the deformation quantisation point of view, leads to the quan-
tum group symmetry of D(SU(2)), the quantum double.
At the end of this thesis, we show that this result agrees with a quantisation
from the deformation quantisation point of view. In particular, it is shown that
the universal R-element can be expanded in a quantum parameter, where the
first order part is a ’canonical’ r-element for the algebra iso(3).
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1 Introduction

How can a trivial theory be interesting? 2+1-dimensional gravity seems to be
a trivial theory if we look at it (not too) carefully. Einstein equations in this
low-dimensional space imply curvature is zero, and regarding the theory of
general relativity in 2+1 dimensions as a gauge theory means the ingredients
of the theory are flat gauge connections (i.e. gauge fields for which the
curvature is zero). Different configurations of such gauge fields are the only
distinguishable properties of the theory. That is, since we are dealing with
gauge theory, we must distinguish between different gauge field configurations
that are not related by a gauge transformation, since physical aspects of the
theory may not depend on the choice of gauge. Since all flat gauge connections
can be transformed into each other by a gauge transformation, there is only
one equivalence class of gauge connections, an observation which trivialises the
theory. One would think.

But of course we would not be physicists if we would think a bit further
and find a way to detrivialise the theory. A flat gauge field configuration is
not uniquely defined up to gauge transformations if the manifold to which this
configuration is associated has holes in it. The gauge field along a closed loop
around such a hole can take different values along the loop, as long it returns to
the same value at the starting point. This single-valuedness allows for twistings
of the gauge field along this loop, and the associated configuration can not just
be gauge transformed into each different twisted configuration of the gauge field.

This actually rather simple thought gives an opening to a whole subject
of physics, the topological field theory. The topology of our base manifold
determines the observable physical part of the theory, the phase space.
Canonical procedures in physics give properties of phase spaces that follow
directly from the action one starts off with. However, the observation that we
are dealing with flat connections gives an enormous reduction of the infinite
dimensional phase space one would think of from a field theoretical point of
view.

In this thesis I have described phase space reductions and quantisation
aspects of the theory of 2+1 dimensional gravity as a Chern Simons theory.
In particular the quantisation of this theory is described from a certain point
of view, that of deformation quantisation.
This is of course interesting, because the words gravity and quantisation in
ordinary 3 + 1 dimensional physics always appear to be in conflict with each
other. Deleting one dimension is, in contrast to what one might think, not
as meaningless as just a reduction of the degrees of freedom. In fact it turns
out that this changes the nature of this theory into a topological one, as we
explained above.
This implies that the concept of distance is of no significance, whereas the only
feature that does have influence on observables of the theory is the topology of
the manifold we are considering. We will regard the 2+1 dimensional manifold
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as a 2-surface with time throughout this thesis.
The topological nature of the theory of gravity in 2+1 dimensions is supported
by the observation made by Witten in 1988 [1], that it can be regarded as a
Chern Simons gauge theory of the gauge group ISO(2, 1) in the Minkowskian
case.
The equations of motion imply that the gauge connection is flat everywhere on
the manifold, so that the theory is trivial if the surface Σ we are considering is
simply connected.
Nontrivial solutions arise when we allow for twisting of the gauge field, which
is only possible if the fundamental group of the surface, π1(Σ), is nontrivial,
thus if we allow handles or punctures in the surface.
Particles can be added to this theory by inserting them in the punctures, where
they act as delta-type sources of curvature.
For the Euclidean theory of gravity, which is shown to be equivalent to
Chern Simons theory with gauge group ISO(3), a quantum theory has been
developed in [2], mainly from arguments based on the topological nature of the
theory. In particular this topological nature implies particles have to interact
in a topological way, described by braiding and fusion relations.
The result of this procedure was that the quantum theory for ISO(3) gauge
group is described by a quantum double symmetry, of the group D(SU(2)).
This identification of a quantum group symmetry is a natural result for a
quantised Chern Simons theory as we shall see in this thesis. This illustrates
the importance of Chern Simons theory as a physical model to which one can
indeed apply the mathematical structures of quantum group theory.

At the starting point of my research the goal was to clarify the relations
between the different Chern Simons theories of gravity and their quantisations.
As pointed out by Witten [1], one can add a cosmological constant to the
theory, for which case in stead of the Euclidean group and the Poincare group
in 3 dimensions one observes the relevant gauge group is SO(4), SO(3, 1) or
SO(2, 2) , depending on the sign of the cosmological constant and on the
space-time signature.

In the end I have given an overview of quantisation of Chern Simons
theory from the deformation quantisation point of view, describing an impor-
tant part of the mathematical framework needed, and which gives insight in
the structure of the theory, also on a classical level. While I was doing my
research, Schroers [3] showed that the quantum double quantisation, which
was claimed to be the correct result for the zero cosmological constant case
from reasoning based on topological arguments as mentioned above, can be
interpreted as a deformation quantisation. This result is given as a beautiful
example at the end of this thesis.

The outline of the thesis will be the following:
The second section (following the introduction) is in fact an introduction to
Chern Simons theory. The action is given, the phase space and observables are
identified.
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In the third section we show the equivalence of 2+1 dimensional gravity and
Chern Simons theories, where we include the description of the Euclidean and
Minkowskian cases with nonzero cosmological constant.
The fourth section is a description of classical phases space, its reductions, and
Poisson brackets. The mathematical framework of Hopf algebras and bialgebra
structures is introduced from a general point of view as well as the application
to Chern Simons theories.
In the fifth section the matter of quantisation is discussed, where we focus on
deformation quantisation and quantum groups.
The sixth section describes the above mentioned deformation of ISO(3) theory
resulting in D(SU(2)) identified by Schroers [3].
The seventh section is a concluding section, in which we make some final
remarks, and formulate some interesting questions left open.
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2 Chern Simons Theory

2.1 The action and gauge invariance

2.1.1 The Chern Simons action

Chern Simons theory is a so called topological gauge theory on a 3-manifold,
described by the Chern-Simons action, defined by

SCS =
k

4π

∮

M
tr(A ∧ dA+

2

3
A ∧A ∧A) (1)

Here A = AaTa is a Lie algebra valued connection corresponding to a gauge
group G, in fact it is a connection on a principal G-bundle over M . M is
the 3-manifold and by the trace we actually mean a nondegenerate invariant
inner product for the representation Ta of the Lie algebra. For G = SU(n)
one can for instance take the Casimir invariant TaTa, which indeed yields
taking the trace over algebra elements in the fundamental representation for
which 1

2Tr(TaTb) = δab. As we shall see, in stead of the trace, in some cases
we will be able to define different inner products, corresponding to different
invariants on algebras such as the algebra of SO(4). The bilinear form must
be nondegenerate if we require that the action contains kinetic terms for all
components of the gauge field, relative to the algebra basis Ta. The quantity k
is a coupling constant. As we shall see, the relevance of the value of k depends
on the topology of the group G.
The Chern-Simons theory is called a topological theory because of the absence
of space time metric dependence. The action M does not depend on a specific
space time metric, which means the notion of distance is not required. The
only property of the manifold that can be significant is therefore its topology.

The Chern-Simons action is invariant under infinitesimal gauge transfor-
mations

δAµ(x) = Dµε(x) = ∂µε(x) + [Aµ, ε](x)

where ε is an infinitesimal Lie algebra valued parameter.

2.1.2 Large gauge transformations

Finite gauge transformations, not connected to the identity, do not leave the
action totally invariant, which we show by gauge-transforming the different
components of the Lagrangian:

The connection A transforms in the adjoint representation:

A → g(A+ d)g−1,

which yields

dA → gdAg−1 + (dg) ∧Ag−1 − gA ∧ dg−1 + dg ∧ dg−1
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and

A ∧A → gA ∧Ag−1 − dg ∧Ag−1 + gA ∧ dg−1 − dg ∧ dg−1.

The invariant inner product will allow cyclic permutations of group and algebra
valued elements. Together with the property

gdg−1 = −(dg)g−1

we arrive at:

Tr{A ∧ dA+
2

3
A ∧A ∧A} → Tr{A ∧ dA +

2

3
A ∧A ∧A

− d(A ∧ g−1dg)
− 1

3
gdg−1 ∧ gdg−1 ∧ gdg−1} (2)

Thus after a gauge-transformation we are left with two extra terms in the
action, one which is a total derivative and vanishes if we state that the gauge
transformation is the identity at the boundary of the three-manifold. The
second term however is only a priori zero if the topology of the manifold is
trivial, which would mean all gauge transformations are continuously connected
to the identity.
To see this, consider the gauge transformation as a C∞ mapping from the
manifold M to the group manifold. Requiring it to be C∞ means that in a
trivial topology of the manifold M the mapping can always be retrieved by
iterated infinitesimal gauge transformations if the gauge group is connected.
We will be interested in cases for which the topology of the manifold M is
not trivial. The extra term in (2) is a topological invariant when integrated
over. It depends on the topology of the group manifold, in fact, it must be an
element of the group π3(G), which in most cases if the group is compact, is
equal to Z. The integer we are thus left with is called the winding number, see
Birmingham et al. [4].
Requiring physical invariance under twisted gauge transformations restricts
the coupling constant k to be an integer if we choose the right normalisation
of the inner product on the algebra. The addition of the winding number term
to the action will then not be manifest in physical sectors of the theory if we
consider the role of the action in the Feynman path integral formulation. The
expression eiS will be invariant if the extra term is an integer multiple of 2π,
which is exactly what the restriction implies.

2.1.3 The action written in components

Using the explicit algebra basis, the commutation relations

[Ta, Tb] = f c
ab Tc
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and the inner product 〈Ta, Tb〉, we can give a more explicit version of (1):

SCS = k

∫

M
dx3

(
〈Ta, Tb〉εijkA a

i (∂jA
b
k − ∂kA b

j )

+
2

3
〈1
2
[Ta, Tb], Tc〉εijkA a

i A
b
j A

c
k

)

= 〈Tc, Td〉k
∫

M
dx3εijk

(
A c
i (∂jA

d
k − ∂kA d

j ) +
1

3
f c
ab A

a
i A

b
j A

d
k

)
. (3)

2.2 Hamiltonian formulation and phase space

2.2.1 The Hamilton formalism

If we specify our manifold M to be of the form Σ×R, we can identify it with a
space-time manifold in which R represents time and at each time t, Σ is a time
slice, a space 2-manifold. The theory now admits a Hamiltonian formulation,
in which one can derive equations of motion through variation of the action
and identify Poisson-brackets, which describe the ’classical mechanics’ of the
system.
We identify the 0-coordinate with time and are left with two space dimensions
i and j. Our Chern-Simons action now reads

SCS = −k
2

∫
dt

∫

Σ
dz2εijTr

(
Ai∂tAj −AtFij

)
(4)

From this action we can derive equations of motion by demanding the variation
of the action induced by variation of the fields to be zero. The variation of At

in particular leads to the equation:

Fij = ∂iAj − ∂jAi + [Ai, Aj ] = 0 (5)

In fact At is nothing but a Lagrange multiplier implementing the zero curvature
(or fieldstrength) constraint on the phase space.
The above ingredients tell us a lot about the phase space of the theory. It
consists of all flat connections on the Riemann surface Σ, which for the physical
sectors should be divided out by the gauge symmetry. What phase space will
look like, again depends on the topology of the surface Σ as we will argue next.

2.2.2 Wilson loops

Similar to the case of the gauge transformations, the gauge field configuration
can be viewed as a map from the space of all gauge fields to the manifold. The
topological nature of the theory is reflected in the classification of the different
configurations of the gauge field. The way to distinguish between physically
different configurations is by considering a path ordered exponential of the line
integral over the gauge field along a path γ on the surface Σ :

W (γ1) = Pe
∫
γ1

A
(6)
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This expression gives a representing group element for the configuration of the
gauge field along the path γ1 and is called a Wilson line.
As the connection gauge field A transforms in the adjoint representation, gauge
transformations act through conjugation with the value of the gauge group
element at the endpoints of the path. If we consider closed loops we find that
the expression

W (C) = Tr(Pe
∮
C A) (7)

is an invariant of the theory and therefore a physical observable. The observ-
ables W(C) are called Wilson loops, see again [4]
Expression (6) is certainly not a gauge invariant quantity. A gauge transforma-
tion can take it to another group element, which corresponds to the result of
evaluating the expression (6) along a path γ2, found by continuously deforming
γ1.
In the case of (7) one can identify the gauge transformation with deforming
the loop C, which in this case does not change the value of W (C) as long as
(5) is imposed.
Thus we can conclude that the only way in which two loops C1 and C2 can
lead to physically different gauge field configurations is when the surface
has a nontrivial topology and at least one of the loops is noncontractible.
Different inequivalent gauge field configurations can be represented by different
embeddings of closed loops into the surface Σ, which corresponds to the
definition of the fundamental group π1(Σ).

If we do not yet take gauge equivalence into account and thus do not
yet take the trace in expression (7), every inequivalent noncontractible loop
can be mapped into the group with help of the path ordered exponential in
(6). Different noncontractible loops can be combined to give one new loop.
This defines a multiplication of loops, which must be consistent with the group
multiplication. Gauge transformations act consistently, in the sense that they
respect this multiplication rule, as we can see from

W (γ1) = h1, W (γ2) = h2

W (γ1) ∗W (γ2) = h1h2

g : hi → ghig
−1

g : h1h2 → gh1g
−1gh2g

−1 = gh1h2g
−1. (8)

The physical phase space of the theory is now the space of all homomor-
phisms from the fundamental group of the surface Σ to the gauge group G,
which has to be divided out by conjugation with the gauge group:

Γ = Hom(π1(Σ);G)/ ∼, (9)

where ∼ stands for the conjugation equivalence. This space will obviously not
be very interesting if the surface Σ is simply connected, because it then consist
of only one point. Noncontractible loops arise when we assign punctures to
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the surface (points that do not allow loops to be pulled through) or when its
genus is not zero. A Wilson loop observable (7 will physically correspond to a
conjugacy class rather than to a group element, due to the gauge equivalence.

2.2.3 Sources of curvature

The observable can be restricted to a certain conjugacy class if the loop encloses
a source of curvature. This can be shown by using a nonabelian version of
Stokes’ theorem: ∮

C
A =

∫

S
DA =

∫

S
F (10)

Here S is the surface area with boundary C. Thus for the Wilson loop we get

W (C) = Tr(exp(

∫

S
F )). (11)

For contractible loops we have that the total interior of C belongs to Σ, for which
we have the constraint equation F = 0, and so the Wilson loop will correspond
to the trivial conjugacy class, the identity. For noncontractible loops this no
longer holds necessarily. A way of inserting particles in the theory is by putting
them in points which do not belong to Σ, i.e. loops cannot be pulled through
these so called punctures. These particles then carry charges of the gauge group
and act as delta-sources for curvature:

F a =
∑

i

Qa
iδ
(2)(z − zi). (12)

Here Qa
i, the charges of the i’th particle, are again components relative to the

Lie algebra. They restrict the representative group element corresponding to
the Wilson loop which encloses them to lie in a certain conjugacy class (due to
the gauge transformations which correspond to conjugations).

2.2.4 Poisson-brackets

The identification of the time-coordinates and space-coordinates of the manifold
as in (2.2.1) also admits the identification of poisson brackets for the gauge
fields, which will become important in particular at the point of quantising the
theory. We will not discuss quantisation yet, but we will just give the poisson
brackets, which can actually be identified before discussing the phase space as
we did above. They are usually read off by distinguishing between fields which
do appear in the action with their time derivatives and fields which don’t. One
defines them only for the first category. The result is:

{A a
i (z1), A

b
j (z2)} =

2

k
〈Ta, Tb〉εijδ(2)(z1 − z2). (13)

The reader who is familiar with gauge theories will be surprised to find that the i
and j components of the same gauge field are each others conjugates, whereas,
for instance in Maxwell theory, the electric field is conjugate to the A-field.
With these brackets one identifies the constraint algebra which is another way
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to finally arriving at the physical sector of the theory. The constraint algebra
is simply found by evaluating the brackets of the different components of the
field strength:

{F a(z1), F
b(z2)} = fabcF

cδ(2)(z1 − z2) (14)

One finds that this reproduces the algebra of the gauge group. Another con-
sequence of this observation is that the inclusion of particles in the theory as
suggested in (12) yields these particles carry charges obeying the same poisson-
algebra, which should follow from the matter term added to the action de-
scribing these particles. Again these are matters of particular interest when
discussing quantisation, and we will give a more explicit description of the con-
struction of the particle phase space, which is a coadjoint orbit, for the case of
ISO(3) gauge group in section 4.
An important final remark on this matter is that one can distinguish between
two different approaches towards discussing the physically interesting parts of
the theory and finally quantisation.
The first approach is to use the canonically defined poisson brackets (13) to
define an operator algebra acting on a Hilbert space, which is obviously far
too large, because of the gauge equivalence and remaining constraints. The
constraint algebra will be interpreted as an operator algebra selecting out the
physical sector of the theory.
The second approach is to first divide out the gauge equivalence and constraints,
identifying what is left of phase space and after this quantising the theory. It
might then be difficult to find Poisson brackets on this reduced phase space
that are consistent with the constraints and the gauge equivalence. The ad-
vantage however is that one can perform a dramatical reduction of the degrees
of freedom by this procedure. We will in fact see that in our case the phase
space reduces from an infinite dimensional one to a finite dimensional space
(the description in terms of Wilson loop observables actually illustrates this).
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3 2+1 Gravity as a Chern Simons theory

In this section we will give the relation between general relativity in 2+1 di-
mensions and Chern Simons theory, as pointed out by Witten in a quite famous
article in 1988 [1]. Most of the important results will be repeated here..

