
Chapter 8
On Groenendijk and Stokhof’s “Dynamic
Predicate Logic”

Anthony S. Gillies

Abstract This paper can serve as a gentle introduction to (but not exhaustive
overview of) Groenendijk and Stokhof’s classic paper “Dynamic predicate logic”.
If you are not new to DPL and so not in need of an introduction to DPL, this paper
can alternatively be read as an invitation to re-read it.
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Introduction

Sometimes it happens that commentaries on or textbook treatments of important
theories or ideas are better to read than the originals. On these occasions the
commentary or textbook version is able to turn the benefits of time, hindsight,
and intellectual division of labor into a cleaner or more elegant presentation of the
essential insights of the original. This is not such an occasion.

Instead this paper is an introduction to, or alternatively an invitation to re-read,
Groenendijk and Stokhof’s (1991) “Dynamic predicate logic” (DPL): a useful warm-
up exercise containing some background and sign-posts, gestures at some nearby
connections, and (hopefully) something that will enrich the DPL experience.1

Here is what you can expect. We will begin (section “Farmers, Donkeys,
Files, Boxes”) with stage-setting: an argument that no quantificational analysis
of indefinites can be right and how this set the stage for DPL. Section “Dynamic
Worldview” is an introduction to the dynamic worldview, got at by a gentle
introduction to (propositional) dynamic logic. Sections “DPL Basics: ∧ and ∃”

1 I will use ‘DPL’ to pick out both the system of dynamic predicate logic and the article itself,
hoping that context will disambiguate.
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and “DPL Basics: ¬, →, and ∀ (and ∨, Too)” illustrate the mechanics of the core of
canonical DPL (what you will find in the paper itself) and section “Truth, Entailment,
Equivalence” is an overview of the theoretical properties of the system (truth,
entailment, equivalence). Sections “Updating Information States, DPL Updates, and
Dynamic Differences” shift gears a bit, recasting DPL as an update system and
looking a little into the ways in which such systems can depart from classical
frameworks. Section “Extensions, Amendments, Revisions” concludes by offering
a pointer to one main area of subsequent work in the spirit of DPL. The appendix
contains some official definitions.

Farmers, Donkeys, Files, Boxes

Suppose we focus on a small fragment of natural language, one where we can talk
about a collection of farmers, livestock, and some properties they have. This kind
of fragment is one where the tools of first-order logic can be put to good use. So
assume that we have a language LFo of first order logic with individual variables
x, y, . . . , a stock of predicates, negation (¬), conjunction (∧), and the existential
quantifier (∃).2

Some things we might want to report:

(1) a. A farmer walked in the field and he whistled.

b. A farmer walked in the field. He whistled.

There is not much mystery what (1a) and (1b) express: both are true if and only if
there is at least one farmer who walked in the field and whistled. But thinking about
how they manage to express this (surprisingly) raises some hard issues.3

The anaphoric pronoun he in both examples seems to pick out a farmer that
walked in the field, adding that that farmer whistled. This seems to suggest that the
indefinite noun phrase a farmer that is the antecedent for this he also picks out that
field-walking farmer and thus that the two devices are coreferential. But indefinite
noun phrases don’t in general seem to be devices for referring to individuals, much
less co-referring. You can see this by embedding them in various ways, for instance
under a wide-scope negation:

(2) Pedro doesn’t own a donkey.

2 See Definition 16 for the official definition. Throughout, I will assume a working knowledge of
what it takes for sentences of LFo to be true in a model M = 〈D, I 〉 with respect to an assignment
function g.
3 Numbering conventions: numbers-(plus-letters) (as in (1a) and (2) are for example sentences;
number. Number labels (as in (8.1) and (8.10)) are for equations and formulas, with the first number
picking out the section of the paper in which the equation/formula makes its first appearance.
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Here a donkey doesn’t refer to any donkey. So understanding the relationship
between indefinites and pronouns as coreference doesn’t in general seem right.

If not referring, then what? The other salient option is to treat a farmer as
a quantificational expression. This makes a lot of sense. And given the humble
fragment we are investigating, we can think of them as regular first-order existential
quantificational expressions. After all, the examples seem to say that some farmer
walked and whistled. This works well for (1a) but runs into problems for (1b).

∃x(farmer x ∧ walked-in-field x ∧ whistled x) (8.1)

∃x(farmer x ∧ walked-in-field x) ∧ whistled x (8.2)

With a little imagination and practice, you can see a natural path from (1a) to
the representation in (8.1). On this way of thinking, the relationship between the
indefinite a farmer and he is a familiar one: the occurrences of the variable x in
farmer x ∧walked-in-field x and the occurrence of x in whistled x all lie
in the scope of the quantifier ∃x. This quantifier thus binds these variables. Interpret
these first-order representations in the usual way and you therefore get the prediction
that (8.1)—and so by extension (1a)—is true if and only if something is a farmer
that walked in the field and is also something that whistled.

Things are trickier with (1b). Assume that our representations should go
sentence-by-sentence and that a sequence of sentences can be usefully modeled as
conjunction: however you represent A farmer walked in the field should be conjoined
with how you represent he whistled. Then we arrive at (8.2). But now the x in
whistled x is not in the scope of ∃x and so we don’t predict the right relationship
between it and something that is a farmer that walked in the field. As a result we get
the wrong truth conditions: (8.2) is true in a model with respect to an assignment g

if one farmer walked in the field, no farmers whistled, and g(x) is a non-farmer who
whistled.

The strict sentence-by-sentence approach prevented us from getting the right
relationship between the quantificational apparatus and the downstream pronouns.
Can we insist that the indefinite a farmer must have scope over he whistled?
This gets us back to the representation in (1a) and does deliver the right truth
conditions. But it is dodgy. How can the syntactic scope of indefinites cross sentence
boundaries? Probably, it can’t. This strategy also moves from taking the individual
sentences in (1b) as the principal thing semantics assigns meanings to and shifts
focus to the whole discourse.4 With that comes a whiff of non-compositionality:
what looked like a meaningful sentence in natural language (the first sentence of
(1b)) isn’t being interpreted on its own and the whole discourse therefore has a
meaning not directly figure-out-able from the meanings of its parts.

4 This is the strategy suggested in Geach (1962/1980). This discourse-first motto is taken up, but
for a non-quantificational approach, in DRT (Kamp, 1981).
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Whether or not this or some other approach can be defended in this case, things
get worse when we again shift to other embedding environments. Notably, in so-
called donkey conditionals:

(3) a. If a farmer owns a donkey, he feeds it hay.

b. Every farmer feeds hay to every donkey he owns.

The conditional in (3a) has a reading where it means what (3b) means. The
hypothesis that a farmer and a donkey are existential quantifiers again runs into
trouble. Two attempts:

∃x(farmer x ∧ ∃y(donkey y ∧ owns xy)) → feeds-hay-to xy (8.3)

∃x(farmer x ∧ ∃y((donkey y ∧ owns xy) → feeds-hay-to xy)) (8.4)

The representation in (8.3) is pretty good: it is a conditional and a farmer
owns a donkey shows up as the conditional’s antecedent, which seems right. But
feeds-hay-to xy is not in the scope of ∃x or ∃y and so the truth conditions
are wrong: the bound reading of the pronouns in he feeds it hay are not predicted.
Meanwhile the representation in (8.4) ensures that the existential quantifiers both
reach all the way to the consequent. Insisting that indefinites always take wide scope
is surprising—deep down (3a) isn’t a conditional!—and not worth it since the truth
conditions are wrong: (8.4) is true if there is a farmer and a donkey he doesn’t own
but (3a) seems to be true if and only if every farmer feeds every donkey he owns
hay.

So: the relationship between indefinites and anaphoric pronouns doesn’t seem
to be the relationship of coreference and it doesn’t seem to be the relationship of
quantifier and a variable it scopes over. This is a rough version of arguments in both
Kamp (1981) and Heim (1982) that aim to motivate non-quantificational (and non-
referential) theories of indefinites and both Discourse Representation Theory (DRT)
and File Change Semantics (FCS) deliver just that.5

Two features of DRT to keep in mind as a backdrop for reading DRT. First:
like the Geach-strategy, it is discourses not sentences that are the primary bearers
of semantic values. It is not in general true in DPL that the truth conditions of
whole discourses can be decomposed into the truth conditions of the individual
sentences that make them up. Second: the analysis of indefinites is thoroughly
non-quantificational and representational (making heavy use of discourse referents
and an intermediate and distinctive level of representation).6 DRT can be seen as a
reaction to both of these features.

5 DRT was first developed in Kamp (1981); see Geurts (2019) for a reader’s guide to it. The
canonical version of DRT is developed in Kamp and Reyle (1993); see Geurts et al. (2016) for an
introduction. FCS is developed in Heim (1982) and refined somewhat in Heim (1983); see Yalcin
(2012) for a recent introduction to FCS.
6 Discourse referents originate in Karttunen (1976).
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But it is not a baby/bathwater situation: for the target fragment — roughly,
anaphoric relationships that can be sensibly represented using the resources of
LFo — DPL makes exactly the same empirical predictions as DRT.7

Dynamic Worldview

Famously, DPL embraces the dynamic perspective on meaning. Groenendijk and
Stokhof put it this way:

The general starting point of the kind of semantics that DPL is an instance of, is that the
meaning of a sentence does not lie in its truth conditions, but rather in the way it changes
(the representation of) the information of the interpreter. The utterance of a sentence brings
us from a certain state of information to another one. The meaning of a sentence lies in the
way it brings about such a transition. (DPL, p. 43)

This is powerful imagery and makes dynamic semantics seem in equal parts exotic
and revolutionary.8

Before getting to DPL proper, and seeing how it makes this imagery concrete,
let’s look at a nearby idea: dynamic logics.9 These are (modal) logics for reasoning
about programming languages. They aren’t the same thing as dynamic semantics,
and that is useful. Like regular modal logics, sentences express propositions (sets
of satisfying points) but they also interpret program-denoting parts of the language.
Thus you can view the semantics for these logics as an intermediate stepping stone
on the road to dynamic semantics.

Here we will just sketch the simplest such logic, propositional dynamic logic
(PDL).10

In classical propositional modal logic, sentences are assigned meanings with
respect to a model that includes a non-empty set of worlds and a binary accessibility
relation over that set. All sentences have sets of worlds as meanings: �φ� is the set of
worlds at which φ is true, a proposition. For modal claims like ♦φ the propositions
depend on what’s accessible to what: �♦φ� is the set of w’s such that there is an
accessible world from w at which φ is true. So far, so familiar.11

7 We won’t go into the details, but Section 4.2 of DPL (pp. 76–83) is devoted to showing this.
8 Dynamics really got a foothold in the 1980s and 1990s: dynamic semantics, belief dynamics,
dynamic epistemic logic were all in boom cycles (see, for instance, Muskens et al. 1997). Thanks
to the trio of David Beaver, Paul Dekker, and Willem Groeneveld (who, unbelievably in hindsight,
taught an online course in dynamic semantics way back then) I got swept up by all of it. Heady
times.
9 A good textbook: Harel et al. (2000).
10 This is a way to ease into the dynamic worldview and serves as preparation for tackling Section
4.3 of DPL, where you can see how DPL can be embedded into a fragment of Quantified Dynamic
Logic.
11 If not, see Gamut (1991).
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PDL is similar in both language and interpretation but is expressively richer. It
also has room to express things like set the value of register b to
3 and do this and then do that . The language of PDL has both atomic
sentences and atomic programs. Atomic sentences are sentences that are basic and
have no interesting parts. So too for atomic programs: they represent the simple,
non-decomposable actions. Sentences of PDL can be negated and conjoined to create
more complex sentences, but there are also ways of making more complex programs
out of simpler ones. For instance, you can compose them: π1;π2 is a program
whenever π1 and π2 are programs. Declarative sentences and programs have two
points of contact. First, given a sentence φ, you can form a test: φ? is a program
whenever φ is a sentence. Second, the modalities are generated by programs: 〈π〉φ
and [π ]φ are sentences if π is a program and φ is a sentence. These take programs
and sentences and create possibility and necessity claims in terms of them.

The semantics for PDL is built on two ideas, one familiar and the other new. The
familiar: declarative sentences express propositions, the sets of points or worlds or
(as they’re called in this context) states at which they are true. The new: programs
express what they do. What a program does depends on the state in which it is
executed. Executing the program take 3 steps to the right when I am
standing here results in a different state of affairs than it does when it is executed
when I am standing over there. Same goes for all programs in whatever state. They
link (input) states to (output) states. Which is to say: programs express relations
between states.12

So, following the set-up for modal logic, a PDL model M = 〈W,V 〉 is a non-
empty set of states W and a function V that assigns atomic sentences propositions
and atomic programs relations on W . Where p is an atomic sentence and a is an
atomic program:

V (p) ⊆ W and V (a) ⊆ W × W (8.5)

Just as V (p) is the set of states s such that (atomic) p is true at s, V (a) is the set of
pairs of states 〈s, t〉 such that executing (atomic) a in s possibly lands you in state
t .13 From here we have to say how more complex meanings are assigned. Focus on
three aspects of that assignment, leaving the rest to the official version in Definition
19.

First: possibility modal claims 〈π〉φ. In PDL possibility is restricted twice over:
〈π〉φ at a state s says that φ is true at some state reachable by executing π in s.

s ∈ �〈π〉φ� iff there is a t s.t. 〈s, t〉 ∈ �π� and t ∈ �φ� (8.6)

12 Sentences and programs differ in semantic type, but still fit together. That is important because
even though program constructs are not themselves formulas in the language, they do appear as
parts of declarative formulas. The modalities are a case in point.
13 Since program meanings are relations, not necessarily functions, we are allowing that programs
are not deterministic. Hence the “possibly” in the gloss.
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We have lots of modalities in PDL: two for each program we can construct. But
where are the accessibility relations? They are the meanings of the programs! The
compositional way that complex programs express relations on W as a function of
the relations expressed by the simpler programs that make them up is key here.

Second: program composition. Whenever π1 is a program and π2 is a program
we know π1;π2 is, too. And we know that �π1;π2� will serve as the accessibility
relation for the modals 〈π1;π2〉 and [π1;π2]. As the name suggests such composed
programs express the composition of the relations expressed by the programs they
are composed of.