3.1 General Relativity

Einsteins theory of general relativity starts with the equivalence principle, which
states that in any point x in space-time one can choose a locally orthonormal
basis of coordinates with Minkowskian metric ηab = (−1, 1, 1) . If we denote
the orthonormal coordinates by ξa(x) this means we can write down the metric
relative to arbitrary coordinates xµ

dxµdxµ = gµνdx
µdxν = gµν

∂xµ

∂ξa
∂xν

∂ξb
dξadξb = ηabdξ

adξb

and so

gµν =
∂ξa

∂xµ
∂ξb

∂xν
ηab. (15)

We define the triad field e µ
a (x) = ∂ξa

∂xµ . This is the field which transforms vector
fields written in arbitrary coordinates into vector fields relative to the locally
orthonormal basis:

Xa(x) = e a
µ X

µ(x).

In fact gµν is a tensor that also transforms according to

gµν = e a
µ e

b
ν ηab.

We require the physical world to be independent of the choice of coordinate
system, which means it should be invariant under the local change of frame,
which can be identified whith local Lorentz transformations. For a local Lorentz
invariance we need to introduce a covariant derivative, and with it a gauge field
called the spin connection. Thus we can compare derivatives of vectors in
different coordinate systems. The covariant derivative reads:

DµX
a = ∂µX

a + ω a
µ bX

b.

Where ω a
µ b is the spin connection. With respect to general coordinate trans-

formations (where we now use indices µ, ν in stead of a, b.) the connection ω a
µ b

is replaced by the Christoffel symbols Γνµρ.

DµX
ν = ∂µX

ν + ΓνµρX
ρ. (16)

We can explicitly relate Γνµρ to ω b
µ a and e a

µ by demanding

DµX
a = e a

ν DµX
ν (17)
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which leads to
Γνµρ = e a

ν (∂µe
a
ρ + ω b

µ ae
b
ρ ). (18)

In general relativity the connection Γνµρ is assumed to be metric compatible
and therefore symmetric. The connection we obtain in this way is referred to
as the Levi-Civita connection and the fact that it should be symmetric gives
the zero torsion condition:

T a
µν = ∂µe

a
ν − ∂νe a

µ + ω a
µ be

b
ν − ω a

ν be
b
µ = 0. (19)

This is in fact a constraint equation, implying that the ω-connections depend
on the e’s. From now on we switch to the vector notation of the Lorentz group
SO(2, 1), where, in stead of the generators Jab, we use Ja = 1

2εabcJ
bc. The spin

connection now reads
ω a
µ b = εabcω

c
µ . (20)

The Riemann curvature tensor for the SO(2, 1) gauge field is given by:

Ra
µν = ∂µω

a
ν − ∂νω a

µ + εabcω
b
µ ω

c
ν (21)

With help of the Riemann curvature tensor we construct the Einstein-Hilbert
action:

SEH =

∫
d3xεµνρeρaR

a
µν (22)

Variation of this action with respect to the gauge fields should yield the Einstein
equations.

3.2 The Chern-Simons action for gauge group ISO(2, 1)

3.2.1 ISO(2, 1) and its algebra

In this subsection we will be comparing the previous discussion to the Chern-
Simons theory with gauge group ISO(2, 1). To write down the Chern-Simons
action with ISO(2, 1) gauge group we need to know the algebra with its com-
mutation relations and an invariant bilinear form as we discussed in section 1.
The group ISO(2, 1), the poincare group in 2+1 dimensions, is the semidirect
product of the group of Lorentz transformations and the group of translations
in 3 dimensions:

ISO(2, 1) = SO(2, 1) n T (3) (23)

The generators of the group form an algebra with the following commutation
relations:

[Ja, Jb] = ε c
ab Jc

[Ja, Pb] = ε c
ab Pc

[Pa, Pb] = 0 (24)

Here the Ja are generators of the 3-dimensional Lorentz group in vector rep-
resentation. The elements Pa are the generators of translations. The algebra

13



indices are raised and lowered with the Minkowski metric ηab = (−1, 1, 1) to
make sure we are dealing with ISO(2, 1) in stead of ISO(3).

Fortunately the group does have a nondegenerate invariant bilinear form, a
form that commutes with all algebra elements. The expression JaPa satisfies
these conditions as we can check:

[JaPa, Jb] = Ja[Pa, Jb] + [Ja, Jb]Pa = ε c
ab (J

aPc + ηadJcPd) = 0

[JaPa, Pb] = Ja[Pa, Pb] + [Ja, Pb]Pa = ε c
ab η

adPcPd = εcabPcPa = 0 (25)

The inner product on the algebra can now be identified:

〈Ja, Pb〉 = ηab

〈Ja, Jb〉 = 0

〈Pa, Pb〉 = 0 (26)

We can now write down the gauge field A in this algebra basis:

Aµ(x) = ω a
µ (x)Ja + e a

µ (x)Pa (27)

The choice of notation is not arbitrary as we will see when we explicitly calculate
what the action looks like. We substitute this expression for the gauge field in
the general action as given in (3):

SCS =
k

2

∫

M

[
〈Ja, Pb〉ωa ∧ deb + 〈Pa, Jb〉ea ∧ dωb

+
2

3

(
1

2
〈[Pa, Jb], Jc〉ea ∧ ωb ∧ ωc

+
1

2
〈[Ja, Pb], Jc〉ωa ∧ eb ∧ ωc +

1

2
〈[Ja, Jb], Pc〉ωa ∧ ωb ∧ ec

)]

=
k

2

∫

M

(
ωa ∧ dea + ea ∧ dωa + εabce

a ∧ ωb ∧ ωc
)

=
k

2

∫

M
εµνρ

(
eµa(∂νω

a
ρ − ∂ρω a

ν + εabcω
b
ν ω

c
ρ )
)

=

∫
d3xεµνρeρaR

a
µν (28)

Here we have made use of partial integration in the first term, and assumed
that the gauge field is zero at the boundary of the manifold M .
What we thus arrive at is nothing but the Einstein-Hilbert action on a
3-manifold. Making this identification, we find that the gauge field of local
Lorentz transformations is indeed the spin-connection ω a

µ and the triad e a
µ

must be interpreted as the gauge field of translations!
This observation is of crucial importance and turns the theory of 2+1 dimen-
sional gravity into a topological one. In gauge theory the field e a

µ can take the
value zero, whereas on the other hand, we required the triad to be invertible

14



in equation (15). This implies that in the gauge theory formulation, the base
manifold M for general relativity cannot be a metric space. See Witten [1] for
a more thorough discussion.

3.2.2 Further identification with 2+1 gravity

Let us point out what the equations of motion look like for the case of ISO(2, 1)
gauge group.
Varying the action (28) with respect to the gauge fields e a

µ and ω a
µ gives us

the equations of motion:

R a
µν = ∂µω

a
ν − ∂νω a

µ + εabcω
b
µ ω

c
ν = 0,

T a
µν = ∂µe

a
ν − ∂νe a

µ + εabc(ω
b
µ e

c
ν + ω b

ν e
c
µ ) = 0. (29)

These equations exactly correspond to Einsteins’ equations in vacuum, Rµν = 0
and the zero torsion condition Tµν = 0, which turns Γµνρ into the levi-civita
connection and thus gives a relation between e a

µ and ω a
µ .

Finally we show that the role of infinitesimal gauge transformations in the
Chern-Simons gauge formulation is related to that of the diffeomorphisms to-
gether with local Lorentz transformations in the geometrical Einstein formu-
lation: An infinitesimal gauge transformation is generated by a Lie-algebra
valued parameter ε = ρaPa + τaJa, where ρ

a and τa are infinitesimally small.
We compute:

δAµ = −Dµε = −∂µε− [Aµ, ε]

= −(∂µρa + εabcω
b
µ ρ

c + εabce
b
µ τ

c)Pa − (∂µτ
a + εabcω

b
µ τ

c)Ja

which yields

δω a
µ = −(∂µτa + εabcω

b
µ τ

c) (30)

δe a
µ = −(∂µρa + εabcω

b
µ ρ

c + εabce
b
µ τ

c) (31)

The action is indeed invariant under these transformations as one is invited to
verify.
The question is if these transformations coincide with the local Lorentz trans-
formations and diffeomorphisms allowed in general relativity.
Let us compare the transformation laws to those of the diffeomorphism gener-
ated by a vector field −vµ:

δ̃ω a
µ = −vν(∂νω a

µ − ∂µω a
ν )− ∂µ(vνω a

ν ) (32)

δ̃e a
µ = −vν(∂νe a

µ − ∂µe a
ν )− ∂µ(vνe a

ν ) (33)
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If we take the vector field to agree with ρa = vµe a
µ , and compare the terms in

(31) which are proportional to ρa, the diffeomorphism, there is still a difference
between the transformations (31) and (33):

δ̃e a
µ − δe a

µ = −vν(Dνe
a
µ −Dµe

a
ν ) + εabcvνωνbeµc. (34)

The expression
Dνe

a
µ −Dµe

a
ν

is nothing but the torsion, which should vanish as the equations of motion tell
us. What remains then is the term εabcvνωνbeµc, which corresponds to a local
Lorentz transformation with parameter τ a = vµω a

µ .
Similarly, the difference between the transformations of ω a

µ is

δ̃ω a
µ − δω a

µ = −vν(Dνω
a
µ −Dµω

a
ν ) + εabcvνωνbωµc. (35)

Here the we have again chosen τ a = vµω a
µ . Now part of the difference is given

by the curvature Ra = Dνω
a
µ − Dµω

a
ν , becoming zero after imposing the

equations of motion, and the other part again a local Lorentz transformation.

Our conclusion is that the Lorentz transformations and diffeomorphisms
agree with the gauge transformations of ISO(2, 1) as long as we impose the
equations of motion following from the Chern-Simons action.

3.3 The case of a nonzero cosmological constant

We can generalize the description of 2+1 gravity to a picture in which a cosmo-
logical constant is added to the theory. The cosmological constant appears in
the Einstein Hilbert action as an extra term in the Riemann tensor, quadratic in
the triad. The action should therefore contain a third power of this translational
part of the gauge field. This would mean that the expression

1

2
〈[Pa, Pb], Pc〉(ea ∧ eb ∧ ec) (36)

should be nonzero. If we do not change the inner product on the algebra, this
can be accomplished by changing the commutation relations (24) to

[Ja, Jb] = ε c
ab Jc

[Ja, Pb] = ε c
ab Pc

[Pa, Pb] = −λε c
ab Jc (37)

Here −λ is the cosmological constant, as we recognize after writing down the
new Chern-Simons action:

SCS =
1

2

∫

M
εµνρ

(
eµa(∂νω

a
ρ − ∂ρω a

ν ) + εabce
a
µ (ω b

ν ω
c
ρ −

λ

3
e b
ν e

c
ρ )

)
(38)
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The curvature tensor has changed to:

R a
µν = ∂µω

a
ν − ∂νω a

µ + εabcω
b
µ ω

c
ν −

λ

3
e b
ν e

c
ρ (39)

Whereas, the torsion T a
µν does not change. Changing the commutation

relations like we did above obviously changes the gauge group. In fact,
starting off with ISO(2, 1), the commutation relations (37) can be identified
to essentially being the generating algebra of the group SO(3, 1) or SO(2, 2),
depending on whether the cosmological constant −λ is positive or negative
respectively. See the appendix for a description of the algebras of SO(4− p, p)

Thus we can conclude that adding a cosmological constant to the ISO(2, 1)
gauge theory of gravity with Minkowskian signature changes the gauge group
to SO(3, 1) in case the cosmological constant is positive, and SO(2, 2) if the
cosmological constant is negative.
Besides these different groups for 2+1 dimensional gravity with Minkowskian
signature, we can consider the case of Euclidean gravity, where we replace the
gauge group ISO(2, 1) by the Euclidean group ISO(3). Until now, the only
thing that changes is the metric used to raise and lower algebra-indices. The
commutation relations (24) with all indices down will be different in the two
cases.
If in the Euclidean case the cosmological constant is allowed to take nonzero
values, we are dealing with SO(4) gauge theory (−λ > 0) or SO(3, 1) (−λ < 0).

3.4 Wigner contraction of the gauge algebra and the role of the

coupling constant

3.4.1 The Wigner contraction

We can smoothen the relation between the different gauge-groups for the differ-
ent values of the cosmological constant by redefining the generators of boosts in
the algebra SO(3, 1): The conventional normalisation of these algebra-elements
is such that:

[Pa, Pb] = ε c
ab Jc

where the Lorentz metric is used to raise and lower indices. To arrive at (37)
we define:

P̃a =
√
−λPa. (40)

The commutation relations are now correct for both the λ < 0 and the λ > 0
case and one can interpret the ISO(2, 1) theory as the λ → 0 limit. This
contraction is called a Wigner contraction, see Gilmore [5].

3.4.2 A new basis for the algebra

An important observation is that the algebras of SO(4 − p, p) admit another
nondegenerate invariant bilinear form than the one chosen in (26). As we shall
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see, this leads to a Chern Simons action which is no longer equivalent to the
Einstein-Hilbert action, but does yield the same equations of motion. The
invariant is the operator JaJa + P aPa, leading to an inner product:

〈Ja, Jb〉 = δab

〈Pa, Pb〉 = δab

〈Ja, Pb〉 = 0. (41)

One can calculate that the action becomes:

S =

∫

M
d3zεµνρ

(
ωµa(∂νω

a
ρ − ∂ρω a

ν +
2

3
εabcω

b
ν ω

c
ρ )

+λeµa(∂νe
a
ρ − ∂ρe a

ν ) + 2λεabcω
a
µ e

b
ν e

c
ρ

)

=

∫

M
d3zεµνρ(ωµaR

a
νρ + λeµaT

a
νρ) (42)

Surprisingly, variation of this different action leads again to the familiar equa-
tions of motion:

Ra = 0

T a = 0 (43)

We can clarify the role of the second bilinear form by changing to another
algebra basis:

J+a =
1

2
(Ja +

P̃a√
−λ

), J−
a =

1

2
(Ja −

P̃a√
−λ

) (44)

satisfying commutation relations:

[J+a, J
+
b] = ε c

ab J
+
c

[J−
a, J

−
b] = ε c

ab J
−
c

[J+a, J
−
b] = 0. (45)

One can recognize two mutually commuting SO(3) algebras when starting off
with SO(4), two SO(2, 1) algebras when starting off with SO(2, 2) and a the
complexification of SO(3) in the SO(3, 1) case. The two different inner products
on the algebra correspond to the bilinear forms

J+aJ+a − J−aJ−
a (46)

for the inner product that leads to the Einstein-Hilbert action, and

J+aJ+a + J−aJ−
a (47)

for the second action. Thus the inner products are:

〈J+a, J+b〉 =
1

2
δab

〈J−
a, J

−
b〉 = −1

2
δab

〈J+a, J−
b〉 = 0 (48)
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and

〈J+a, J+b〉 =
1

2
δab

〈J−
a, J

−
b〉 =

1

2
δab

〈J+a, J−
b〉 = 0 (49)

respectively.
One can write down the action in this new basis, where we introduce the new
components of the gauge field:

A+ a
µ = ω a

µ +
√
−λe a

µ

A− a
µ = ω a

µ −
√
−λe a

µ (50)

Writing down the action in this algebra basis leads us to:

SEH =
k

4
√
−λ

∫

M
εµνρ

[(
2A+µa∂νA

+ a
ρ +

2

3
εabcA

+ a
µ A+ b

ν A+ c
ρ

)

−
(
2A−

µa∂νA
− a
ρ +

2

3
εabcA

− a
µ A− b

ν A− c
ρ

)]
(51)

where one can see that the action has to be divided by a factor
√
−λ to get the

right correspondence with the Einstein-Hilbert action.
The second inner product gives:

S =
k

4

∫

M
εµνρ

[(
2A+µa∂νA

+ a
ρ +

2

3
εabcA

+ a
µ A+ b

ν A+ c
ρ

)

+
(
2A−

µa∂νA
− a
ρ +

2

3
εabcA

− a
µ A− b

ν A− c
ρ

)]
. (52)

Both actions are thus invariant under the SO(4− p, p) gauge group, which we
can now rewrite:

SO(4) = SO(3)× SO(3)

SO(3, 1) = SO(3,C)

SO(2, 2) = SO(2, 1)× SO(2, 1) (53)

Notice however that the physically interesting limit −λ → 0 is not yet very
clear in this picture.