�π1;π2� = �π1� ◦ �π2� (8.7)

where ◦ is, literally, relational composition. Thus

〈s, t〉 ∈ �π1;π2� iff, for some r, 〈s, r〉 ∈ �π1� and 〈r, t〉 ∈ �π2� (8.8)

The linking here through the intermediate state r is key.
And third: test programs. These show the other way that things fit together by

turning a sentence φ into a program φ?. The point of such programs is to check
whether φ is true. They don’t themselves change the state you’re in.

〈s, t〉 ∈ �φ?� iff s = t and s ∈ �φ� (8.9)

Test programs are sometimes described as those programs only defined on the
diagonal. Draw an array of ordered pairs of states: test programs denote subsets
of the diagonal relation 〈s, s, 〉, 〈t, t〉, 〈u, u, 〉, . . . .

PDL models can get represented graphically, as in Fig. 8.1: states are nodes, and
each atomic program is represented by a labeled arrow (labeled by the program).
Double-circled states represent fixed-point states: these are states where there is a
successful test program pictured (i.e., a labeled self-loop).14

DPL Basics: ∧ and ∃

Indefinites are shape-shifters, sometimes seeming to contribute existential truth
conditions (as is in (1a) where a farmer scopes under and) and sometimes seeming
to contribute universal force (as in (3a) where a farmer scopes under if ). A
quantificational analysis of indefinites thus seems hopeless. There is a loophole,
though, and DPL exploits it.

14 In the model in Fig. 8.1 suppose �p� = {s, t} and �q� = {s, u}. It might be useful to put pencil
to paper and figure out �a; b�, �(a; b); a�, �q?�, and �〈c〉p�.
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Fig. 8.1 PDL model

DPL offers a new way of interpreting a language of first order logic. It looks
at programs in PDL for inspiration and says every sentence is a program. Thus
meanings will all be relations: sets of ordered pairs of “states”. This will provide
a way of treating indefinites as existential quantifiers (albeit, dynamic ones) that can
account for their shape-shifting behavior.

What counts as a state (of information) depends on what we are modeling. Given
the limited focus here (extensional first order stuff) this means that we are tracking,
with respect to a given first order model M , what we are talking about. Thus,
information is discourse information: which variables are hooked up with which
objects in D. That is information usefully encoded by assignment functions.

Definition 1 (Information States in (Relational) DPL) Let V be the set of
variables of LFo and M = 〈D, I 〉 be a FO model. The set S of DPL information
states is the set:

g ∈ S iff g ∈ DV

where DV is the set of assignment functions from V to D.

Putting the pieces together: sentences are programs or instructions for changing
information. Information is information about variables. So sentences denote sets of
input-output pairs of assignment functions.15

Definition 2 (Meanings in (Relational) DPL) For any φ:

�φ�M ⊆ S × S

15 The general idea that interpreting things might both depend on and affect assignment functions
can also be found in Barwise (1987).
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This doesn’t tell us just which relation is expressed by φ. We’ll get to that.
Intuitively: 〈g, h〉 ∈ �φ� iff executing (the program expressed by) φ in state g

(possibly) terminates in state h. Since �φ� is a relation I’ll opt for infix notation,
g�φ�h being a somewhat snappier thing to read and write than 〈g, h〉 ∈ �φ�.

What remains is to look at the specific ways different sorts of sentences say
to change an information state g.16 Begin with (1b) and its sentence-by-sentence
representation (8.2). We will work up to the DPL treatment of this by talking about
simple cases showing how the clauses in the official version of relational DPL work
(Definition 20). By the end, we will see why this is true:

Fact 1 g�∃xFx ∧ Gx�h only if h(x) ∈ I (F ) and h(x) ∈ I (G).

Start with the DPL meaning assigned to atomic formulas like Fx. This simply
says that whatever we have been using x to talk about is one of the F ’s.17 So Fx

expresses a test program to see if that’s the case.

g �Fx� h iff : h = g and g(x) ∈ I (F ) (8.10)

Thus �Fx� contains those pairs 〈g, g〉, 〈h, h〉, 〈f, f 〉, . . . of assignments that map x

to a thing in D that is in I (F ).
The instruction that ∃xFx expresses is different. It is a two step procedure. It tells

us, first, to move from g to a state that differs at most from g in what it associates
with x: the state g[x]k.18 From this state, does interpreting Fx move you to h? The
original g is linked to h by way of �∃xFx� if and only if the answer is yes.

g �∃xFx� h iff : there is a k s.t. g[x]k and k �Fx� h (8.11)

Given (8.10), the right hand side simplifies:

g �∃xFx� h iff :

⎧
⎪⎪⎨

⎪⎪⎩

there is a k s.t. g[x]k and

k = h and

h(x) ∈ I (F )

(8.12)

That is:

16 It is important that all of this happens within a given model M . We’ll typically suppress mention
of this, though.
17 This isn’t too far away from the idea in FCS that definites are used to update existing files.
18 Officially, define:

g[x]k iff k = g[x/d] for some d ∈ D

This is an unspecific x-alternative to g. It is also an information state: one just like g except
(possibly) in what it says about x. Note that we are writing this ‘g[x]k’ while Groenendijk and
Stokhof write ‘k[x]g’. The left-to-right way seems more natural to me, but your mileage may vary.
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g �∃xFx� h iff :g[x]h and h(x) ∈ I (F ) (8.13)

So when you interpret ∃xFx you wind up in a state in which x is associated with a
thing that is an F .

In DPL ∧ expresses program composition. So to interpret ∃xFx ∧ Gx we find a
linking information state between �∃xFx� and �Gx�.

g �∃ x Fx ∧ Gx� h iff :
{

there is a k s.t. g �∃x Fx � k and

k �Gx� h
(8.14)

Using (8.13) we can substitute in the right-hand side:

g �∃xFx� k iff g[x]k and k(x) ∈ I (F ) (8.15)

So the denotation of our conjunction is:

g �∃xFx ∧ Gx� h iff :

⎧
⎪⎪⎨

⎪⎪⎩

there is a k s.t. g[x]k and

k(x) ∈ I (F ) and

k �Gx� h

(8.16)

Similarly, for �Gx�:

k �Gx� h iff h = k and h(x) ∈ I (G) (8.17)

Putting those together and skipping a step:

g �∃xFx ∧ Gx� h iff :

⎧
⎪⎪⎨

⎪⎪⎩

g[x]h and

h(x) ∈ I (F ) and

h(x) ∈ I (G)

(8.18)

The x in Gx is outside the syntactic scope of ∃x but still gets bound by it. The reason
is that, as we saw, �∃xFx� relates g to h only if h(x) is in I (F ). Since conjunction is
program sequencing, such h’s are the input states for executing �Gx�. Existentially
quantified formulas change downstream assignment functions. Conjunction, a.k.a.
relational composition, is primed to be sensitive to those changes. You can see this
in Fig. 8.2. That completes the demonstration of Fact 1.

This works because there is an interplay between external and internal dynamics
in DPL. External: ∃x can have effects on things outside its syntactic scope. Internal:
∧ has dynamic effects that carry from first conjunct to second.19 By the time we
get to the x in Gx we are therefore in an information state that maps x to a thing

19 Conjunction is externally dynamic, too.
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Fig. 8.2 �∃xFx� ◦ �Gx�

in I (F ) and the Gx conjunct thus tacks on the information that that thing is also in
I (G). We will return to this idea a few more times.