3.4.3 The coupling constant

The coupling constant k plays different roles for these different gauge groups.
As we stated in section 2, this constant is in some cases restricted to certain
values if we demand invariance under large gauge transformations. This de-
pended on the homotopy group π3(G). For most compact semisimple groups,
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π3(G) = Z and k was restricted to integer multiples of 1
4π . For the gauge

groups, we are considering, we have different results. For instance, the gauge
group SO(2, 2) is not compact and π3(SO(2, 2)) = 0. Thus k can take any value.

An interesting case is the case of SO(4). We now find that

π3(SO(3)× SO(3)) = Z× Z (54)

We can conclude from this that the two terms in the action (51), which trans-
form independently, can have different coupling constant coefficients, whereas
the two independent SO(3) gauge transformations can have independent wind-
ing numbers. However, to recover the Euclidean Einstein-Hilbert action with
positive cosmological constant, the two couplings must coincide. Distinct cou-
plings would lead to a mix of the two actions (51) and (52). One could argue
that the theory admits this mix, because the two actions do lead to the same
equations of motion and should therefore give equivalent theories. This ques-
tion will be shortly referred to in section 7.
We did not yet until now discuss the role of the coupling constant in the case of
zero cosmological constant. In the ISO(3) and the ISO(2, 1) case we are again
dealing with noncompact groups. The Minkowskian case is similar to SO(2, 2),
because

π3(SO(2, 1)) = 0 (55)

so that the winding number will be 0 too and the coupling constant can take
any value.
For ISO(3) we can always scale away any coupling constant by absorbing it in
the triad e a

µ , because it appears in the action as a first power in every term.
Thus for ISO(3), it can again take any value. A same argument holds for
SO(3, 1). Although it has a compact part SO(3), the coupling constant can be
scaled away by a normalisation of the ’boost’ part of the gauge field, e a

µ . In
the remaining part of this thesis, we will be focussing our attention mainly on
the gauge group ISO(3), for which a beautiful quantisation theory has been
developed.
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4 Phase space and poisson structures

As we already emphasized at the end of section 2, there are two ways of pro-
ceeding the investigation of the Chern Simons theories and developing quantum
theories. The first was to directly quantise the canonical Poisson brackets fol-
lowing from the action and the second was to first impose constraints and divide
out gauge symmetry, reducing the phase space to a relatively simple one.
In this section we will first describe the canonical Poisson structures of ISO(3)
without imposing constraints and dividing out gauge symmetries. After that
we will discuss phase space identification and reduction from different points
of view. A general description of the concepts of phase space as a symplectic
manifold and the relation with Poisson structures is given first.
We introduce a single particle in the case of ISO(3) gauge group, and discuss
its phase space, the coadjoint orbit.
We will discuss Poisson structures and finally give a general discription of the
Poisson structure for Chern Simons theory on a manifold Σ × R, where Σ has
arbitrary genus and curvature sources are inserted in N punctures of this man-
ifold. The Poisson structure will be determined by a classical r-matrix, related
to a bialgebra structure of the gauge group algebra. The meaning of these words
will become clear later on.
One should bear in mind that the descriptions given here have their own ad-
vantages when it comes to quantisation of the theory, that they are in fact
preparations for different quantisation schemes, which we will describe in the
section following the present section. In many books on quantisation only part
of the theory concerns the actual quantisation. Many considerations are valid
on a classical level, which one is often bound to forget when focussing on quan-
tisation theory. To make a clear distinction between the classical part of the
theory and the quantum-description, we stick to describing phase space in a
classical way as long as possible, where now and then we might refer to argu-
ments that come from theories of quantisation.
We will already mention that the description in terms of symplectic manifolds
is a ’preparation’ to the method of geometric quantisation, whereas the for-
malism in terms of classical r-matrices and bialgebra structures is useful when
performing deformation quantisation, both methods will be explained in section
5.

4.1 Poisson brackets

For the purpose of describing phase space we first turn to the Hamiltonian
formulation as we did in section 2. The manifold M is again specified to be of
the form Σ× R and we will restrict our attention to the case of ISO(3) gauge
group. The action (2.2.1) now becomes

S =
k

2

∫
dt

∫

Σ
d2zεij(−2e a

i ∂tω
a
j + e a

0 R
a

ij + ω a
0 T

a
ij ) (56)

where we have used the notations:
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R a
ij = (∂iω

a
j − ∂jω a

i + εabcω
b
i ω

c
j ),

T a
ij = (∂ie

a
j − ∂je a

i + εabc(ω
b
i e

c
j + ω b

j e
c
i )). (57)

The spatial curvature can now be written as

Fij = R a
ij Ja + T a

ij Pa (58)

The constraints arising from the variation of the fields e a
0 and ω a

0 are that all
components of the curvature should vanish,

εijR a
ij = 0, εijT a

ij = 0. (59)

Besides this, we can investigate the constraint algebra after deriving the Poisson
brackets.
The Poisson brackets turn out to be

{ω a
i (z1), e

b
j (z2)} =

2

k
εijηabδ(2)(z1 − z2)

{ω a
i (z1), ω

b
j (z2)} = 0

{e a
i (z1), e

b
j (z2)} = 0 (60)

in analogy with the general case (13) And calculating the constraint algebra we
arrive at:

{Ta(z1), Tb(z2)} = ε c
ab Tc(z1)δ

(2)(z1 − z2)
{Ta(z1), Rb(z2)} = ε c

ab Rc(z1)δ
(2)(z1 − z2)

{Ra(z1), Rb(z2)} = 0 (61)

in which we recognize the algebra of the gauge group, which is no surprise [1].
Notice that the role of the rotation generators is taken over by the Torsion
components, and the Riemann tensor components behave as the translation
generators in this isomorphism. Again this is in analogy with the section 2 case
(14), where we also mentioned that when coupling particles to the gauge field,
we find that the charges should equivalently obey the same Poisson algebra.
We thus already know that the charges acting as sources of torsion should obey
an algebra isomorphic to that of the rotation generators, whereas the sources
of curvature act as translation generators.

4.2 Phase space and symplectic manifolds

In many cases, where one can develop a suitable Hamiltonian formulation, a
useful, more geometric way of describing phase space is in terms of symplectic
spaces. The ingredients needed to develop the description in this manner are:
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1) A phase space, found by identifying the degrees of freedom in a theory,
possibly subject to constraints.

Γ(x, p) =M

In general, on phase space we will not yet have identified coordinates and mo-
menta, this is why we will denote it as a manifold M rather than Γ(x, p),
although thinking of it as the space of coordinates and momenta is what we
finally want to do. On this phase space one has functions which represent
observables of the theory:

f ∈ F (M)

2) Another ingredient that can be very useful to give a Hamiltonian description
of phase space is a symplectic form: A closed, nondegenerate, antisymmetric
2-form ω 1 that is defined everywhere on the phase space and provides a linear
isomorphism

TxM→ T ∗
xM : X 7→ Xyω (62)

where y denotes the contraction of the vector field with the first entry of the
2-form. With help of the symplectic form, one can assign vector fields to every
observable f . The Hamiltonian vector field Xf associated to f is defined by the
equation:

Xfyω − df = 0. (63)

One can derive from this equation that a Hamiltonian vector field generates a
symplectic action, i.e. an action that leaves the symplectic form invariant. This
definition allows one to find the poisson brackets, which should satisfy:

{g, f} = Xf (g). (64)

3) An important step in the procedure is the choice of a polarisation. This is
essentially a choice of coordinates versus momenta. There is a canonical choice
if the total phase space can be identified to be a cotangent bundle T ∗M. The
base space M of this manifold can then be parametrised by the coordinates,
whereas the basis coordinates of the cotangent vectors are identified with mo-
menta. There is then a natural symplectic form, which will lead to commuting
coordinates.
In many cases one will be able to find this local coordinate system (pi, x

j),
relative to which the symplectic form ω looks like:

ω = dpi ∧ dxi. (65)

Using this we can make the above equations more explicit and more recognis-
able:

Xf = X pi
f

∂

∂pi
+X xj

f

∂

∂xj
(66)

Xfyω − df = X pi
f dxi −X xj

f dpj −
∂f

∂pi
dpi −

∂f

∂xj
dxj = 0 (67)

1This introduction of another ω variable should not lead to confusion
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Thus we identify:

X pi
f =

∂f

∂xi

X xj

f = − ∂f
∂pj

(68)

And thus (64) leads to the familiar Poisson brackets

{f, g} = ∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi
(69)

The advantage of this formalism is that one immediately has a mapping from
the Poisson algebra to the Lie algebra of Hamiltonian vector fields on which one
can perform a canonical quantisation, by making use of the symplectic form. In
the end one would like to map the Hamiltonian vector fields to operators which
satisfy the quantum condition, which we will describe later on (133). We refer
to [6] for a detailed discussion.

4.3 Adding a particle: Coadjoint orbits

We will now describe how a particle can be added to the theory. Particles
will, as described at the end of section 2, be introduced by inserting them at
the punctures of the Riemann surface Σ, where they act as delta sources for
curvature. Their internal phase space is coupled to the phase space of the
gauge field through minimal coupling, which in the particle Lagrangian can be
achieved by letting

dt → Dt = dt + et + ωt. (70)

An internal phase space of this particle must be described by gauge charges
that under Poisson brackets generate the algebra isomorphic to the Lie algebra.
This is a consequence of the equation (12) and the above Poisson relations (61),
as already remarked at the end of section 2.2.4.
An elegant way of constructing such a particle Lagrangian, which results in an
explicit parametrisation of internal phase space is the coadjoint orbit method
of Kirrilov and Kostant. It is a rather geometrical procedure, that in general
works for any semi-simple group, but it can also be applied to some semi-direct
product groups, such as ISO(3), see [7] and [8].
A great advantage of the procedure is the fact that it identifies a symplectic
structure on the internal particle phase space. Here we again use an argument
from geometric quantisation theory. As we mentioned before, the method of
geometric quantisation, which we will describe further on, is actually applicable
in particular to problems in which phase space turns out to have a symplectic
structure.

4.3.1 Poisson algebra of functions on g∗

In general, a coalgebra g∗ being a vector space, its tangent space T (g∗) can be
identified with the base space itself, g∗, so that the cotangent space T ∗(g∗) can
be identified with the dual of g∗, the algebra g. We will make this more explicit:
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For ξ, η ∈ g∗ and f ∈ F (g∗) we define the linear bijection ξ : g∗ → Tξ(g
∗)

denoted by η 7→ ηξ where:

ηξ(f) =
d

dt
f(ξ + tη)|t=0 (71)

A cotangent element dfξ is now identified with an algebra element by demand-
ing:

〈η, dfξ〉 = ηξ(f) =
d

dt
f(ξ + tη)|t=0 (72)

Conversely, x ∈ g can be viewed as an element of F (g∗) by the identification

x(ξ) = 〈ξ, x〉. (73)

This means for the element dx ∈ T ∗(g∗), it is again an algebra element:

〈(dx)ξ, η〉 =
d

dt
〈x, ξ + tη〉|t=0 = 〈x, η〉. (74)

One can show that the function {f, g} given by

{f, g}(ξ) = 〈[(df)ξ, (dg)ξ], ξ〉 (75)

defines a poisson structure on g∗. For elements x, y, regarded as functions on
g∗, we thus find

{x, y}(ξ) = 〈[x, y], ξ〉 (76)

so
{x, y} = [x, y]. (77)

This bracket is referred to as the Kirillov-Kostant bracket. We can regard basis
elements xi of g as coordinate functions on g∗ by writing ξ relative to the cobasis
tj , where 〈tj , xi〉 = δji:

ξ = ξjt
j , 〈xi, ξ〉 = ξi (78)

With this identification the Poisson algebra of the coordinate functions on the
coalgebra is isomorphic to the Lie algebra with its Lie bracket.

4.3.2 The coadjoint orbit

Now that we have discovered that the vector space of the coalgebra is equipped
with a poisson bracket, we can ask ourselves the question what symplectic
manifold can be associated with it, which could be suitable for quantisation. A
way in which we can construct a symplectic manifold is by picking an element
of g∗ and acting on it with a symplectic transformation. The submanifold of
g∗ thus found is consequently a symplectic manifold. Symplectic acions are
generated by Hamiltonian vector fields, as described by (63). Specifying this
for the vector space g∗ as described above, we find the action of Hamiltonian
vector fields is:

(Xf )ξ(g)ξ = {g, f}(ξ) (79)
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and for functions x, y ∈ g we find:

(Xx)ξ(y)ξ = {y, x}(ξ) = 〈[y, x], ξ〉 (80)

This corresponds to the definition of the coadjoint action of algebra elements
on ξ:

−〈[x, y], ξ〉 = −〈adx(y), ξ〉 = −〈y, ad∗x(ξ)〉 (81)

Thus the generating action is the coadjoint action of elements in the algebra
g. This means the subspace of g∗ which is a symplectic space is found by the
coadjoint action of the group element g−1 if g is a group element generated by
x ∈ g. Of course all algebra elements generate symplectic actions, so that we
can identify the symplectic leaf corresponding to a chosen element ξ ∈ g∗ to be
its coadjoint orbit of ξ under the group action.

4.3.3 The particle Lagrangian

The construction of the corresponding Lagrangian which yields the correct Pois-
son brackets requires the existence of a locally defined canonical one-form θξ on
phase space (which is the coadjoint orbit), for which we have that −dθξ = ωξ.
This relation will in general not be valid globally. In fact a condition for a sym-
plectic space to be quantizable is the integrability condition, which means that
the symplectic form should be an integral element of the second cohomology
group. We will not go into this matter here, but refer to Woodhouse [6]. If a
one-form θY is found, one can define a first order Lagrangian by

Ldt = θ(ζ)−H(ζ)dt (82)

where ζ are coordinates parametrising phase space, so that the action becomes

S =

∫ (
θξ,

d

dt

)
dt (83)

where we have ignored the Hamiltonian H(ζ) which does not contribute to
the definition of poisson brackets. The large brackets in the action denote the
pairing between the vector fields (in this case d

dt) and one-forms. We can clarify
the picture by giving the example of the canonical one-form for a cotangent
space with coordinates xi and momenta pi. In this case one can check that the
canonical one-form

θ = pidx
i (84)

defines the familiar kinetical part of the Lagrangian.

A well studied manifold related to this problem is the phase space of a
particle moving on the group G. It has a canonical symplectic structure
ω, because it can be identified with the cotangent bundle T ∗G, and has a
canonical one-form θ. The reduction of this manifold by dividing out by
symmetries of the group action turns out to be isomorphic to a coadjoint orbit
of the covector one started off with, which is still a symplectic manifold. On
the orbit the canonical one-form is given by:

θξ(g, ξ) = 〈ξ, (g−1dg)〉 (85)

where the element g−1dg is a one-form with values in g.
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4.3.4 The ISO(3) case

The internal phase space of the particle is now parametrised by coordinates
ξa, components of the coalgebra vector. In the ISO(3) case we specify an
internal state in this way by ξ∗ = jaJ∗

a +p
aP ∗

a , where the j
a and pa are now the

coordinates on the coadjoint orbit. This corresponds to the algebra element

ξ = paJa + jaPa, (86)

which identifies the curvature sources. Invariants of the coadjoint orbits are the
length of the vector papa = µ2 and the inner product paja = µs. We can identify
the first relation with a mass-shell condition, which means µ corresponds to a
Euclidean mass. We identify s with spin.
For µ > 0, on the coadjoint orbit, which we shall denote by Oµs, the p

a describe
a 2-sphere and in each point the relation paja = µs leaves 2 degrees of freedom
for the ja, so geometrically the orbit looks like a cotangent bundle of a 2-sphere
with radius µ.
On the Oµs the Kirillov-Kostant bracket in fact by construction reproduces the
algebra isomorphic to the Lie algebra.

{ja, jb} = ε c
ab jc

{ja, pb} = ε c
ab pc

{pa, pb} = 0 (87)

Indeed there is a correct correspondence between the poisson algebra of the
ja, pa and the poisson algebra with the curvature components T a, Ra, as we see
by reconsidering equations (12), (58) and (61).
The total phase space of the theory is normally given by the tensor product of
the phase space of the particles and the phase space of the gauge fields. With
the above construction we can make an identification.
The phase space of the gauge fields in the absence of handles of the surface is
a conjugacy class determined by the holonomy around a puncture in which the
curvature is nonzero, as described in section 2. The phase space of the particle
is the coadjoint orbit Oµs, which is closely related to a conjugacy class. The
orbit of ja and pa is in fact determined by the action:

g : exp(jaPa + paJa) 7→ exp(Cog−1(jaPa + paJa))

= exp(Adg(j
aPa + paJa))

= g exp(jaPa + paJa)g
−1 (88)

which is the same as conjugation of the element exp(
∫
σ Fdσ), if we identify

orbits µ modulo 2π.

On a classical level, we thus have a description for the case of a single
particle. However, phase space is not well-described by the coadjoint orbits
when we consider multiparticle systems.
The largest problem arises when taking into account the multiplication rule
(8) for combining different noncontractible loops into one loop. We remind the
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reader that this multiplication rule was grouplike, i.e. the group structure of
phase space is a natural feature.
On a two-particles level this would for instance mean that combining two
noncontractible loops around the two different particles into a single noncon-
tractible loop would be an operation, usually referred to as fusion that maps
the phase space of functions on two copies of the group to a space of functions
on one copy of the group, this single group element being obtained by the
usual group multiplication of the two one started off with. A crucial point here
is the compatibility with this action one demands from the Poisson bracket.
Unfortunately the Kirillov-Kostant construction of the Poisson bracket for
a coadjoint orbit does not obey this compatibility relation, in which one
recognises the difference between a coadjoint orbit and the conjugacy class
structure of the phase space, the latter being the more correct point of view
for considering multi-particle sectors.

4.4 Poisson-Lie groups, Hopf algebra’s and bialgebra structures

We have seen that the underlying group structure of the reduced phase space
is a natural feature of Chern Simons theory. To tackle this problem, in this
subsection we introduce a few concepts of a formalism in which one is finally
able to define Poisson brackets on the reduced phase space. The beginning of
this subsection to some extent will be a sequence of definitions and introductions
of concepts, necessary to formalise our discussion. For more details, we refer to
Chari and Pressley [9].

4.4.1 Poisson-Lie groups

As we argued above, we must focus our attention on the properties of phase
spaces that are grouplike, that is, the phase space is a Lie group G and so the
space of functions on phase space is:

F (M) = F (G) (89)

If this algebra is equipped with a Poisson bracket, the main difference with
respect to a more trivial phase space is the restriction that this Poisson bracket
must be compatible with the group action. This is the case if the group action
is a poisson map, of which we will give the definition now:
A smooth map F : M → N between the two manifolds M and N , both
equipped with a Poisson structure, is called a Poisson map if:

{f1, f2}N ◦ F = {f1 ◦ F, f2 ◦ F}N (90)

If we translate this to the case in which the map is the usual group action which
we denote by,

m : G⊗G→ G : (g1, g2) 7→ g1g2 (91)

we need the definition of the tensor product space Poisson bracket: If M and
N are Poisson manifolds (i.e. they are equipped with a Poisson structure), the
natural Poisson bracket on M ×N is defined as

{f1, f2}M×N (x, y) = {f1(., y), f2(., y)}M (x) + {f1(x, .), f2(x, .)}N (y) (92)
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for x ∈M and y ∈ N .
Applying this to the case where M ×N = G × G we can now explicitly write
down the condition following from demanding the group action to be a Poisson
map:

{f1, f2}(g1g2) = {f1 ◦ Lg1 , f2 ◦ Lg1}(g2) + {f1 ◦Rg2 , f2 ◦Rg2}(g1) (93)

By Lg and Rg we mean the left and right actions of the group element g
respectively. If this condition is satisfied for a Poisson bracket on the algebra
of functions on the group F (G), G is called a Poisson-Lie group.

4.4.2 Hopf algebras, the general definition

The algebra of functions on a group, which must satisfy certain relations due
to the underlying group structure is a natural example of an object called a
Hopf algebra, if it is equipped with some additional features. We will first give
the general definition of a Hopf algebra and then show how the algebra of
functions on a group G can be identified to be one:

A Hopf algebra over a commutative ring k is a k-module A such that:

i) A is a bialgebra, i.e. it is both an algebra and a coalgebra over k.

Here we will give a short explanation on the terms algebra and coalge-
bra:
By an algebra we mean that the k-module A is equipped with a multiplication
map, that is a map µ : A⊗A → A, together with a unit map, η : k → A, such
that the order in the mappings expressed by the following diagrams is of no
significance, i.e. these diagrams ’commute’:

A⊗ k
'

²²

�
⊗η // A⊗A

µ

²²
A � // A

k ⊗A
'

²²

η⊗
�

// A⊗A
µ

²²
A � // A

(94)

A⊗A⊗Aµ⊗
�

//

�
⊗µ

²²

A⊗A
µ

²²
A⊗A µ

// A

(95)

For the k-module to be a coalgebra, it must be equipped with the comultipli-
cation map ∆ : A → A⊗A and the counit ε : A → k, for which the following
diagrams commute:

A⊗ k A⊗A
�
⊗εoo

A
'

OO

A�oo

∆

OO k ⊗A A⊗Aε⊗
�

oo

A
'

OO

A�oo

∆

OO (96)
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A⊗A⊗A A⊗A∆⊗
�

oo

A⊗A

�
⊗∆

OO

A
∆

oo

∆

OO (97)

A bialgebra is thus equipped with all these maps (µ,∆, η, ε).
ii) The comultiplication ∆ : A → A ⊗ A and the counit ε : A → k are
homomorphisms of algebras

iii) The multiplication µ : A ⊗ A → A and the unit η : k → A are ho-
momorphisms of coalgebras.

iv) There is a bijective k-module map SA : A → A such that the now
following diagrams commute:

A⊗A S⊗
�

// A⊗A
µ

²²
A
∆

OO

η◦ε
// A

A⊗A
�
⊗S // A⊗A

µ

²²
A
∆

OO

η◦ε
// A

(98)

S is called the antipode.
With all these structures, a Hopf algebra can be characterised by a set
(A, µ,∆, η, ε, S).

4.4.3 The Hopf algebra of functions on a group F (G) and the group

Hopf algebra C(G)

Now that we know the general definition of a Hopf algebra, we can proceed by
showing how F (G) can be regarded as a Hopf algebra. The algebra of functions
on a finite group inherits a natural Hopf algebra structure (F (G),m,∆, η, ε, S)
from the group structure, given by:
i) The pointwise multiplication:

m(f1 ⊗ f2)(g) = f1(g)f2(g)

ii) The comultiplication induced by group multiplication:

∆f(g1 ⊗ g2) = f(g1g2)

iii) The unit:
η(λ)(g) = λ

iv) The co-unit:
εf = f(e)

v) The antipode:
S(f(g)) = f(g−1)

An important property of a Hopf algebra which we will use further on, is that
its dual A∗ is again a Hopf algebra. There is a natural dual for the algebra of
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functions on the group, consisting of the group Hopf algebra C(G), the algebra
of polynomials of group elements. The pairing 〈, 〉 : A ⊗ A∗ → k is obviously
given by

〈f, g〉 = f(g) (99)

where f ∈ F (G), g ∈ C(G). For a dual algebra A∗, one demands that the
dual of the multiplication map on A is the same as comultiplication on A∗

with respect to this pairing and vice-versa. Bearing this in mind, it is now not
difficult to determine the Hopf algebra structure on F (G)∗ ' C(G):
i) Usual group multiplication:

m(g1 ⊗ g2) = g1g2

ii) The comultiplication:
∆g = g ⊗ g

iii) The unit:
η(λ) = λe

iv) The co-unit:
εg = 1

v) The antipode:
S(g) = g−1

4.4.4 Another relevant Hopf algebra: The universal enveloping al-

gebra

We will now define a Hopf algebra that will be important in the rest of our
story about dualities and Poisson structures, the universal enveloping algebra
(UEA): The universal enveloping algebra is denoted by U(g) and its definition
is that it consists of all tensor product spaces of the algebra ⊕ng⊗n divided out
by the equivalence relation XY − Y X = [X,Y ], identifying the commutator.
The Universal enveloping algebra is again a Hopf algebra, which means it is,
besides the above properties, equipped with a unit

�
and with the following

defining maps:
i) The multiplication:

m(X ⊗ Y ) = XY

ii) The comultiplication:

∆(X) = X ⊗ �
+

� ⊗X

iii) The unit:
η(λ) = λ

�

iv) The counit:
ε(X) = 0

v) The antipode:
S(X) = −X
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In addition to this definition we prove that the coproduct satisfies the condition
∆(XY − Y X) = ∆([X,Y ]):

∆(XY − Y X) = ∆(X)∆(Y )−∆(Y )∆(X)

= (X ⊗ �
+

� ⊗X)(Y ⊗ �
+

� ⊗ Y )

−(Y ⊗ �
+

� ⊗ Y )(X ⊗ �
+

� ⊗X)

= [X,Y ]⊗ �
+

� ⊗ [X,Y ]

= ∆([X,Y ]) (100)

4.4.5 General picture of Poisson-Hopf algebras and co-Poisson-Hopf

algebras

The above definition of Hopf algebra structures can be extended to the case
which is of interest for us: The case in which in addition to the usual structure,
a Poisson structure is added to the Hopf algebra. We will again first give a
general definition of a Poisson-Hopf algebra and its dual, the co-Poisson-Hopf
algebra, without specifying to the case of functions on a group.
The general definition for a Poisson-Hopf algebra is:
A is a Hopf algebra (A, η, µ, ε,∆, S) equipped with a skew-symmetric map
{ , }A : A⊗A → A satisfying two identities:
The Jacobi identity:

{a1, {a2, a3}A}A + {a3, {a1, a2}A}A + {a2, {a3, a1}A}A = 0 (101)

and the Leibniz identity:

{a1a2, a3}A = {a1, a3}Aa2 + a1{a2, a3}A (102)

for all a1, a2, a3 ∈ A, together with the compatibility condition:

{∆(a1),∆(a2)}A⊗A = ∆({a1, a2}A) (103)

where

{a1 ⊗ a′1, a2 ⊗ a′2}A⊗A = {a1, a2}A ⊗ µ(a′1, a′2) + µ(a1, a2)⊗ {a′1, a′2}A (104)

We can again turn to the dual picture now. Where we regarded the comultipli-
cation in the dual Hopf algebra A∗ as the mapping dual to the multiplication
on the Hopf algebra A, we can now introduce a mapping dual to the Poisson
bracket, which is called the Poisson co-bracket. One can indeed think of it as
a structure on the dual Hopf algebra A∗, but to emphasize that one can apply
a co-Poisson structure to an arbitrary Hopf algebra, we will define it on an
arbitrary Hopf algebra B.
The dual picture of a Poisson bracket on a Hopf algebra is a Poisson co-bracket
on a Hopf algebra B, which is a map δ : B → B ⊗ B satisfying the co-Jacobi
identity: ∑

cycl

(δ ⊗ �
)(δb) = 0 ∀b ∈ B. (105)
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Here by the cyclic sum we mean the sum over the three cyclic permutations
of the factors in B ⊗ B ⊗ B resulting from the operator (δ ⊗ �

)δ. The second
identity that must be satisfied is the co-Leibniz identity:

(∆⊗ �
)δ = (

� ⊗ δ)∆ + σ23(δ ⊗
�
)∆ (106)

Where σ23(b1 ⊗ b2 ⊗ b3) = b1 ⊗ b3 ⊗ b2 for b1, b2, b3 ∈ B. The compatibility
condition in the dual picture becomes:

δ(b1b2) = δ(b1)∆(b2) + ∆(b1)δ(b2) ∀b1, b2 ∈ B. (107)

4.4.6 Hopf algebra dualities and F (G) versus U(g)

All properties of dual Hopf algebra’sA∗ are in the finite dimensional case defined
by the Hopf algebra A itself as one can show. As we mentioned before, the
coproduct on the dual Hopf algebra A∗ is in that case determined by the action
on the Hopf algebra A through:

〈∆(b), a1 ⊗ a2〉 = 〈b,m(a1 ⊗ a2)〉 ∀b ∈ A∗, anda1, a2 ∈ A (108)

where 〈, 〉 denotes the pairing between the Hopf algebra A and its dual A∗ so
essentially, ∆ on A∗ could be denoted by m∗. The dual of the Hopf algebra
of functions on a Lie group G is often identified to be the universal enveloping
algebra associated with the Lie algebra g corresponding to the group G (see
Chari and Pressley [9]), in contrast with the previous discussion in which we
used the duality between F (G) and C(G). The difference of course lies in
a different choice of pairing 〈, 〉. We can make this duality more explicit by
giving the pairing between two dual elements, found by assigning left invariant
differential operators to every element of U(g): Let X ∈ U(g), f ∈ F (G) and
g ∈ G.

〈X, f〉(g) = d

dt
f(eXtg)|t=0 (109)

This pairing induces injective maps from F (G) and U(g) to the duals U(g)∗

and F (G)∗ respectively. The images of these maps are at least subspaces of the
complete duals. The pointwise multiplication on F (G) and the coproduct on
U(g) are consistently dual to each other, as shown below:

〈∆(X), f ⊗ h〉(∆(g)) = 〈(X ⊗ �
+

� ⊗X), f ⊗ h〉(g ⊗ g)
= 〈 �

, f〉(g)〈X,h〉(g) + 〈X, f〉(g)〈 �
, h〉(g)

= f(g)
( d
dt
h(etXg)|t=0

)
+
( d
dt
f(etXg)|t=0

)
h(g) (110)

whereas

〈X,m(f ⊗ h)〉(g) = d

dt

(
f(eXtg)h(eXtg)

)
|t=0

= f(g)
( d
dt
h(etXg)|t=0

)
+
( d
dt
f(etXg)|t=0

)
h(g) (111)
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4.4.7 Lie bialgebra structures and r-matrices

Untill now we have mainly introduced new concepts, without actually making
any direct progress in our problem of finding a Poisson structure for the phase
space of functions on a group. However, our new concepts do provide a promis-
ing way of approaching this problem in an abstract manner.
The key point is the observation that the universal enveloping algebra can be
equipped with an object that can be interpreted as a co-Poisson structure. On
the space of functions on a group, this would, with the above duality, give a
natural Poisson structure.
For this observation, we need the additional concepts of a Lie bialgebra struc-

ture, which can be described in terms of a classical r-matrix.
A Lie bialgebra structure is a skew symmetric linear map

δ : g→ g⊗ g

called the cocommutator, which is a 1-cocycle. On the dual algebra g∗ it defines
the map

δ∗ : g∗ ⊗ g∗ → g∗

which must be the commutator in g∗. The cocommutator is coboundary if it
can be written

δ(X) = [X, r] = (
� ⊗ adX + adX ⊗

�
)(r) ∀X ∈ g (112)

where r is an element in g ⊗ g of which the symmetric part is an invariant in
g⊗ g and which satisfies the classical Yang-Baxter equation:

[[r, r]] = [r12, r13] + [r12, r23] + [r13, r23] = 0. (113)

Here the notation can be clarified by writing down r in components:

r =
∑

i

ai ⊗ bi. (114)

The meaning of [r12, r13] is now:

[r12, r13] =
∑

i

[ai, ai]⊗ bi ⊗ bi. (115)

One can show (Chari and Pressley [9]) that a Lie group G is Poisson-Lie if
its algebra g admits a Lie bialgebra structure. If the corresponding r-element
is skew symmetric, it defines a Poisson-Lie bracket for functions on the group
given by the following abstract notations which we will explain below:

{f1, f2} =
∑

s,t

rst(〈∇Lf1, Xs〉〈∇Lf2, Xt〉 − 〈∇Rf1, Xs〉〈∇Rf2, Xt〉) (116)

if the symmetrised part of r corresponds to the invariant bilinear product on
the algebra. In the above equation we have written the r-element in the algebra
basis as

r = rstXs ⊗Xt
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The action of an algebra element on the functions in this notation is similar to
the previously described pairing, where now we distinguish between the action
of left invariant and right invariant differential operators corresponding to the
algebra elements. Explicitly:

〈∇Lf,X〉(g) =
d

dt
f(e−Xtg)|t=0, 〈∇Rf,X〉(g) =

d

dt
f(geXt)|t=0 (117)

This Poisson bracket is called a Sklyannin bracket. The classical Yang-Baxter
equation, and the invariance of the symmetrised part are restrictions that guar-
antee the correct properties of Poisson-Lie groups. For a detailed discussion of
these relations we again refer to Chari and Pressley [[9]].