This particular way that external and internal dynamics play together has the
upshot that scope and binding come apart in DPL. Binding outstrips syntactic
scope.20 So taking on board the information carried by ∃xFx has the downstream
consequence that occurrences of x outside the scope of this ∃x can end up being
obligatorily associated with things in I (F ).

DPL Basics: ¬, →, and ∀ (and ∨, Too)

Our FO language takes ¬, ∧, and ∃ as basic and offers ∨, →, and ∀ as abbreviations.
This is another distinctive feature of DPL: classically, it doesn’t matter what you take
as basic and what you take as derived, but it matters in DPL. We’ll see why.

In this section we will work up to the DPL treatment of example (3a) by talking
about simple instances of the DPL clauses for ¬ and →. Once again the simple,
sentence-by-sentence representation in (8.3) will do in DPL. The main thing is that
in DPL an indefinite in a conditional antecedent can bind a pronoun in a conditional
consequent and bind it with universal force. Working out the meaning of ∃xFx →
Gx is enough to make the point.21

Fact 2 g �∃xFx → Gx� h only if h[x]k and k(x) ∈ I (F ) imply k(x) ∈ I (G).

All of our derived connectives appeal to ¬ so let’s start with that. Negation in
DPL tests for failure. An information state g is �¬φ�-related to h iff g = h and it’s
not possible to execute �φ� in g at all.

20 Section 3.3 of DPL probes how scope and binding come apart (DPL, pp. 58–61).
21 This is code for: you should work out the DPL meaning for (8.3) as a homework exercise.
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Fig. 8.3 �φ → ψ�

g �¬φ�h iff :
{

h = g and

there is no k s.t. g �φ� k
(8.19)

This makes negation a test-maker: ¬φ is a test no matter what and so is not
externally dynamic (a.k.a., static).

Conditionals in DPL are negated conjunctions: φ → ψ = ¬(φ ∧ ¬ψ). This has
two upshots. The first is that the derived meaning for φ → ψ is a test with a wrinkle:

g �φ → ψ�h iff :
{

h = g and

h �φ� k implies k �ψ� j for some j
(8.20)

The first clause ensures that conditionals are tests. The second clause contains the
wrinkle. It implicates an intermediate state k that passes values of variables from
antecedent to consequent. So, even though they are tests, conditionals are internally
dynamic.

The second upshot: conditionals in DPL are strict. You can see this in the second
clause: in saying “h �φ� k implies . . . ” we are universally quantifying over all
k’s that are reachable from h (i.e., g) by executing �φ�. Figure 8.3 graphs this
relationship: φ → ψ relates g to itself iff every way of executing �φ� in g lands
you in an information state (those are the intermediate k’s) where it is possible to
execute �ψ�.

The strictness of conditionals conspires with the wrinkle of internal dynamics in
donkey conditionals. Again, the point is already present in the simpler version we’re
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dealing with. Applying the clauses above what you’ll see is this:

g �∃xFx → Gx� h iff :

⎧
⎪⎪⎨

⎪⎪⎩

h = g and

h[x]k and k(x) ∈ I (F ) implies

k(x) ∈ I (G)

(8.21)

That is: the x in Gx is bound by the ∃x in the antecedent, and bound with universal
force. The result is that ∃xFx → Gx says all F s are Gs. That’s Fact 2.22

The universal quantifier in DPL is similar and for the similar reason that it is
derived from the interaction of ∃ and ¬. The derived meaning for ∀xφ = ¬∃x¬φ:

g �∀xφ� h iff :
{

h = g and

h[x]k implies k �φ� j for some j
(8.22)

Working out a simple example, you’ll see that g �∀xFx� h, iff g = h and h[x]k
implies k(x) ∈ I (F ). Like →, the universal quantifier is internally dynamic (a
linking state k shows up) but externally static (because: negation). We’ll return to
what this predicts for bound readings of pronouns (and thus why ∀ is introduced as
an abbreviation).

But first, let’s turn to ∨: we are taking φ ∨ψ as shorthand for the official ¬(¬φ ∧
¬ψ). A useful exercise is to verify this:

g �φ ∨ ψ�h iff :

⎧
⎪⎪⎨

⎪⎪⎩

g = h and

there is a j s.t. g �φ� j or

there is a j s.t. g �ψ� j

(8.23)

Like all of these negation-derived operators, DPL disjunction is externally static.
But it is also internally static: this is because the first disjunct in φ ∨ ψ is officially
embedded under a negation that has scope only over it.

22 We are taking it for granted that ∃xFx → Gx does, invariably, say that all F s are Gs. This
is a simplification. Consider weak donkey- or parking meter-conditionals (the examples are from
Schubert and Pelletier 1988):

(i) a. If Pedro owns a donkey, he will ride it to town tomorrow.

b. If I have a quarter in my pocket, I will put it in the parking meter.

There are readings of these that don’t require Pedro to ride all of his donkeys to town tomorrow and
don’t require that I pump the meter with every quarter in my pocket. The hard-wired universal force
that DPL delivers isn’t as hard-wired as it seems, though: weak-conditional variants are available as
amendments. This is taken up (in somewhat different ways) in Section 4.2 and Section 4.3 of DPL

(pp. 81–2, 89). (Hard-wiring of either sort seems incorrect since, as pointed out in Dekker (1996),
simply negating the consequent of a weak-donkey conditional brings the strong reading back to
center stage.)
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The test-making behavior of negation has empirical predictions for the derived
operators. We will briefly touch on them.

Since conditionals are tests, and so externally static, we get an explanation for
why pronouns beyond the scope of the conditional aren’t bound by the indefinite in
the conditional’s antecedent.

(4) a. If a farmer owns a donkey, he feeds it hay. #It is happy with that meal.

b. A farmer walked in the field or he whistled.

While the he and the it in the consequent of the conditional in (4a) get bound by a
farmer and a donkey, that is where it ends. And in (4b) it is hard to hear he as bound
by a farmer.23

Similarly:

(5) a. It’s not the case that a farmer walks in the field. #He whistles.

b. No farmer owns a donkey. #He’s happy about it.

c. Every farmer walks in the field. #He whistles.

There aren’t bound readings of he in these sorts of discourses.24 This is explained
naturally in DPL: the first sentence of (5a) is a test and so doesn’t change the values
of variables. Hence, it doesn’t constrain the he in the second sentence. Similarly for
(5b) and, for exactly the same reason, the universal (5c).

There are (at least) two related things to keep in mind. First, this isn’t meant to
be the last word. Second, this is a different means of generating these predictions
from the way the very same data gets explained in DRT and FCS. In DRT, for
example, the behavior is explained by the rules that govern when discourse referents
(officially, DRSs that contain them) are and aren’t accessible from a given DRS. Here
the explanation instead follows from the DPL behavior of the basic connectives
(∃,∧, and ¬) and the completely intro-logic-textbook definitions that introduce
→, ∨, and ∀.

23 Here, too, things are trickier. Groenendijk and Stokhof discuss discourses like this (DPL, p. 91):

(i) a. If a client turns up, you treat him politely. You offer him a cup of coffee and ask him to
wait.

b. Either there’s no bathroom here or it is in a funny place.

Here him seems to talk about the client who hypothetically turned up (and it the bathroom). The
lesson they suggest is that static, non-dynamic meanings might be recoverable on-demand from the
default dynamic meanings and that certain contexts or situations trigger that recovery. For another
approach (especially to discourses like (ia)) see Poesio and Zucchi (1992).
24 But see footnote 23.
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Truth, Entailment, Equivalence

Meaning in DPL is richer than truth conditions. So when it comes to thinking
about logical concepts (truth, entailment, equivalence) we have options: seemingly
different ways of thinking that collapse or coincide in a classical universe may well
mark out different regions in a dynamic universe.25

In DPL truth in g is a matter of whether it is possible to execute the program �φ�
in g.26

Definition 3 (DPL Truth) For any M,g and φ:

1. φ is true (in M w.r.t. g) iff g �φ� h for some h.
Notation: g

M
φ

2. φ’s satisfaction set is the set of assignments at which it is true.

Notation: ‖φ‖s =
{
g : g

M
φ
}

Thus φ is true w.r.t. g iff g is in φ’s satisfaction set. For the simplest tests, the
classical set-up comes out as a special case. Suppose g ∈ ‖Fx‖s . So g �Fx� h for
some h. Since Fx is a test, g = h and so g(x) ∈ I (F ). This is what it takes for g to
classically satisfy Fx in M .

But DPL truth conditions go beyond classical truth conditions. Take our earlier
example ∃xFx ∧ Gx. For this to be true w.r.t. an information state g there must be
something that is both an F and a G. These are the same as the truth conditions for
the wide-scope existential ∃x(Fx ∧ Gx). Summing up:

Fact 3 For any M: ‖∃xFx ∧ Gx‖s = ‖∃x(Fx ∧ Gx)‖s

Similarly, the donkey-like conditional ∃xFx → Gx is true w.r.t. g iff every x-
alternative k to g such that k(x) is an F is such that k(x) is a G, too. These are the
same as the truth conditions for ∀x(Fx → Gx). Hence:

Fact 4 For any M: ‖∃xFx → Gx‖s = ‖∀x(Fx → Gx)‖s

Something strictly stronger is in fact true: each of these pairs is equivalent.
Classically satisfaction, entailment, and equivalence are all tightly constrained:

entailment is preservation of satisfaction, sameness of satisfaction sets is equiva-

25 We will only look at things from a semantic perspective. This raises the question: what does
proof theory (say, a sequent system or a natural deduction system) for DPL look like? The answer
is: interesting but complicated! The only completeness proofs I am aware of are in Veltman (2000)
and (in a more general setting) (Dekker, 2016).
26 Compare this to truth conditions for atomic DRSs in DRT. A DRS like

[x : farmer(x);walked-in-field(x)]
is true in M iff there is a (partial) assignment g such that g(x) is a farmer in M and g(x) walked
in a field in M . The existential force of indefinites comes from the existential truth conditions, not
from quantificational meaning of indefinites.
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lence, equivalence is mutual entailment. In DPL there is more room. DPL meanings
are fine grained, satisfaction is derivative and doesn’t determine entailment, and
two-way entailment isn’t enough for equivalence.

Definition 4 (DPL Entailment, Equivalence) For any φ, φ1, . . . , φn and ψ :

1. φ and ψ are equivalent (φ  ψ) iff: for any M

�φ�M = �ψ�M

2. φ1, . . . , φn entail ψ (φ1, . . . , φn M
ψ) iff: for any M

g(�φ1�
M ◦ · · · ◦ �φn�

M
)h implies h

M
ψ

Equivalence asymmetrically implies sameness of satisfaction sets.

Fact 5 If φ  ψ then ‖φ‖s = ‖ψ‖s but ‖φ‖s = ‖ψ‖s does not imply φ  ψ .

In computing the semantic value of ∃xFx ∧ Gx we actually showed this:

∃xFx ∧ Gx  ∃x(Fx ∧ Gx) (8.24)

This equivalence is sometimes called Egli’s theorem.27 Similarly, we did enough to
show this:

∃xFx → Gx  ∀x(Fx → Gx) (8.25)

This equivalence is sometimes called Egli’s corollary.
To see that sameness of satisfaction sets is not generally sufficient for sameness

of meaning, consider ∃xFx and ∃yFy. Note that g ∃xFx iff something in D is
an F . Same for ∃yFy. Thus:

‖∃xFx‖s = S = ‖∃yFy‖s (8.26)

These sentences prime different variables for downstream binding: �∃xFx� takes a
g to an h1 that maps x to an F while �∃yFy� takes g to an h2 that maps y to an F .
Those are different outputs reflecting their different meanings. Thus:

∃xFx � ∃yFy (8.27)

In canonical DPL the terminology is that ∃xFx and ∃yFy differ in their production
sets (DPL, p. 56).28

27 See Egli 1979.
28 Define
‖φ‖p = {h : g �φ� h for some g}
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When it comes to entailment in DPL, it is sequences (not sets) of premises that
matter, so you might expect the order and repetition of premises to matter. And
since entailment involves composing the programs denoted by the premises, you
might expect that the interesting dynamics associated with interpreting indefinites
and conjunctions matter for entailment. Putting those together we’ll see that there
are entailments of classical logic that are not entailments in DPL and the other way
around, too.

DPL entailment has many good-making features. Here is one: it validates the
deduction theorem.

Fact 6 φ1, . . . , φn ψ iff (φ1 ∧ · · · ∧ φn) → ψ .

DPL entailment also goes beyond its classical counterpart. Whether ψ is entailed
by φ1, . . . , φn depends on what is true in a state after executing the composite
program �φ1� ◦ · · · ◦ �φn�. This means that discourse information can get passed
from the premises to a conclusion.

(6) a. A woman came in and ordered a sandwich. So: she ordered a sandwich.

b. A woman came to the department. So: she came to campus.

Like the examples of donkey anaphora, these mini-arguments can get straightfor-
ward representations in LFo:

∃x(woman x ∧ order-sandwich x) ∴ order-sandwich x (8.28)

∃x(student x ∧ came-to-department x) ∴ came-to-campus x (8.29)

The common element is that an indefinite seems to reach from premises to an
anaphoric pronoun in the conclusion.

Fact 7 ∃x(Fx ∧ Gx) Gx and ∀x(Gx → Hx), ∃x(Fx ∧ Gx) Hx

This is all due to the way discourse information gets introduced and passed through
externally dynamic operators.

DPL entailment is about how a sequence of premises changes an information
state. Neither repetition nor order matters when it comes to classical entailment, but
both can be relevant here.

Fact 8 φ1, . . . , φn−1, φn ψ does not imply φ1, . . . , φn, φn−1 ψ .

Similar facts hold about production sets: if φ  ψ then ‖φ‖p = ‖ψ‖p but not in general the
other way around. Satisfaction sets pool the states where you can get somewhere from whereas
production sets pool states gotten to from somewhere. Still, it is not in general true that ‖φ‖s =
‖ψ‖s and ‖φ‖p = ‖ψ‖p together entail that φ  ψ . Counterexamples are things like Fx ∨ ¬Fx

and ∃x(Fx ∨ ¬Fx). Exactly one is a test!
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Counterexamples involve existential quantifiers with matching variables competing
over a free variable in the conclusion.