4.5 Application to Chern Simons theory

In this subsection we will finally give a Poisson bracket for Chern Simons theory
on a manifold Σ×R where Σ has arbitrary genus and in addition N punctures
with particles and thus sources of curvature inserted in them. The approach
taken was described by Fock and Rosly [10] and later further investigated for
the use of quantisation by Alekseev and Schomerus [11], [12] and [13]. Again
in this approach, most of the observations are valid on a classical level, and we
will give a description here:

4.5.1 Graph connections

On the full unreduced phase space, a canonical symplectic form is the one for
Chern Simons theory often referred to as the Atiyah-Bott symplectic structure
[11]. In a symbolic notation it reads:

ω =

∫
δA ∧ δA (118)

and coincides with the poisson structure (13) defined in section 2. A problem
with this symplectic form is that it is defined for an unreduced phase space
which is infinite dimensional and results in problems due to the singular nature
of the bracket (see Alekseev and Schomerus [11], Fock and Rosly [10]). The
advantage of dividing out the gauge symmetry before quantising the theory is
that one doesn’t have this problem, because phase space reduces to a relatively
simple, finite dimensional space.
The approach taken by Fock and Rosly, inspired by lattice gauge theory, is to
define poisson brackets on a lattice covering the manifold Σ, a triangulation of Σ,
a finite dimensional space related to the reduced phase space as in (9), which, in
a suitable limit that connects the finite dimensional with the infinite dimensional
case, corresponds to the Atiyah-Bott symplectic structure. In particular, it
should give the same answer for functions on reduced phase space, which in our
case are conjugation invariant functions.
The route taken is to cover the manifold Σ by a lattice of links and vertices.
To each link one can assign a group valued ’lattice gauge field’ , defined by

LI = P exp(

∫ sj

ti

AI) (119)
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where the gauge field AI is taken in a certain representation I and ti and sj
are endpoints of the link. Of course one will have to give an ordering of links
to arrive at single-valued link variables. The reduced phase space of the theory,
the moduli space of flat connections modulo gauge transformations (see the
general discussion of Chern Simons theory in section 2), is obviously a subset
of the space of all functions on the space of lattice gauge fields, as one can see
by combining lattice gauge fields to closed (Wilson) loops. On the other hand,
in the limit of infinitely small links, a Poisson bracket should correspond to the
singular Atiyah-Bott symplectic structure.

4.5.2 Lie bialgebra structure and the Fock-Rosley bracket

In their article, Fock and Rosley show that there is a natural poisson bracket for
functions on the moduli space of flat connections, corresponding to the Atiyah
- Bott symplectic structure in the limit, where a suitable regularisation of the
singular poisson bracket is chosen. The moduli space is the space of all flat
connections on the Riemann surface, which was represented by homomorphisms
of the fundamental group π1(Σ) into the gauge group as described in section 2
(9).
Noncontractible loops will arise due to handles of the surface and punctures

with particles inserted in them. The fundamental group of the surface π1(Σ)
thus depends on the genus g of the surface plus the number of punctures with
particles N , and consists of 2g + N generators ai, bi, lj , where i = 1 . . . g, j =
1 . . . N (for example think of a torus on which one can define two homotopically
inequivalent noncontractible loops to understand why there are 2g generators
of π1(Σ) due to its genus ).
These generators satisfy the relation:

a1b1a
−1
1 b −1

1 . . . agbga
−1
g b −1

g l1 . . . lN =
�

(120)

Before dividing out gauge equivalence, each generator is represented by a gauge
group element, a Wilson loop observable (remember that dividing out the gauge
equivalence means considering the conjugacy class in stead of the group element,
which can be distinghuished by its trace) and thus we denote the representa-
tions:

ρ(ai) = Ui

ρ(bi) = Vi

ρ(lj) = Mj (121)

The homomorphism property of the representation implies the constraint

U1V1U
−1
1 V −1

1 . . . UgVgU
−1
g V −1

g M1 . . .MN = e (122)

The group element Mj is forced to lie in a certain conjugacy class by assign-
ing sources of curvature to the particle j inside the puncture. Thus we find
an elegant way of describing the moduli space by introducing the momentum
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mapping

µ(U1, V1, . . . Ug, Vg,M1 . . .MN )

= U1V1U
−1
1 V −1

1 . . . UgVgU
−1
g V −1

g M1 . . .MN (123)

and stating that phase space can be represented by

M(G, g, C1, . . . CN ) = µ−1(e)/ ∼ . (124)

where the ∼ quotient means dividing out by simultaneous conjugation.

The Fock-Rosley bracket now defines a Poisson structure such that it
corresponds to the Atiyah-Bott symplectic structure and which reduces to
the space of functions on the moduli space invariant under simultanious
conjugation of all holonomies. This Poisson-bracket is expressed in terms of an
r-matrix that defines a bialgebra structure.

4.5.3 The Fock-Rosley bracket

Before introducing the Fock-Rosley bracket, we need some notations which will
be very useful: Like before, left and right invariant differential operators that
act on functions on the group and take values in the Lie algebra’s dual are
defined by:

〈∇Lf(g), X〉 =
d

dt
f(e−tXg)|t=0

〈∇Rf(g), X〉 =
d

dt
f(getX)|t=0 (125)

In addition to this, as we will be dealing with functions of many grouplike
arguments, it will now be necessary to introduce an ordering of the differential
operators:

∇2j−1 = ∇Mj

R ∇2j = ∇Mj

L for j = 1, . . . N ;

∇N+4i−3 = ∇Ui
R ∇N+4i−1 = ∇Ui

L for i = 1, . . . g;

∇N+4i−2 = ∇Vi
R ∇N+4i = ∇Vi

L for i = 1, . . . g.

(126)

As an example, the expression

〈∇2j−1f(M1, . . . ,MN , U1, . . . , Ug, V1, . . . , Vg), X〉

can be written as

d

dt
f(M1, . . . ,Mje

tX , . . . ,MN , U1, . . . , Ug, V1, . . . , Vg)|t=0

With these notations we can finally define the Poisson bracket, introduced in
this form in [13]:

{f, h} = 1

2

∑

i

〈r,∇if ∧∇ih〉+
∑

i<j

〈r,∇if ∧∇jh〉. (127)
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where r ∈ g ⊗ g is a solution of the classical Yang-Baxter equation, defining
a bialgebra structure. If the symmetrised part rs = 1

2(r + σr) corresponds to
the bilinear invariant form used to define the Chern-Simons action, this Poisson
bracket will correspond to the Atiyah-Bott symplectic structure, for a certain
regularisation.
The functions we are considering here are functions on reduced phase space,
i.e. functions of the representatives for Wilson loops, M,U, V , invariant under
simultaneous conjugation. Regarding matrix elements of group elements M,U
and V in a certain representation as functions on the moduli space, one has
the possibility to explicitly calculate poisson brackets between different matrix
elements. Choosing representations τ I and τJ one denotes an element W ∈ G
in the representation τ I by W I and the r-element in the representation τ I ⊗ τJ
by (τ I ⊗τJ)(r) = rIJ . Using the tensor notation W 1 =W ⊗ �

,W 2 =
� ⊗W we

can clarify this abstract story by giving an explicit calculation of the Poisson
brackets for one of the possible combinations of matrix elements:

{
1

M
I

i ,
2

M
J

j }

=
1

2

∑

k

(
〈rIJ ,∇k

1

M
I

i ⊗∇k

2

M
J

j 〉 − 〈rIJ ,∇k

2

M
J

j ⊗∇k

1

M
I

i 〉
)

+
∑

k<l

(
〈rIJ ,∇k

1

M
I

i ⊗∇l

2

M
J

j 〉 − 〈rIJ ,∇k

2

M
J

j ⊗∇l

1

M
I

i 〉
)

(128)

Here ∇kMi only gives nonzero values for k = 2i−1 or k = 2i as the above differ-
ential operator ordering tells us. In factM I

i is the function in F (G, g, C1, . . . CN )
that gives the value of the i-th conjugacy class argument in the representation
I Proceeding with the above calculation we find that only the first part of the
sum for k < l contributes to the answer:

{
1

M
I

i ,
2

M
J

j } = 〈rIJ , (∇Mi
L

1

M
I

i ⊗∇
Mj

L

2

M
J

j +∇Mi
R

1

M
I

i ⊗∇
Mj

R

2

M
J

j )〉

+〈rIJ , (∇Mi
R

1

M
I

i ⊗∇
Mj

L

2

M
J

j +∇Mi
R

1

M
I

i ⊗∇
Mj

L

2

M
J

j )〉. (129)

From equations (125) we see that the evaluation of the pairing gives minus
signs for every pairing with left invariant differential operators. The result in
the representation I, J is:

{
1

M
I

i ,
2

M
J

j } = rIJ
1

M
I

i

2

M
J

j −
1

M
I

i r
IJ

2

M
J

j

−
2

M
J

j r
IJ

1

M
I

i +
1

M
I

i

2

M
J

j r
IJ for i < j. (130)

4.5.4 Some more remarks on the classical r-matrix

We have seen that in this formalism, the problem for finding a poisson structure
on the phase space of Chern Simons theory can be reduced to the problem of
finding a bialgebra structure for the corresponding gauge algebra, and with
it a classical r-matrix, satisfying the Classical Yang Baxter Equation, and of
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which the symmetrised part coincides with the bilinear invariant form used to
define the inner product on the algebra that becomes manifest in the Chern
Simons action. For simple gauge groups a standard r-structure is available as
described in books like [9] and [14], though it is not uniquely defined. The
restriction that the symmetrised part of r coincides with the invariant bilinear
form leaves open degrees of freedom form the antisymmetric part, as described
in [11]. Nevertheless, we can imagine the r-matrix being uniquely determined
if it must in addition satisfy the Classical Yang Baxter Equation, though this
is not a priori clear.

In section 7 we return to the issue of finding solutions to the Classical
Yang Baxter Equation and give a general description of classical double
bialgebras, of which the iso(3) bialgebra structure we will be considering and
which is presented in the appendix is an example.
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5 Quantisation

In this section we will at last make an attempt on describing quantisation the-
ory. First we give a description of the missing parts to arrive at a quantum
theory, where two approaches will be explained in more detail. The two ap-
proaches have already been mentioned in the previous section:
An approach taken by Witten [1] for the case of Chern Simons theory with
ISO(3) gauge group without particles is described as an example of geometric
quantisation. In addition to this we have a description of a quantisation proce-
dure for internal phase space of a single particle, the coadjoint orbit. This is in
fact another example of geometric quantisation, but we will just give the result
in this section.
The approach taken by Alekseev and Schomerus is in fact an example of defor-
mation quantisation leading to quantum groups (although they call it combi-
natorial quantisation, which we will explain further on).
The advantage of the deformation quantisation approach is that it seems to
provide a way to describe the quantisation of Chern Simons theory with parti-
cles.
In a way, the considerations in this section will be a setup to discuss the quan-
tisation procedure found by Bais and Muller [2]. The results of the coadjoint
orbit quantisation together with arguments related to the topological nature of
the theory, fusion and braiding properties, were reason to propose the quan-
tum symmetry of the quantum double of SU(2) to be result of quantisation of
ISO(3) Chern Simons theory with particles. Very recently, this result has been
shown to be correct according to the Alekseev and Schomerus procedure of com-
binatorial quantisation by Schroers [3]. We will describe this correspondence in
the following section.

5.1 Quantisation and the quantum condition

Unfortunately, quantisation is not as straightforward as one may wish, and
there is no evident canonical procedure which works for every classical theory
or case one wants to describe. In fact, since Schrödinger, many different
approaches have been developed and no one stands out in an absolute sense
Of course all the approaches should at least have many results in common,
first of all, that they agree with the postulates of quantum mechanics. Here
we give a summary of them:

In quantum mechanics every observable, in classical mechanics repre-
sented by a function on the phase space, is replaced by a hermitian operator.
The operator does not act on phase space itself, but on a Hilbert space,
which is usually a space of functions on part of the phase space in a certain
representation.
In the Hamiltonian formalism, the observables, the functions on phase space
form a Poisson algebra under poisson brackets: Upon quantisation this algebra
is replaced by an operator algebra and the Poisson bracket is replaced by the
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operator commutator. The famous example is that of the Heisenberg algebra:

{xi, pj} = δij (131)

which is being replaced by:

[Oxi ,Opj ] = −i~δij (132)

The general picture of which this is an example is:

[Of ,Og] = −i~Ok (133)

where
k = {f, g}. (134)

This is often referred to as the quantum condition. Here we recognise the intro-
duction of ~, Planck’s constant as a quantum parameter. Conceivable inequiv-
alent quantisations should in the limit ~→ 0 reproduce classical mechanics.
In general identifying phase space is an important preparation for the actual
quantisation procedure.
The phase space one starts of with, is possibly still subject to constraints, or
perhaps some symmetry still has to be divided out. One can choose to first
quantise a system and afterwards restrict the Hilbert space to functions that
obey these constraints (which will then be imposed by constraint operators)
and are invariant under the residual symmetry. Poisson brackets must be com-
patible with these symmetry transformations.

5.2 Geometric quantisation

The whole subject of geometric quantisation is based on the possibility of
defining symplectic structures on the initial phase space and possibly, if there
are constraints or gauge equivalences, the reduced phase space. In particular,
reduction to a subspace of the initial phase space should leave the symplectic
structure intact. One now would like to define a Hilbert space: A space of
square integrable functions on part of the phase space on which Hermitian
operators, representing the observable functions on phase space, will act.
The wave functions are defined on half of the parameters of phase space: The
coordinates parametrising configuration space, as opposed to the momenta.
The symplectic structure provides a natural choice for this identification.
Finding a representation of the Hilbert space is still then a challenging problem
in most cases.
A symplectic space on which one has a locally defined one-form θ such that
dθ = ω allows the definition of prequantum bundles, which satisfy the U(1)
invariance for the expectation values of operaters. We will not go into the
details here, but refer to [6] and proceed with the example of ISO(3) Chern
Simons theory without particles.
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5.2.1 The example of ISO(3) Chern Simons theory

We will now apply the method to ISO(3) Chern Simons theory: We will first
discuss the quantisation of the pure gauge theory, where there is no presence
of matter terms in the action, following the remarks made by Witten [1]. After
this we give the result of the coadjoint orbit quantisation.
Our first goal in quantising ISO(3) Chern Simons theory would again be to
identify a phase space, possibly with constraints.
The unreduced phase space (before imposing constraints) is the space of
all gauge connections ω a

µ , e
a
µ . Through the Chern Simons action in the

Hamiltonian formulation, we are already supplied with Poisson brackets,
which were given for ISO(3) in equation (60). These Poisson brackets seem
suitable for identifying either the ω a

µ or the e a
µ with coordinates on which

wave functions can be defined. But here the phase space reduction becomes
important: The constraint equations without curvature sources yield the
curvature is zero everywhere and thus ω a

µ and e a
µ must be flat connections.

Besides this, we still have the gauge equivalence of the theory to be divided out.

Physical sectors of the theory should be gauge invariant. Our wavefunc-
tions, which depend on the variables which we have chosen to be the
coordinates, therefore after a gauge transformation still depend on coordinates
only. The gauge transformations on the gauge fields acted as:

δω a
µ = −∂µτa − εabcω b

µ τ
c

δe a
µ = −∂µρa − εabcω b

µ ρ
c − εabce b

µ τ
c (135)

We see that the transformation of the ω a
µ contains only a term proportional to

itself, while the e a
µ after transformation contain a term proportional to ω a

µ .
This means the only suitable candidates for the coordinates are the ω a

µ , the
flat SO(3)-connections, forming a configuration space M
All coordinates ω a

µ that are connected through gauge transformations are
equivalent, which reduces the configuration space to (M/ ∼) = N , where ∼
stands for gauge equivalence.
We can now identify the phase space Γ of flat ISO(3)-connections modulo
gauge transformations with the total space of the cotangent bundle of N ,
which means a canonical symplectic structure corresponds to the Poisson
brackets (60).

The reader might notice that the argumentation in this line of reasoning
has come in in a different order than was the case while giving the description
of phase space in terms of symplectic structures. Here we already used the fact
that we had identified coordinates to define the symplectic structure, whereas
in the formal discussion a symplectic structure is used to distinguish between
configuration space and momentum space. This could be interpreted as a
typical example of the disadvantage of formalised mathematical descriptions.
It emphasizes that generalising a procedure does not allways make it easier.

If we do not consider particles, we will assume the Riemann surface Σ
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will not be punctured, and noncontractible loops will only arise due to handles
of the surface. The fundamental group of the surface π1(Σ) thus only depends
on the genus g of the surface and consists of 2g generators ai, bj , where
i, j = 1 . . . g Very much like the case described at the end of section 4 these
generators satisfy the relation:

a1b1a
−1
1 b −1

1 . . . agbga
−1
g b −1

g =
�

(136)

By the above identification of phase space with T ∗N we can now identify our
moduli space with the cotangent space of homomorphisms of π1(Σ) into SO(3).
The space on which wave functions will be defined, our configuration space
paramatrised by coordinates, is the space of group elements Si, Tj ∈ SO(3)
which represent elements ai, bj ∈ π1(Σ) and thus satisfy

S1T1S
−1
1 T −1

1 . . . SgTgS
−1
g T −1

g =
�

(137)

Along with this condition two representations are equivalent if they differ by a
global gauge transformation by a fixed element Λ ∈ SO(3):

Si → Λ−1SiΛ

Tj → Λ−1TjΛ (138)

The Hilbert space consists of square integrable functions Ψ(Si, Tj), which are
invariant under these transformations.