∃xFx, ∃xGx Gx but ∃xGx, ∃xFx � Gx (8.30)

Since existential quantifiers can bind across entailment, interloping existential
quantifiers bearing the same variable can interfere with this. This is because ∃x

resets the value we have associated with x.29

This is also why right monotonicity fails for DPL entailment.

Fact 9 φ ψ implies χ, φ ψ but φ ψ does not imply φ, χ ψ .

Counterexamples involve things like

∃xFx Fx but ∃xFx, ∃xGx � Fx (8.31)

A somewhat natural instance of this pattern (using singular they):

(7) a. Someone is at home. So: they are at home.

b. Someone is at home. Someone is at work. ?So: they are at home.

Again we have quantifiers competing over the downstream pronoun.
This is also why idempotence and repetition are not structural properties of DPL

entailment.

Fact 10 φ � φ and φ,ψ, χ � ψ .

By now you will see how to concoct the right kind of counterexample.
So the effects of dynamic entailment show up in lots of places, but a common

thread is simply that ∃xFx ∧ Gx doesn’t mean the same thing as Gx ∧ ∃xFx.

Fact 11 φ ∧ ψ � ψ ∧ φ

DPL entailment is not unruly because it lacks some classical property or other.
There are systematic, precise and well-understood boundaries to when instances of
classical patterns are DPL-valid and when they aren’t.30 That said, it may be pushing
luck somewhat to mention that DPL entailment isn’t transitive, either.31

Fact 12 φ ψ and ψ χ do not imply that φ χ .

29 This is sometimes called “destructive update” or the “downdating problem” in DPL. I see it as
more feature than bug, an interesting property that arises because of the way existential quantifiers
reset values to variables. We will see another reflection of this feature later. That said, this is a place
where FCS and DPL differ (see, e.g., Dekker 1996).
30 See in particular the discussion in Section 3.5 (DPL, pp. 68–70).
31 Also, no cut: ∃xFx, ∃x¬Fx ∃xFx and ∃xFx, ∃x¬Fx, ∃xFx Fx but ∃xFx, ∃x¬Fx �
Fx.
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Here the counterexamples still have to do with reaching down to conclusions, but
the blocking is achieved not by a competing quantifier but by negation.

¬¬∃xFx ∃xFx and ∃xFx Fx, but ¬¬∃xFx � Fx (8.32)

Note that ∃xFx ¬¬∃xFx. But they are not equivalent.32

Fact 13 ¬¬φ φ but ¬¬φ � φ.

We have been stressing the way in which the richer universe of meanings that
DPL opens up interacts with how we think about things like truth and entailment
and equivalence and how those things relate to each other. This is different from
the more restricted classical set-up where different ways of thinking collapse so
quickly we barely notice. To finish off this section, we’ll see one more example of
this richness.

Return to the choice of basic versus derived connectives. Classically, this is
largely a matter of taste and pragmatic considerations. Not so in DPL. For instance,
it matters that ∃ is basic and ∀ is introduced in terms of it. One way to see that:

Fact 14 While ¬∃xφ  ∀x¬φ it is not in general true that ∃xφ  ¬∀x¬φ.
However, ¬¬∃xφ  ¬∀x¬φ

Thus if you instead start with ∀ and introduce ∃ in terms of it, what you’ll get will
be a test and hence not the same as the DPL meaning for ∃ (and not something
that would fit together with ∧ very well). For exactly the same reasons it is
important that ∧ is basic in DPL and → and ∨ are introduced in terms of it. These
facts percolate to familiar logical patterns: for example, while contraposition and
DeMorgan’s equivalences don’t in general hold, restricted forms with well-placed
closure operators do.

Updating Information States

We have focused on canonical, relational DPL. This has pluses and minuses. Among
the pluses: the connection to dynamic logic is clearer. Among the minuses: there
is some mismatch between the mechanics of DPL and the idea that the meaning
of a sentence is “the way it changes (the representation of) the information of the
interpreter” (DPL, p. 43).

32 Add the one-place closure operator � and interpret it this way:

��φ� = {〈g, h〉 : g = h and 〈h, k〉 ∈ �φ� for some k}
This takes a sentence and (only) strips it of its dynamic potential (this is sometimes symbolized by
♦ (DPL, p. 63)). You should show that � φ  ¬¬φ.
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Here’s the mismatch. DPL meanings are relations between information states:
what links a prior information state to a posterior state is the meaning of the
sentence whose information is being taken on board. But hearers do not in general
have complete information and so the “information of the interpreter” should be
partial. In relational DPL information states are total assignment functions. Thus the
picture that relational DPL leaves us with is one in which interpreters lurch from one
complete state of information to another.

Fortunately, this is an artifact. We will explore an implementation of DPL that that
doesn’t involve such lurching. It will also bring out different ways that meanings can
be “dynamic” and it will be good preparation for tackling the issues that arise when
the dynamics of discourse information and world information mix (in particular, for
tackling the system explored in Groenendijk et al. (1996)).

Let’s start with a change in subject: update systems. Both the general set-up and
the specific system we’ll look at are from Veltman (1996).

Definition 5 (Update Systems) Given a language L, an update system for L is a
pair 〈S, [·]〉 where S is the set of information states (ordered by ≤) with minimal
state 1 and absurd state 0, and [·] : S → S is an interpretation function for L.

Intuitively, s ≤ t iff t contains at least as much information as s does.

Fact 15 Define s + t = t iff s ≤ t . Then + is a join in the lattice 〈S, 1,+〉.33

We will look at a simple example of an update system for a simple propositional
modal language L♦ (Definition 17). The resulting dynamic interpretation of it is
Update Semantics (US).34

Definition 6 (Information States in US) The set I of information states is the set:

s ∈ I iff s ⊆ W

where W = 2A (and A is the set of atomic sentences in L♦).

This takes an operationalist view on possible worlds: they are what sorts out which
atomic sentences are true and which are false. Two limiting cases of information
states: W plays the 1 role, ∅ plays the 0 role. Note that ⊆ is the natural ordering
of states and ∩ is the join. These information states, unlike DPL information states,
represent genuine uncertainty: it is not in general true that every information state is
opinionated about every issue.

As in DPL, sentences express programs. Here, though, they are deterministic:
meanings in US are functions from information states to information states.

33 So: (i) 1 + s = s, (ii) s + s = s, (iii) s + t = t + s, and (iv) (s + t) + r = s + (t + r).
34 This simple modal system is given as a warm-up exercise in Veltman (1996) before more
sophisticated systems are developed. (The version here is different in small ways; e.g., we are
allowing the modals to be out-scoped by ¬ and ∧.) The disclaimer at the beginning of this paper
holds for US, too: what we’ll do isn’t — couldn’t be — an improvement on the original and you
are hereby invited to spend quality time with it.
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Definition 7 (Meanings in US) For any φ:

[φ]US : I → I

The convention is to write the function post-fix (and omit the subscript when
unambiguous): the result of applying [φ] to state s is s[φ].
This doesn’t say which function [φ] denotes. We’ll look at some characteristic
examples; the official version is in the appendix (Definition 21).

Often, updating is a matter of eliminating worlds from contention. Consider a
simple negated sentence like

(8) It’s not raining.
¬p

Adding the information carried by this to an information state s goes by two steps;
the clauses for ¬ and atomic sentences conspire to achieve the intuitively right
result. Negation works by set complementation:

s[¬p] = s \ s[p] (8.33)

So, first, we need to hypothetically update s with p:

s[p] = {w ∈ s : w(p) = 1} (8.34)

Thus s \ s[p] is the state t which contains all and only the worlds in s in which p is
false. That is: ¬p expresses the program or instruction to eliminate p-worlds from
consideration.