5.2.2 Hilbert space representations obtained by coadjoint orbit

quantisation of ISO(3)

The quantisation of the coadjoint orbit is described in [8] and [15]. Here we just
give some crucial results: The representations of ISO(3) can be labeled by the
invariants µ, s of the orbit, where µ is interpreted as the Euclidean mass, and s
is restricted to certain values as a result of the integrability condition mentioned
above. For µ > 0, s has to be an element of 12Z and if µ = 0 in addition we have
the restriction s > 0. The Hilbert space is now the tensor product of square
integrable functions on the orbit of p0 under SU(2), denoted by Oµ and the
Hilbert space of representations of the centraliser group Ns, labeled by s ∈ 1

2Z:

Hµ,s = L2(Oµ)⊗Hs. (139)

The centraliser is the subgroup in SU(2) that leaves the element p0 invariant, so
it is isomorphic to U(1). Clearly one observes that the choice of configuration
space on which one has defined the wave functions agrees with the cotangent
bundle geometry of the coadjoint orbit as described in section 4 and the ap-
pendix***. The above space can be shown to be identical to the space:

L2s(SU(2),Hs) = {φ : SU(2)→ Hs|φ(xh) = Πs(h
−1)φ(x), ∀h ∈ Ns} (140)

This is a result we will feature again later on.
These representations could be viewed as correct representations of the single
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particle case of the ISO(3) Chern Simons theory. However, the fact that we
have quantised a coadjoint orbit and not a conjugacy class, will become clear
in particular when it comes to constructing tensor products and considering
multiparticle Hilbert spaces.
The multiplication of two representingWilson loops for different particles should
give a fusion rule for 2 particle representations which is compatible with the
group multiplication as discussed in equations (8). One can imagine that these
rules are not obeyed by tensor product representations of the quantised coad-
joint orbit, so the multi-particle case needs a different approach.

5.3 Quantum groups

In this section we will describe a different class of approaches to quantisation.
An approach close to this will be used in section 5 to justify a description of
quantisation of ISO(3) Chern Simons theory.
The ideas of deformation quantisation lead to the definition of quantum
groups. These quantum groups are mathematical objects which can actually
be recognized as Hopf algebras rather than groups. The key ideas that lead to
these objects will be described next.

5.3.1 Deformation quantisation

From the quantum condition described by (133) we see that the main problem of
quantisation is the change of functions on phase space representing observables
to operators on a Hilbert space. These operators should be elements of a Lie
algebra isomorphic to the poisson algebra under Poisson brackets. Thus the
poisson bracket is replaced by the commutator, which is the algebra product
on the Lie algebra.
A way to do this is to consider the algebra of functions on phase space F (M).
It is equipped with the natural product of pointwise multiplication:

m(f1, f2)(x) = f1(x)f2(x) (141)

This algebra does obviously not coincide with the Lie-algebra we are lookin for,
because functions on phase space commute with respect to the product defined
by pointwise multiplication. The way one achieves the right commutator is by
deforming the product to a new one, ∗h such that

f1 ∗h f2 − f2 ∗h f1
h

= {f1, f2} mod(h). (142)

Here we have introduced a deformation parameter h, which will play the role of
Planck’s constant. The classical limit again should correspond to letting h→ 0.
Representations Φ(f) for operators corresponding to f must satisfy

Φ(f1 ∗h f2) = Φ(f1)Φ(f2). (143)

The above deformation is known as Moyal’s deformation (see [9]).
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5.3.2 Deforming Poisson-Hopf algebras

Similar to the Moyal deformation (142), we can give a quantisation of a Poisson-
Hopf algebra A by deforming the product on it, making it noncommutative
(assuming it was commutative before) such that:

{x1, x2} =
a1a2 − a2a1

h
(mod h) (144)

for x1, x2 ∈ A, a1, a2 ∈ Ah where Ah denotes the deformed Poisson Hopf algebra
and a1, a2 reduce to x1, x2 in the classical limit. If The Poisson-Hopf algebra
A corresponds to a Hopf algebra of functions on a Poisson-Lie group F (G), its
deformation Fh(G) is called the quantization of the Poisson-Lie group (G, { , }).
The dual picture that corresponds to this is the following: A quantisation of a
Co-Poisson-Hopf algebra B is a deformation of the coproduct, such that

δ(y) =
∆h(b)−∆op

h (b)

h
(mod h) (145)

where, as before, y ∈ B, b ∈ Bh and b reduces to y in the classical limit. By ∆op
h

we mean the deformed coproduct followed by a flip operation, i.e.

∆op
h = σ12∆h. (146)

We now see the Co-Poisson-Hopf algebra is no longer cocommutative. Well-
studied examples of this kind of deformation are quanised universal enveloping
algebra’s Uq(g). As we have seen in equation (108), a coproduct defines a prod-
uct on the dual algebra, and vice-versa, which leads us to the suggestion that
a deformed coproduct on a universal enveloping algebra defines a deformation
of the product on its dual, the algebra of function on the group as we argued
before (where actually we should emphasise that this is not true for every Lie
group and if we want to be mathematically correct we should discuss some
questions of completeness). Thus instead of looking for a deformed product for
the algebra of functions on the group, one could as well give a description of the
quantised universal enveloping algebra. For the details and explicit example for
the case F (SL(2,C)) versus U(sl(2,C)) we refer to Chari and Pressley [9].

5.3.3 The universal R-matrix and quasitriangularity

The noncocommutativity of a Hopf algebra as in (145) can be described by
an invertible element of A ⊗ A, called the universal R-matrix. The defining
relation is

∆op(a)R = R∆(a) (147)

for all a ∈ A. The algebra A is obviously cocommutative if the universal R-
element is equal to (

� ⊗ �
). In our applications it will be close to this, which

turns the Hopf algebra A into an almost cocommutative one.
In addition to this, a Hopf algebra is said to be quasitriangular if the R-element
satisfies the conditions:

(∆⊗ �
)(R) = R13R23, (148)

(
� ⊗∆)(R) = R13R12. (149)
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Note that in this case the coproduct explicitly acts on the R-element, and
makes the left hand side of these equations into an element of A ⊗ A ⊗ A,
while in equation (147) ∆ acts on an element a and R then acts through the
multiplication rule defined on A⊗A.
The equations (147) and (148, 149) lead us to another important equation: If
we use equation (147) to act on R itself, we find:

R12.(∆⊗
�
)(R) = (∆op ⊗ �

)(R).R12 (150)

where we only used equation (147) for acting on the first element of R. We
now apply σ12 to both sides of (148) and find:

(∆op ⊗ �
)(R) = R23R13 (151)

Substituting this in the previous equation, together with equation (148), we
find:

R12R13R23 = R23R13R12 (152)

This relation is referred to as the quantum Yang-Baxter equation (QYBE). We
can conclude that quasitriangularity is equivalent to satisfying the QYBE.
One can now check that the algebra Aop is coassociative, which means

R12(∆⊗
�
)(R) = R23(

� ⊗∆)(R) (153)

The ’almost cocommutativity’ of the quasitriangular Hopf algebra is in our case
reflected in the relation between the universal R-element and the classical r-
matrix defined in section 4. In the limit in which the deformation parameter h
goes to 0, ourR-element will become the identity, whereas, the first order part in
h will give rise to the Poisson-like structure through the r-element. Quantising
universal enveloping algebras can be achieved by finding an appropriate R-
element which in a certain representation can be written

R = (
� ⊗ �

) + hr +O(h2) (154)

In this equation the noncocommutative part represents the Poisson structure
corresponding to the classical r-element (see equation (116)).
Quantised universal enveloping algebra’s are related to the deformed algebra’s
of functions on a group by the same equation (116), or in the Chern Simons case,
(127). In applications one can express this with help of representations. This
is done by regarding matrix elements of matrix representations of the group G
as functions on the group and writing the bracket in this representation (which
also yields writing r in this representation). The deformation of the product on
thes matrix elements can now be written in terms of a deformation of the co-
product on U(g) and in terms of a universal R-element. This will define a new
product on the algebra of matrix elements of the matrix group representation,
which now cease to commute.
Instead of labelling the quantised universal enveloping algebra by the param-
eter h also used in the expansion of R, the usual convention to introduce the
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parameter q = eh. With this convention a coproduct on the quantised universal
enveloping algebra can often easily be written down, as is the case for Uq(sl2)
(see Chari and Pressley [9]), where the coproduct is given by:

∆(H) = H ⊗ �
+

� ⊗H
∆(X+) =

� ⊗X+ +X+ ⊗ qH
∆(X−) = q−H ⊗X− +X− ⊗ �

(155)

In this example X+ and X− are deformed basis elements of the positive and
negative roots respectively and H is the simple root. The limit h→ 0 obviously
corresponds to q → 1.

5.3.4 The example of the combinatorial quantisation of Chern Si-

mons theory

The nomenclature of combinatorial quantisation of Alekseev and Schomerus
is inspired by the concept of combining lattice gauge fields as described in
section 4. The Quantisation procedure is actually a deformation quantisation
as described above. As the Poisson bracket is already given in terms of the
Fock-Rosley bracket, all one searches for is actually a suitable R-element, if
one has a Lie bialgebra defining classical r-element, as we describe next:
We pick up the classical story of section 4 from the final equation (130): We
see that the Poisson brackets of matrix elements are quadratic in these matrix
elements and are indeed explicitly determined by the Lie bialgebra structure
defining r-element. In the spirit of deformation quantisation, one can deform the
product on the algebra of functions on the group, by introducing an R-element
that defines the quadratic exchange relations between the matrix elements of
Mi, in a manner such that the first order in the deformation parameter of the
commutator of two elements coincides with the Poisson bracket.
This means the R-element in the representation space of r can be expanded as:

RIJ |h→0 =
� ⊗ �

+ hrIJ +O(h2) (156)

This R element satisfies the Quantum Yang-Baxter equation (at least up to
order h2) as r satisfies the Jacobi-identity. This leads us to the observation
that the framework we are dealing with is that of the quasi-triangular Hopf
algebra’s. Examples of these are the deformed universal enveloping algebra’s
Uq(g). In ***representation theory etc.. quadratic exchange relations are given
that follow by introducing a suitable R-element. Those corresponding to the
above poisson relation are:

(R−1)IJ
1

M
I

iRIJ
2

M
J

j =
2

M
J

j (R−1)IJ
1

M
I

iRIJ for i < j. (157)

One can check that the expansion of R as above in equation (156), and with

(R−1)IJ =
� ⊗ � − hrIJ +O(h2), yields a commutator of

1

M
I

i and
2

M
J

j which is
equal to the Poisson brackets in the first power of h:

(
� ⊗ � − hrIJ +O(h2))

1
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i (
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+ hrIJ +O(h2))
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J
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J

j (
� ⊗ � − hrIJ +O(h2))

1

M
I

i (
� ⊗ �

+ hrIJ +O(h2)) (158)
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j r
IJ) +O(h2) (159)

Where the Fock-Rosley bracket was defined for conjugation invariant functions,
all quadratic exchange relations following from it through this procedure should
be invariant under a new quantum algebra symmetry.

5.3.5 The ISO(3)-case

The framework above suggests that in the case of ISO(3) Chern Simons the-
ory the corresponding quantum symmetry algebra will become the universal
enveloping algebra Uq(iso(3)). The crucial point in arriving at the quantum
double symmetry, to be discussed in the next section, is the choice of bialgebra
structure and the particular deformation chosen.
In the appendix we show that ISO(3) has a Lie bialgebra structure, given by
the r-element Pa ⊗ Ja. Thus ISO(3) corresponds to a Poisson Lie group and
there is a direct relation between this r-element and the Poisson bracket defined
on the functions on our phase space.
The symmetrised part of the r-element Pa⊗Ja obviously corresponds to the in-
variant bilinear form introduced to define the action for Euclidean gravity with
zero cosmological constant. An important observation (Schroers [3]) is that this
r-matrix is obtained by regarding the algebra iso(3) as a classical double of the
algebra su(2). The action of the R-element of the quantum double D(SU(2)) is
found to admit an expansion as in equation (156), where the classical r-element
is the r-element given above. We will give the procedure for this quantisation
in the next section. What we will not show, but only mention here, is that the
classical description of a single particle with the help of the Fock-Rosly bracket
is identical to the coadjoint orbit description, which means the Kirillov-Kostant
bracket on this orbit coincides with the Fock-Rosly bracket determined by the
above r-element (see again [3]). We should emphasize that the way of quantis-
ing ISO(3) Chern Simons theory might not be uniquely determined. The Lie
bialgebra structure leading to the interpretation as a classical double is not the
only possible Lie bialgebra structure, as noted in [3]. Besides this, different de-
formation schemes could be available for one bialgebra structure. We consider
these questions beyond the scope of this thesis.
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6 Quantum double quantisation

In this section we return to the main subject of this thesis, i.e. the quantisation
of ISO(3) Chern Simons theory with particles. In section 4 and 5 we concluded
that the multi-particle sector of the quantum theory could not coincide
with tensor products of ISO(3) representations obtained by coadjoint orbit
quantisation, and Bais and Muller [2] have shown that the object D(SU(2)),
i.e. the quantum double of the group SU(2) is a better candidate for describing
Euclidean quantum gravity without cosmological constant in 2+1 dimensions.
The argumentation was based on the observation that the single particle
representation of ISO(3) is contained in the representations of D(SU(2))
and the fact that the D(SU(2)) representations obey the correct fusion and
braiding properties on the classical level. Most importantly their method of
quantisation was suggested by a strict analogy with the discrete group case, as
discussed for example in [16].
Very recently, Schroers [3] has shown that the quantum double D(SU(2)) is a
deformation of the algebra of functions on the group ISO(3) and thus indeed
corresponds to a correct quantisation of the theory. In this section we will give
a description of this correspondence.

6.1 The quantum double of SU(2)

The general definition of a quantum double can be found in various books
about quantum groups. We refer to Majid [14]. The main features are the
following: The quantum double of a finite group H can be constructed by the
tensor product of the Hopf algebra of functions on the group F (H) and it’s
canonical dual, the group Hopf algebra C(H) (both described in section 4).
The quantum double D(H) is itself a quasi-triangular Hopf algebra, and for
detailed descriptions of its representations and constructions in the case which
is of particular relevance for us and in which H is replaced by SU(2) we refer
to Bais, Koornwinder and Muller (BKM) [2], [17] and [18]. We will just use
the results and give a summary of the paper in which Schroers describes his
deformation of ISO(3). The formalism used here will be based on the linear
bijection

F (G)⊗ C(G)⇐⇒ F (G×G) (160)

described by BKM [2], which endows F (G × G) with the Hopf* structure in-
herited from the quantum double. To proceed, we will first have to give this
structure:

6.1.1 Quasi-triangular Hopf* structure on F (G × G) inherited from

D(G)

i) Multiplication:

m(F1 ⊗ F2)(x, y) =
∫

G
dzF1(x, z)F2(z

−1xz, z−1y) (161)
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ii) Comultiplication:

(∆F )(x1, y1;x2, y2) = F (x1x2, y1)δe(y
−1
1 y2) (162)

iii) The unit:
η(x, y) = δe(y) (163)

iv) The co-unit:

ε(F ) =

∫

G
F (e, y)dy (164)

v) The antipode:
(S(F ))(x, y) = F (y−1x−1y, y−1) (165)

Additional structures making it a quasi-triangular Hopf* algebra:
vi) Universal R-element:

R(x1, y1;x2, y2) = δe(x1y
−1
2 )δe(y1) (166)

vii) *-operation:
F ∗(x, y) = F (y−1xy, y−1) (167)

6.1.2 Representations of D(SU(2))

In this formalism, BKM describe the irreducible representations of D(SU(2)).
They are labeled by pairs of quantum numbers (µ, s), where µ ∈ [0, 2π] is the
label of a conjugacy class in SU(2) and s labels an irreducible representation
of the centraliser of an element of this conjugacy class (all centralisers in a
conjugacy class are isomorphic, thus one can choose a single element of the
conjugacy class). Conjugacy classes in SU(2) are topologically equivalent to
2-spheres as one can show by choosing the Euler angle parametrisation. The
quantum number µ corresponds to the radius of these 2-spheres.
For centraliser representations one can distinguish between two different cases:
In the generic case, for which µ > 0, the centraliser is isomorphic to U(1), and
thus the label s corresponds to an irreducible U(1) representation. If µ = 0, 2π,
corresponding to conjugacy classes { � } or {− � }, the centraliser is the whole
SU(2) group and we can think of s as the ordinary j-quantum number for
SU(2).
Explicitly we can write an element h ∈ SU(2) in axis-angle parametrisation as

h(µ,n) = expµ(naJa) (168)

where n is a unit vector parametrising the 2-sphere, Ja = i
2σa and σa are the

Pauli matrices. We will restrict ourselves to the generic case in which µ > 0 for
the moment.
The representing element in the conjugacy class can be chosen to be the in-
tersection of the unit sphere and the positive 3-axis. Elements hµ = expµJ3,
rotations around the 3-axis now form the U(1) centraliser and representations
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πs are labeled by elements s ∈ Z/2.
The carrier space of representations Πµs is given by:

Hs = {φ ∈ L2(SU(2),C)|φ(xhµ) = πs(h
−1
µ )φ(x)}. (169)

Notice the similarity with the single particle representations for coadjoint orbit
quantisation of ISO(3) described in section 4.
The action of an element F ∈ D(SU(2)) in this representation becomes 2

(Πµs(F )φ)(x) =

∫

SU(2)
dwF (xhµx

−1, w)φ(w−1x). (170)

With help of these expressions and the defining relations for the product and
the R-element (see appendix), one can derive the action of the R-element in a
representation Πµ1,s1 ⊗Πµ2,s2 :

(Πµ1,s1 ⊗Πµ2,s2(R)Φ)(x1, x2) = Φ(x1, x1hµx
−1
1 x2). (171)

For some state Φ ∈ Hs1 ⊗Hs2 .

6.2 Functions on the group ˜ISO(3) and the Hopf algebra A0

A crucial point in the observation of the correspondence between the quantum
double D(SU(2)) and the algebra of functions on ISO(3) by Schroers was the
formalism in which he presented the latter (see [3]).
A Hopf algebra A0 is introduced: The defining relations of the cocommutative
Hopf algebra A0, which consists of functions on ((R3)∗ × SU(2)) are:
The multiplication:

m(f1 ⊗ f2)(a, u) =
∫

SU(2)
dwf1(a, w)f2(Ad(w−1)a, w−1u). (172)

The comultiplication:

(∆f)(a1, u1,a2, u2) = f(a1 + a2, u1)δe(u
−1
1 u2). (173)

The unit:
η(a, u) = δe(u) (174)

The counit:

ε(f) =

∫

SU(2)
f(0, u) (175)

The antipode:
Sf(a, u) = (−Ad(u−1)a, u−1). (176)

The functions on (R3)∗ × SU(2) are obtained by Fourier transforming the first
argument of a function on (R3)× SU(2) , which as a manifold is isomorphic to
˜ISO(3).

2An explicit basis is furnished by the Wigner functions µDj
mn for the case of 0 < µ < 2π

and fixed n, see [18]
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Identifying representations of this Hopf algebra with representations of
˜ISO(3) one can deduce the action of the classical r-element in this repre-
sentation. Schroers observed that the action of the universal R-element in
D(SU(2)) is a deformation of this action, in the sense of equation (156).

Irreducible representations of ˜ISO(3) are indeed very similar to the irreps
of D(SU(2)). The labels again correspond to centraliser representations and
orbits under SU(2), the latter now being the orbit of an element of (R)3∗ in
stead of a conjugacy class. Again the radius of the orbit, which we will now
denote by M for a representing element dM3 = (0, 0,M), is it’s label, and the
centraliser representation is labelled by an element s ∈ Z/2.
The carrier space of these representations is the same Hs as in (169). The
action of an element f ∈ A0 is now given by

(ΠMs(f)φ)(x) =

∫

SU(2)
dwf(Ad(x)dM3 , w)φ(w

−1x). (177)

To recover the familiar ˜ISO(3) representations one picks out a function corre-
sponding to an element (a, u):

fa,u(k, v) = exp(ia · k)δu(v) (178)

and defining
k(x,M) = Ad(x)dM3 (179)

one finds:
(ΠM,s(a, u)φ)(x) = exp(ia · k(x,M))φ(u−1x) (180)

Now that we know how group elements act on this representation, we can use
a pairing similar to the one described by equation (109) to find the action of
algebra elements. For generators of translations Pa we find:

(ΠMs(Pa)φ)(x) =
d

dε
(ΠMs(εda, 1)φ)(x)|ε=0 = ika(x,M)φ(x). (181)

And the generators of rotations Ja act as:

(ΠMs(Ja)φ)(x) =
d

dε
(ΠMs(0, exp(εJa))φ)(x)|ε=0 = −Jaφ(x). (182)

Where we should emphasize that this is still a shorthand notation for a left
invariant differential operator generated by Ja on the group SU(2). We can
now write down the action of the r-element on tensor product representations
of Φ on Hs1 ⊗Hs2 :

((ΠM1s1 ⊗ΠM2s2)(r)Φ)(x1, x2) = −i(ka(x1,M1)J
(2)
a )Φ(x1, x2). (183)

The generator Ja of course acts on the second argument of Φ, as the superscript
(2) is meant to indicate.
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6.3 The deformation A0 → D(SU(2))

Functions on (R3)∗ × SU(2) can be extended to functions on SU(2)× SU(2) if
one knows a map from (R3)∗ to SU(2) that preserves underlying Hopf-structures
when attached to another SU(2)-copy (through the Cartesian product). The
pull back of such a map should give an action on A0 corresponding to the action
of the R-element on D(SU(2)). This is exactly the action we are interested in.
The map introduced by Schroers is in fact a family of exponential maps, labeled
by a parameter κ. SU(2) generators Jκa = κJa obeying the relations

[Jκa , J
κ
b ] = κεabcJ

κ
c (184)

are introduced, and the family of exponential maps is given by:

expκ : (R3)∗ → SU(2), expκ(k) = exp(kaJ
κ
a ) (185)

For invertibility of the pull-back map, a special subset Vκ of functions on (R3)∗
is defined:

Vκ = {f ∈ C((R3)∗)|f |S2
2π/κ

= const., f(k− (4π/κ)k̂) = f(k)∀k ∈ R3 \ {0}}.
(186)

Here S22π/κ denotes the 2-spere in (R3)∗ with radius 2π/κ, and k̂ = k/|k|. We
now have the pull-back map:

exp∗κ : C(SU(2))→ C((R3)∗) (187)

which is invertible when restricted to the subset Vκ of C((R3)∗). Thus the
inverse map is denoted by:

log∗κ : Vκ → C(SU(2)). (188)

We now want to make the connection with functions on (R3)∗ × SU(2). The
subset of these functions for which the functions are in Vκ as a function of the
first argument is denoted by Aκ. As Aκ is a subset of A0, it can inherit a
few properties. In fact it inherits multiplication and unit, but does not inherit
the comultiplication in a consistent way. This means the comultiplication (∆)
given in (173) does not map Aκ into Aκ ⊗ Aκ. In order to get a consistent
comultiplication, the comultiplication (173) must be deformed to one which is
consistent. To achieve this, the complete Hopf algebra structure of D(SU(2))
should be mapped to Aκ through extension of the above pull-back maps. The
extended maps are defined by:

EXP∗
κ : D(SU(2))→ Aκ (189)

and its inverse:
LOG∗

κ : Aκ → D(SU(2)). (190)

Both maps are obviously obtained through the pull-back on the first argument.
The multiplication on Aκ now is obtained by mapping the arguments of f1, f2 ∈
Aκ to SU(2)× SU(2) and applying the multiplication (161):

m(f1 ⊗ f2)(a, u) = LOG∗
κ

(∫

SU(2)
dzf1(expκ(a), z)f2(z

−1 expκ(a)z, z
−1u)

)
.

(191)
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This multiplication rule does not depend on κ, in fact it is exactly the multipli-
cation rule already existing on A0. The comultiplication is found through the
same procedure:

(∆κf)(a1, u1,a2, u2) = LOG∗
κ (f(expκ(a1) expκ(a2), u1)) δe(u

−1
1 u2). (192)

This structure does depend on κ, which can be made clear by writing the
product expκ(a1) expκ(a2) as a single exponent with help of the Campbell-
Baker-Hausdorff formula:
One arrives at:

expκ(a1) expκ(a2) = expκ

(
a1 + a2 +

κ

2
a1 ∧ a2 +O(κ2)

)
(193)

The fact that we have only continued the computation up to order κ already
indicates that we are interested in the small κ limit of this deformed coproduct.
If one views the new Hopf algebra Aκ as the Hopf algebra of functions on the
group (R3)∗×SU(2), one finds that the deformed coproduct yields a deformed
product on (R3)∗, given by the argument of the exponent above. With the
deformed coproduct, Aκ is turned into a noncocommutative quasitriangular
Hopf algebra. In the limit κ → 0 we recover the undeformed coproduct, with
usual addition of vectors in (R3)∗, yielding the A0 Hopf algebra structure. The
R-element that describes the quasitriangular Hopf-structure on Aκ is again the
one inherited from D(SU(2)). As the R-element acts on the arguments of
F (SU(2)× SU(2))⊗ F (SU(2)× SU(2)), it is mapped to Aκ ⊗Aκ by:

Rκ = (EXP∗
κ ⊗ EXP∗

κ)(R) (194)

This yields:
Rκ(a1, u1,a2, u2) = δe(expκ(a1)u

−1
2 )δe(u1). (195)

To investigate the action ofR-element on Aκ⊗Aκ it is calculated for the element
Φ ∈ Hs1 ⊗Hs2 in the irreducible representation ΠM1s1 ⊗ΠM2s2 , for small κ:

((ΠM1s1 ⊗ΠM2s2)(Rκ)Φ) (x1, x2) = Φ(x1, expκ (k(x1,M1))x2), (196)

Keeping in mind the meaning of the expression k(x1,M1) (see equation (179)),
we find in the limit for κ→ 0 that

((ΠM1s1 ⊗ΠM2s2)(Rκ)Φ)(x1, x2)

= (
� ⊗ �

+ κka(x1,M1)J
(2)
a )Φ(x1, x2) +O(κ2). (197)

where it is made explicitly clear that the Hopf algebra Aκ is a deformation of the
Hopf algebra A0 and that the noncommutativity of the coproduct is described
by the Rκ-element in which we recognise:

Rκ =
� ⊗ �

+ iκr +O(κ2). (198)

6.3.1 Conclusions on D(SU(2))

This observation shows that the deformation of the algebra A0 to D(SU(2))
is a deformation quantisation of the type described in section 5. One can as
well conclude that the dual picture is a deformation of the algebra U(iso3),
regarded as the classical double of su2. This matter will be speculated on in
the last section.
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7 Discussion and outlook

7.1 Different bialgebra structures and r-matrices

The bialgebra structure used in the previous section is one of the structures one
can obtain when searching for solutions of the classical Yang Baxter equation.
As mentioned at the end of section 5, the r-matrix Ja ⊗ Pa is obtained by
regarding iso(3) as the classical double of su(2). We will give some details here:

7.1.1 The classical double

Let (g, g∗) be a Lie bialgebra, then the vector space h = g ⊕ g∗, has a natural
inner product. The usual pairing 〈, 〉 between elements X ∈ g and ξ ∈ g∗ is
used:

(X, ξ)h = 〈X, ξ〉, (X,X)h = (ξ, ξ)h = 0 (199)

We define the basis {Xi} of g and the dual basis {ξi} of g∗ to give the commu-
tation relations and corresponding structure constants:

[Xi, Xj ] = c k
ij Xk, [ξi, ξj ] = γijkξ

k (200)

Demanding the bilinear form (, )mathfrakh to be invariant under the action of g

and g∗ yields:
([ξi, Xj ], ξ

k) = −(Xj , [ξ
i, ξk]) (201)

and
([Xi, Xj ], ξ

k) = −(Xj , [Xi, ξ
k]). (202)

This uniquely determines the commutator between an element of g and an
element of g∗:

[ξi, Xj ] = c i
jk ξ

k − γikjXk (203)

The proof that this construction only applies to Lie bialgebra’s (g, g∗) can be
found in Chari and Pressley [9].
One can easily verify that the cocommutator for Lie bialgebra’s in the above
notation must be:

δg(Xi) = γjkiXj ⊗Xk (204)

The Lie bialgebra structure can be extended to the full vector space g ⊕ g∗

through a canonical construction. The result is the classical double, denoted
by D(g), which is in fact a self-dual Lie bialgebra. The cocommutator is given
by:

δD(g)(u) = (adu ⊗
�
+

� ⊗ adu)(r) (205)

where r ∈ g⊗ g∗ ⊂ D(g)⊗D(g) is the identity element r : g→ g. In the above
notation it is obviously given by:

r = Xi ⊗ ξi. (206)
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We can calculate:

δD(g)(Xi) = [Xi, Xj ]⊗ ξj +Xj ⊗ [Xi, ξ
j ]

= ckijXk ⊗ ξj + γkjiXj ⊗Xk − c j
ik Xj ⊗ ξk

= γkjiXj ⊗Xk, (207)

the same answer as for the cocommutator on g, which proves that the inclusion
g ↪→ g⊕g∗ is a Lie algebra homomorphism. The same accounts for the inclusion
g⊕ g∗ ←↩ (g∗)op.

7.1.2 Bialgebra structure of U(sl2)

One of the advantages of the classical double is the fact that it provides a way
to construct bialgebra structures from *-structures. For example the presum-
ably best studied example of a universal enveloping algebra, the U(sl2), has
a standard bialgebra structure which can be derived with help of a classical
double construction, the Lie bialgebra D(q+). q+ consists of pairs (x, h) with
x lying in the subspace spanned by simple and positive roots of sl2, while h is
the simple-root component of x. The inner product on D(q+) is given by

((x, h), (x′, h′))q = (x, x′)sl2 − (h, h′)sl2 (208)

and projection on the algebra sl2 of the canonical bialgebra structure on this
space gives the bialgebra structure

δ(X±) =
1

2
X± ∧H, δ|h = 0 (209)

where X± is an element of the positive or negative root space respectively,
and H ∈ h by, which we denote the simple root space. The above bialgebra
structure multiplied by 2 is known as the standard bialgebra structure for sl2
and can equivalently be described by the r-matrix :

r =
1

4
H ⊗H +X− ⊗X+ (210)

7.1.3 Bialgebra structures for iso(3)

In the case of iso(3), as we can now conclude, the problem of searching for a
bialgebra structure is easily solved by observing the fact that with the inner
product used throughout this whole thesis, we can regard iso(3) as the classical
double of su(2). The r-element Ja ⊗ Pa is obviously nothing but the r-element
(206).

7.1.4 Different *-structures and other considerations

However, the classical double of su(2) is not a uniquely defined object if we
do not specify the inner product. One can imagine there being a different *-
structure, for which the dual vector space of su2 is not spanned by generators
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of translations as in our case.
A construction of the classical double of su(2) described by Majid [14] starts by
considering the classical double D(sl2(C)). The standard structure described
above determines the dual sl∗2. One can show that its commutation relations
should read:

[ψ±, φ] =
1

2
ψ±, [ψ+, ψ−] = 0 (211)

where the *-structure is given by the nonzero pairings:

〈X+, ψ+〉 = 1, 〈X−, ψ−〉 = 1, 〈H,φ〉 = 1. (212)

The algebra sl2(C) has 2 real forms, sl2(R) and su(2), of which su(2) is the
compact one. The restriction of the bialgebra to these real forms gives the real
form D(sl2(R)) and the half real form D(su2). D(su2) is called a half real form
because one can choose a basis in which the algebra su2 is real, but its dual has
imaginary structure constants unless one allows the inner product to become
imaginary.
As described by Majid, there is an isomorphism D(su2) ' su2⊕ su∗2 ' so(3, 1).
It would be interesting to investigate what happens to this bialgebra when
performing a Wigner contraction as in section 3. Besides this, following the ar-
gumentation of [2], where they suggested the procedure later on carried out by
Schroers and which we described in section 6, a deformation of the classical dou-
ble could be regarded as the dual picture of the quantum double construction.
This suggests that with the different bialgebra structure for D(su2), the quan-
tum double would correspond to a dual picture of deformation of so(3, 1). It
would be very interesting to investigate if this reasoning makes sense, whereas,
it would probably lead to a very different interpretation of D(SU(2)) represen-
tations. We must however admit that this idea has so far not been developed
beyond this rather speculative stage.
The Wigner contraction of a deformed so4 ' so3⊕so3 algebra has led Celeghini
et al [19] to a quantum group version of ISO(3). The remark made by Schroers
[3] about this, is that it gives a different result than the quantum double quan-
tisation a priori because here a different r-structure was taken, a double copy
of the canonical su2 r-matrix. Another effort in deforming the theory of Chern
Simons gravity was made by Bimonte et al. [20] and it would be interesting to
investigate the relation of the quantum double quantisation to this result.
The different gauge groups in section 3 result in different quantum groups as
one may expect. For the case of ISO(2, 1) one could expect, through a similar
kind of reasoning as in the ISO(3) case, that the quantum symmetry is that
of the quantum double D(SU(1, 1)), the bialgebra structure of iso(2, 1) again
being regarded as the classical double of su(1, 1).
For the SO(4−p, p) we distinguish between the case in which the gauge algebra
is a direct sum of 2 real algebra’s and the case in which it is not (the latter in
fact only occurs for SO(3, 1).
For so(4) ' so(3) ⊕ so(3) one expects a direct sum of 2 Uq(su2) algebras,
and similarly one would find two copies of Uq(sl2(R) for so(2, 2) ' so(2, 1) ⊕
so(2, 1) ' sl(2,R)⊕sl(2,R) in this reasoning, both cases which we did not make
explicitly clear.
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The case of SO(3, 1) is somewhat different, and we discussed a possible ap-
proach above. For compact gauge group, as is the case for SO(4), there is a
restriction on the deformation parameter as we will discuss below.