Conjunction in US is functional composition. So updating s first with ¬p and
then with q further refines things: s[¬p] is the state in which [q] is executed.

s[¬p ∧ q] = s[¬p][q] = (s \ s[p])[q] (8.35)

The resulting state is the state t that contains all and only the worlds from s in which
p is false and in which q is true.

The existential modal claim ♦φ is a different sort of program. It is a test, checking
whether φ is compatible with s.35

s[♦p] = {w ∈ s : s[p] �= ∅} (8.36)

Notice that this test behavior means that either s[♦φ] = s or s[♦φ] = ∅ for any
state s and any prejacent φ (Fig. 8.4).

35 There’s a surprising ambiguity in “compatibility” (Gillies, 2020).
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Fig. 8.4 Compatibility test

Definition 8 (US Truth, Entailment, Equivalence) For any φ, φ1, . . . , φn, ψ and
any state s:

1. φ is true in s iff s[φ] = s

Notation: s
US

φ

2. φ1, . . . , φn entails ψ iff for any s: s[φ1] . . . [φn] ψ

Notation: φ1, . . . , φn US
ψ

3. φ and ψ are equivalent iff [φ] = [ψ]
Notation: φ US ψ

We are, again, in a rich universe: truth is what you might expect, but entailment
is more than preservation of truth at a state, and equivalence is stronger than co-
entailingness.36

For the descriptive, non-modal fragment things aren’t really that different from
the classical interpretation of propositional logic.

Fact 16 For non-modal φ,ψ and state s: W [φ] behaves like a (classical) propo-
sition, updating s is intersection with a proposition, and truth is propositional
containment. That is:

1. W [¬φ] = W \ W [φ] and W [φ ∧ ψ] = W [φ] ∩ W [ψ];
2. s[φ] = s ∩ W [φ]; and
3. s φ iff s ⊆ W [φ].
Things are different with ♦ and this leads to some similar-to-DPL-looking logical
facts: non-commutativity, non-idempotence, non-permutation, etc.

Fact 17 φ ∧ ψ � ψ ∧ φ; φ � φ; and φ1, . . . , φn−1, φn ψ does not imply

φ1, . . . , φn, φn−1 ψ .

The relevant counterexamples all involve ♦.37

36 There are other sensible choices for entailment: see van Benthem 1996; Veltman 1996 for menus
of options. The interesting thing is that various ways of thinking about entailment that tend to
collapse in a classical set-up can come apart in a dynamic one.
37 For instance: ♦p ∧ ¬p � ¬p ∧ ♦p. Proof: let s = {w, v} where w(p) = 1 and v(p) = 0 and
note that s[♦p ∧ ¬p] = {v} while s[¬p ∧ ♦p] = ∅. Using this information, you can construct
counterexamples for idempotence and permutation.
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The point for now is to see US as implementing a natural way of updating an
information state where those states are partial pictures of the way things are.

DPL Updates

We want to implement the core of DPL in an update system that traffics in partial
information states. In DPL the only information is discourse information so we
don’t want every information state to take a stand on the value of every variable.
To achieve this, take sets of variable assignments as our states.

Definition 9 (Information States in Functional DPL) Let M = 〈D, I 〉 be a
first-order model and S = ℘(DV ) the set of variable assignments. The set S of
(functional) DPL information states is the set:

s ∈ S iff s ⊆ S

That is: information states are sets of relational DPL information states. Note that S
plays the 1 role, ∅ the 0 role, and s contains at least as much information as t iff
s ⊆ t .

Definition 10 (Meanings in Functional DPL) For any φ:

[φ]MDPL : S → S

The conventions from US carry-over here. We’ll look at characteristic examples of
the interesting clauses, saving the official version of [·]DPL for Definition 22.

The move from �·�M
DPL to [·]MDPL is mostly straightforward: atomic formulas and

negations operate on the assignments that make up a state and conjunction becomes
functional composition.

So, for instance, applying the meaning [Fx] to a state s:

s[Fx] = {g ∈ s : g(x) ∈ I (F )} (8.37)

The instruction: figure out which individual assignments in s map x to something
in I (F ), and keep those (and only those). Likewise, in applying [¬φ] to s, test the
individual assignments in s to see if they permit updating by [φ]. Extending our
example:

s[¬Fx] = s \ {g : {g} [Fx] �= ∅} (8.38)

= {g ∈ s : g(x) �∈ I (F )}

The singleton sets {g} on the right-hand side are a giveaway that DPL negation,
unlike its US cousin, is entirely point-wise: s[¬Fx] rides on {g} [Fx] for each g ∈ s.
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Updating a state s with [∃xFx] should output a state that only contains
assignments mapping x to an F . There are multiple ways to achieve this.

Definition 11 Fix a model M = 〈D, I 〉 and let s be any state, x any variable, and
d any object in D.

s[x/d] = {h : h = g[x/d] for some g ∈ s}

This is the set of assignments that differ from an assignment in s at most in that they
map x to d. This achieves a global and specific rejiggering of the information so that
all assignments have x pointing to this particular d.38

The official, full-generality, clause for updating with an existentially quantified
formula is this:

s[∃xφ] =
⋃

d∈D

(s[x/d][φ]) (8.39)

The intermediate, rejiggered, state s[x/d] is key. What we are doing is taking an
object d from D and re-assigning x to map to it, and then updating the resulting
s[x/d] with φ, and then repeating this process for every object in D.

An example may help. First, given a d ∈ D, we take the state s[x/d] and update
it with Fx:

g ∈ s[x/d][Fx] iff g ∈ s[x/d] and g(x) ∈ I (F ) (8.40)

Next, collect up the results from doing this for all the ways of choosing such a d:

g ∈
⋃

d∈D

(s[x/d][Fx]) iff for some d : g ∈ s[x/d] and g(x) ∈ I (F ) (8.41)

Thus [∃xFx] instructs us to randomly reassign a value to x and then insists that
whatever x points to is an F .

Fact 18 Let s[x] = {g[x/d] : g ∈ s and d ∈ D}. Then s[∃xφ] = s[x][Fx].
So we could have defined s[∃xφ] in terms of s[x] and [φ].39

Truth, entailment, and equivalence undergo similar changes: we just take every-
thing up a level to sets of assignments.

38 Note that it is not in general true that s[x/d] ⊆ s. This is not surprising but important: it will
come up again in the next section.
39 Notice that this amounts to treating ∃x as categorematically expressing the function [x] and
thus ∃xφ (abusing our object language formation rules) as the conjunction ∃x ∧ φ. These two
formulations agree but can come apart once modals are added to the mix. Some (canonical)
discussions: van Eijck and Cepparello (1994); Groenendijk et al. (1996); Beaver (2001).
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Definition 12 (DPL Truth, Entailment and Equivalence, Again) For any
φ, φ1, . . . , φn, and ψ :

1. φ is true in s w.r.t M (s φ) iff:

for every g ∈ s : {g} [φ] �= ∅

2. φ1, . . . , φn entail ψ (φ1, . . . , φn ψ) iff:

for every M, s : s[φ1] . . . [φn] ψ

3. φ and ψ are equivalent (φ  ψ) iff:

for every M : [φ]M = [ψ]M

Truth at an information state (set of assignments) is just truth with respect to each
point (assignment) in that state. Similarly for entailment. Equivalence is sameness
of semantic value.