7.2 Remarks on the deformation parameter and the coupling

constant

In this section we will give a few additional remarks on the deformation pa-
rameter. We will be considering cases in which the gauge group of a Chern
Simons theory is compact and in which the coupling constant turns out to give
a restriction on the possible deformation parameter values when performing
combinatorial quantisation.

7.2.1 Deformation parameters for compact gauge group

In the work of Alekseev and Schomerus [11], before introducing the Fock and
Rosley Poisson structure for the matrix elements Ui, Vi and Mi (see section
5), a Poisson structure for the link variables (lattice gauge fields) LI defined
in (119) is introduced, an intermediate step in taking the limit towards the
Atiyah-Bott symplectic structure.
For the basic Poisson relations one distinguishes between different cases:

i) The links corresponding to the two different lattice gauge fields have
no common endpoints:

{
1

L(i),
2

L(j)} = 0 (213)

where i and j label the links.
ii) The links corresponding to different lattice gauge fields have one common
endpoint, where the ordering is such that i < j:

{
1

L(i),
2

L(j)} = 2π

k

1

L(i)
2

L(j)r (214)

iii) The links corresponding to different lattice gauge fields have one common
endpoint, where the ordering is such that i > j:

{
1

L(i),
2

L(j)} = −2π

k

1

L(i)
2

L(j)r
′ (215)

where r′ is the ’flipped’ r-element σr.
iv) The links coincide:

{
1

L(i),
2

L(i)} = 2π

k
(r

1

L(i)
2

L(i)−
1

L(i)
2

L(i)r
′) (216)

These poisson relations are constructed in such a way that they give the Atiyah
Bott symplectic structure in the limit for infinitesimally small links, and on the
other hand correspond to the poisson structure on the moduli space described
in section 5. The factor of 2π

k is a consequence of the desired property that
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in the limit the Atiyah bott structure is recovered. Let us recall the poisson
structure in this limit:

{Aa
i (z1), A

b
j(z2)} = −

2π

k
δabεijδ

(2)(z1 − z2) (217)

It’s straightforward quantisation, that is, replacement by an operator commu-
tation relation, is:

[Aa
i (z1), A

b
j(z2)] = −

2π

k
δabεijδ

(2)(z1 − z2) (218)

Writing the quantisation in terms of quadratic exchange relations

1

L
2

L =
2

L
1

LR (219)

where R is again expanded as

R =
� ⊗ �

+ hr (220)

we identify the deformation parameter

h =
2π

k
. (221)

This result is of course only relevant in the case of compact gauge group, in
which we cannot scale away the coupling constant k. Another remark that
should be made is that on renormalisation we should take possible one-loop
corrections into account in the coupling constant. This, as remarked in [11],
in the standard scheme replaces k by k + h∗, where h∗ is the ’dual Coxeter
number’. The corresponding Hopf algebra symmetry is the Uq(g), where now

q = exp(
2π

k + h∗
). (222)

The restriction to the value of the coupling constant as discussed in section 2
has as a consequence that the parameter q is a root of unity.
Through a different route, as described by Witten et al. in the articles
[21] and [22], a quantisation for compact gauge groups results in the level
k conformal blocks of Wess-Zumino-Witten models, where for instance the

SU(2) case results in the Kac-Moody algebra ŜU(2)k. The representation
space is equivalent to that of the quantum group Uq(sl2), a relation which we
did not investigate any further, but is interesting enough to try to give explicitly.

7.3 Conclusions

Summarising this thesis, we come to the following line of reasoning:
The general Chern Simons theory which is known for already quite some time
is interesting from different points of view, one being the identification of
Chern Simons theory for gauge groups ISO(3 − p, p) and SO(4 − p, p) with
gravity theory in 2+1 dimensions, and specifying it to a Riemann surface with
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time gives the theory a topological nature.
That is, the curvature form constructed from the gauge connection is zero
everywhere, which turns our theory into a trivial one, unless the topology of
the Riemann surface is non-trivial.
The observables of the theory are identified with Wilson loop observables,
associated to generators of the fundamental group of the surface, which
are in fact functions of gauge group elements, which have to obey group
multiplication and should be overall conjugation invariant.
The Poisson structure on this phase space is however rather difficult to
identify. Though we had a canonical Poisson bracket on our unreduced phase
space, identifying two spatial components of the gauge field to be each others
canonically conjugate variables, it is not clear how this structure reduces to
the space of functions on the gauge group or multiple copies of gauge group
arguments, where the reduction of the bracket should be compatible with the
group multiplication.
With help of the formalism of Hopf algebra’s, identifying the algebra of
functions on a group manifold with a Hopf algebra and regarding the dual
picture, the Universal enveloping algebra corresponding to the algebra of
functions of the group, we find a framework in which a Lie bialgebra defining
element called the classical r-matrix determines a Poisson bracket.
This result is first given for functions on a single group element, and later
generalised for functions of multiple group-valued arguments, the latter also
being connected to the application of Chern Simons theory.
Where a geometrical quantisation procedure seemed to be possible for a
single particle sector of this theory, the Poisson bracket, constructed through
a coadjoint orbit procedure, is not compatible with group multiplication,
making it incapable of describing a multi-particle phase space. The Hopf
algebra formalism, which gave us the group-compatible Poisson structure, is
in particular suitable for deformation quantisation, which could be applied to
Chern Simons theory.

We can conclude that, although we did not come to giving relations be-
tween different cases of Chern Simons gravity very explicitly, the mathematical
framework one can use to investigate the different gauge groups and deforma-
tion schemes has been clarified to a certain extent. From this point, one can
formulate a number of interesting questions concerning deformations of the
different gravity-gauge groups and possible quantum double symmetries, or
(contraction?) links between the SO(4 − p, p) groups and the ISO(3 − p, p)
groups. The objects one should investigate are the Lie bialgebra structures,
their r-matrices and the possible deformations. In literature a lot of these
mathematical structures are described, but little of them have, as far as we
know, explicitly been used in the physical applications, of which Chern Simons
theory is an example. These physical applications often turn out to be a
source of inspiration for new relations between mathematical structures. An
example of this is the quantum double symmetry which was proposed as the
correct quantisation from a different point of view as that of deformation
quantisation. From the point of view of the framework described in this
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thesis, the correctness of the D(SU(2)) result has been confirmed, though
the deformation is not as straightforward as the diagram on the next page,
describing a general mathematical procedure for deformation quantisation,
suggests.
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7.4 Diagram of mathematical framework for quantising phase

spaces of functions on a group

Lie group G

²²

Lie alg: g

²²

Hopf alg: F (G) ks
(µ,∆,ε,η,S)

+3

²²

Hopf alg: U(g)

²²

Sklyannin
²²

r-matrixoo

²²

{, } : F (G)⊗ F (G)→ F (G) ks +3

h−deformation
²²

δ : g → g⊗ g

q−deformation
²²

Fh(G)

²²

ks +3 Uq(g)

²²

mh(f1,f2)−mh(f2,f1)
h

= {, } ks +3 ∆h(x)−∆op
h (x)

h
= δ(x)

²²

R∆h(x) = ∆
op
h (x)R

sshh
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

R = 1⊗ 1 + hr +O(h2)
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8 Appendix

8.1 Generators for SO(4− p, p)

The group SO(4− p, p) is the isometric group in a manifold with 4 real dimen-
sions and a metric with 4− p plusses and p minusses. From this we derive:

Ỹ iỸi = ηijΛ
j
kY

kΛi
lY

l = Y iYi (223)

This simply yields the relations:

ηijΛ
j
kΛ

i
l = ηkl (224)

or
ΛT ηΛ = η. (225)

Expanding Λ around the identity
�
yields

(
�
+XT )η(

�
+X) = η (226)

which up to first order in the generators X gives us

XT η = −ηX (227)

And thus
Xij = −Xji. (228)

A basis for the vector space of these matrices in n dimensions is obviously
n(n − 1)/2-dimensional. For starting off with 4 dimensions this gives a 6-
dimensional algebra. A basis can be chosen by:

(J1)ij = δi,1δj,2 − δi,2δj,1
(J2)ij = δi,2δj,3 − δi,3δj,2
(J3)ij = δi,3δj,1 − δi,1δj,3
(P1)ij = δi,3δj,4 − δi,4δj,3
(P2)ij = δi,2δj,4 − δi,4δj,2
(P3)ij = δi,1δj,4 − δi,4δj,1 (229)

The commutation relations can be calculated to give:

[Ja, Jb] = ε c
ab Jc

[Ja, Pb] = ε c
ab Pc

[Pa, Pb] = ε c
ab Jc. (230)

To discriminate between the different metrics we should keep in mind that
before calculating the commutation relations, we raise an index of the generators
in (229). This leads to the raised index c in the commutation relations.
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8.2 Coadjoint orbits of iso(3)

A group element of ISO(3) is denoted by (u,a), where u ∈ SO(3) and a is a
translation 3-vector. The group multiplication of two elements (u,a), (v,b) ∈
ISO(3) is given by:

(u,a).(v,b) = (uv,a+ ub) (231)

This determines the inverse:

(u,a)−1 = (u−1,−u−1a) (232)

We will make use of a 4 × 4 matrix representation in which the element (u,a)
is represented as:

(u,a) =

(
u a

0 1

)
(233)

Basis elements (Ja, Pa) in the iso(3) algebra vector space can now be written:

(Ja, Pa) =

(
Ja Pa
0 0

)
(234)

We now want to give the coadjoint orbit of a vector ξ∗ ∈ iso(3) under the
action of the group ISO(3). For this purpose we write ξ∗ ∈ iso(3)∗ relative to
its basis:

ξ∗ = jaJ∗
a + paP ∗

a (235)

We find the corresponding algebra element ξ by demanding

〈ξ, (J∗
a , P

∗
a )〉 = 〈(Ja, Pa), ξ∗〉 (236)

where we use the inner product on the algebra to identify coalgebra elements.
Thus we find

ξ = jaPa + paJa. (237)

The coadjoint action is determined by the definition:

〈x,CogY 〉 = 〈Adgx, Y 〉 = 〈gxg−1, Y 〉 (238)

for x ∈ g, Y ∈ g∗, g ∈ G. The adjoint action of Lie-groups on the algebra vector
space has a unitary representation, which means we can write

〈x,CogY 〉 = 〈x,Adg−1Y 〉 = 〈x, g−1Y g〉 (239)

The hamiltonian vector fields on the coalgebra generate the coadjoint action of
g−1, using the conventions of section 4. It can be confusing when one tries to
keep using just one convention, where different conventions are used in litera-
ture. It is important to keep in mind that for calculating the orbit of an element
in g∗ one can use both the coadjoint actions of g and g−1. To find the coadjoint
orbit we derive the transformation of the elements ja and pa under the action
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of (u,a)−1. The adjoint action of (u,a)−1 on this element is calculated in the
matrix representation:

(
u−1 −u−1a
0 1

)(
paJa jaPa
0 0

)(
u a

0 1

)

=

(
pau−1Jau pau−1Jaa+ jau−1Pa

0 0

)
(240)

In components relative to the co-algebra basis this is:

pa → pb(u−1) a
b

ja → jb(u−1) a
b + ε bc

a ab(u−1) c
d p

d (241)

Invariants of this action can be shown to be:

papa = µ2

paja = µs (242)

Therefore, µ and s will label different orbits. If we choose to start with the
element (j0 = (s, 0, 0), p0 = (µ, 0, 0)), we can calculate the action for an explicit
orbit, where we use the canonical one-form on the orbit:

θµ,s((u,a), (j0, p0)) = 〈rJ0 + sP0, (u
−1,−u−1a)d(u,a)〉 (243)

The element (u−1,−u−1a)d(u,a) takes values in the Lie algebra, which we make
explicit in the matrix representation:

(
(u−1) −u−1a
0 1

)(
du da
0 0

)

=

(
(u−1du)abJ

ab (u−1da)aP
a

0 0

)
(244)

The inner product on the algebra between an element XabJ
ab and an element

YcP
c can be calculated by changing to the vector representation of J ab, but we

can make use of the inner product on the algebra so(3) (which is a trace in
3-dimensional representation) for calculating explicit results. We thus get:

〈sP0, (u−1du)abJab〉 = −
s

2
tr(u−1duJ0). (245)

For the other part of the expression (243) we get:

〈rJ0, (u−1da)aP a〉 = r(u−1) b
a dabδ

a
0. (246)

Using the orthogonality of SO(3)-elements we deduce:

r(u−1) b
a = r(uT ) b

a = ruba (247)

And thus
θµ,s((u,a), (j0, p0)) = rua0daa −

s

2
tr(u−1duJ0). (248)
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From the first term we can deduce Poisson brackets, identifying coordinates aa

and momenta rua0. Renaming momenta :

pa = rua0 (249)

and introducing

ja = εabcabpc +
s

r
pa (250)

which gives us an explicit version of (241) for the orbit of (j0, p0), we calculate
the poisson brackets for these parameters:

{ja, jb} = ε c
ab jc

{ja, pb} = ε c
ab pc

{pa, pb} = 0 (251)

8.3 Lie bialgebra structure of iso(3)

The r-element
r = Pa ⊗ Ja (252)

defines a Lie bialgebra structure on iso(3), which has commutation relations

[Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc, [Pa, Pb] = 0 (253)

where the dual of iso(3) is defined by the inner product

〈Ja, Pb〉 = δab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0. (254)

Proof: r satisfies the classical Yang Baxter equation:

[[r, r]] =
(
[Pa, Pb]⊗ Ja ⊗ Jb + Pa ⊗ [Ja, Pb]⊗ Jb + Pa ⊗ Pb ⊗ [Ja, Jb]

)

= εabc

(
Pa ⊗ Pc ⊗ Jb + Pa ⊗ Pb ⊗ Jc

)
= 0. (255)

Secondly, the symmetrised part is an invariant of the algebra:

X.
1

2
(r + σr) = (

� ⊗ adX + adX ⊗
�
)
1

2
(Pb ⊗ Jb + Jb ⊗ Pb)

=
1

2
(Pb ⊗ [X, Jb] + [X,Pb]⊗ Jb + Jb ⊗ [X,Pb] + [X, Jb]⊗ Pb)

=
1

2

[
δX,Jaεabc

(
Pb ⊗ Jc + Pc ⊗ Jb + Jb ⊗ Pc + Jc ⊗ Pb

)

+ δX,Paεabc

(
Pb ⊗ Pc + Pc ⊗ Pb

)]

= 0 (256)

The cocommutator now becomes:

δ(Ja) = (
� ⊗ adJa + adJa ⊗

�
)(Pb ⊗ Jb)

= Pb ⊗ [Ja, Jb] + [Ja, Pb]⊗ Jb
= εabc(Pb ⊗ Jc + Pc ⊗ Jb) = 0 (257)
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and

δ(Pa) = (
� ⊗ adPa + adPa ⊗

�
)(Pb ⊗ Jb)

= Pb ⊗ [Pa, Jb] + [Pa, Pb]⊗ Jb
= εabcPb ⊗ Pc (258)

With this cocommutator and the relation:

〈δ(X), Y ⊗ Z〉 = 〈X, δ∗(Y ⊗ Z)〉 (259)

where X ∈ g and Y,Z ∈ g∗⊗g∗, we find the commutator δ∗ for the dual algebra
g∗:

〈δ(X), Y ⊗ Z〉 = δX,Pa〈Pa, δ∗(X,Y )〉
= δX,Paεabc〈Pb ⊗ Pc, Y ⊗ Z〉
= εabcδY,JbδZ,JcδJa,δ∗(X,Y ) (260)

Thus
δ∗(Ja ⊗ Jb) = εabcJc, δ∗(Pa ⊗ Pb) = 0, δ∗(Pa ⊗ Jb) = 0 (261)
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