This really is DPL in an update system’s clothing. Here are two ways to see that.

Fact 19 g �φ�h iff h ∈ {g} [φ].
Fact 20 s φ iff for every g ∈ s : g φ. Similarly, φ1, . . . , φn ψ iff

φ1, . . . , φn ψ .

Thus all of the characteristic predictions and patterns of (non-)entailment and
(non-)equivalence of relational DPL hold for the functional implementation. From
that perspective, there is no difference.

Dynamic Differences

Why bother with the update reformulation then? A few reasons. First: it shows
that the essential insights of DPL are independent of the relational implementation.
Second: it sits better with the idea that contexts are characterized by states of
uncertainty and that meanings are ways of updating that uncertainty. Third: it makes
for a better comparison with the other dynamic system on the table (US). We turn to
this comparison now.

DPL and US have different targets: one cares only about discourse information
(level of granularity: which pronouns pick out which objects) and one cares only
about world information (level of granularity: which worlds are compatible with
the information gathered so far). Even so there are similarities. In both set-ups
semantic values are functions linking information states to information states and
key concepts like truth and entailment are relativized to information states not to
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individual unanalyzed points of evaluation. Both say that equivalence is more than
mutual entailment and both exhibit the similar non-classical entailment behavior.

For all this similarity, there are deep differences. We will touch on two of them.
The first difference is that in US information always accumulates but DPL permits
information “loss”.40 The second difference: everything in US semantics happens
set-wise: the information states are key players as states. In DPL at key points the
call to information states gets flattened out to quantification over what happens at
the assignments that make them up. The result is a system in which, in a precise
sense, there is no essentially set-wise behavior.

The updates in US are aptly named: posterior states contain at least as much
information as their prior states do.

Definition 13 (Eliminativity) An update system 〈S, [·]〉 for L with ordering ≤ is
eliminative iff: for every s ∈ S and φ ∈ L:

s ≤ s[φ]

Eliminative update systems are ones in which information accumulates: s[φ]
contains at least the information that s does.

Fact 21 〈I, [·]US〉 is eliminative and 〈S, [·]DPL〉 is not eliminative.

You can see why s[φ]US is always included in s: each characteristic clause either
eliminates possibilities or leaves the prior state unchanged. Not so in DPL: updating
a set of assignments s with ∃x globally resets the value associated with x, forgetting
the prior value. The way it achieves such resetting is by admitting into s[x]
assignments not in s. Hence s[∃xφ] will not in general be included in s.

We have already seen how the resetting behavior makes for empirical and
structural differences in DPL: it is involved in why conjunctions don’t commute
and in failures of right monotonicity, idempotence, and repetition. There is another
place where it comes up and where it is alleged to be problematic.

(9) A farmer walked in the field. A farmer whistled.
∃x(farmer x∧walked-in-field x)∧∃x(farmer x∧whistled x)

Suppose we update s so that x is associated with a farmer who walked and then
update the resulting state so that x is associated with a farmer who whistled. The
result will be the same as had we just changed s so that x is associated with a
farmer who whistled. The information carried by the first sentence is gone. This is
the destructive update or downdate problem of DPL, again.

It is tricky to say exactly what the problem is, though. It isn’t that re-using a
variable gets us incorrect predicted truth conditions or entailments. You can check
that (9) is true in DPL iff there is a farmer who walked and there is a farmer who

40 The scare quotes indicate that there is some interpretive controversy about the nature of the loss
of information. When we get to it, we’ll flag the controversy.
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whistled.41 Instead it must be more conceptual: there is a nagging feeling that
re-using variables shouldn’t destroy the information that was associated with an
upstream use of that variable and, more generally, that information updates should
be bona fide updates. But if we are only tracking discourse information, re-setting
on re-use is what we should expect.42

Now to the second deep difference. In US it is whole information states that count:
they get implicated in the recursive definition of [·]US, truth at a state isn’t defined as
truth at the points that make that state up, and entailment is about whether a whole
state is a fixed-point of a sequence of updates. In contrast, DPL meanings live and
die on the behavior of updates to “states” that are just the individual assignments
that make states up.

Definition 14 (Distributivity) An update system 〈S, [·]〉 for L is distributive
(a.k.a. continuous) iff: for every s ∈ S and φ ∈ L

s[φ] =
⋃

x∈s

{x} [φ]

In a distributive system s[φ] is always the same thing as collecting up the results
from computing {x} [φ] for each x ∈ s. In such systems there is nothing essentially
global or set-wise as far as [·] is concerned.

Fact 22 〈I, [·]US〉 is not distributive and 〈S, [·]DPL〉 is distributive.

It is the modal ♦ that is responsible for non-distributivity in US.43 Here is a simple
example: let s = {w, v} where w(p) = 1 and v(p) = 0.

⋃

x∈s

{x} [♦p] = {w} [♦p] ∪ {v} [♦p] (8.42)

= {w} ∪ ∅
�= s[♦p] = s

On the other hand, you can see tell-tale signs of DPL’s distributivity: for example,
DPL negation doesn’t care about the incoming state as a state; s[¬Fx] is determined
by what {g} [Fx] is for each assignment g ∈ s.

Again, an example may help. Let M = 〈D, I 〉 be a model with just three objects
a, b, and c where I (F ) = {a, b} and let s = {h, k}. We will look at s[∃x¬Fx] and
compare this to {h} [∃x¬Fx] ∪ {k} [∃x¬Fx].

41 This same point is made in Charlow (2019).
42 In a more expressive fragment, we may need a more subtle way of tracking different dimensions
of information. For instance, the referent systems in Groenendijk et al. (1996) are designed
explicitly to disassociate a variable from the world information associated with it. This suggests
there is no downdating problem as such for the tracking of discourse information.
43 That’s why Fact 16 only holds for descriptive (non-modal) sentences.
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There are two steps to look at. First, randomly reassign x throughout s as a whole:

s[∃x] = s[x] (8.43)

= {h[x/a], h[x/b], h[x/c], k[x/a], k[x/b], k[x/c]}

Compare this to applying it to {h} and to {k}:

{h} [∃x] = {h} [x] (8.44)

= {h[x/a], h[x/b], h[x/c]}
{k} [∃x] = {k} [x] (8.45)

= {k[x/a], k[x/b], k[x/c]}

You can probably already see why in general s[x] = ⋃
g∈s {g} [x].

The other step that is instructive to look at is negation.

s[x][¬Fx] = s[x] \ {g : {g} [Fx] �= ∅} (8.46)

= {h[x/c], k[x/c]}

Compare to the point-wise updates:

{h} [x][¬Fx] = {h} [x] \ {g : {g} [Fx] �= ∅} (8.47)

= {h[x/c]}
{k} [x][¬Fx] = {k} [x] \ {g : {g} [Fx] �= ∅} (8.48)

= {k[x/c]}

Here you can see why in general s[¬φ] = ⋃
g∈s {g} [¬φ]. A full, but entirely

routine, inductive proof establishes things aren’t trickier than this example suggests:
s[φ] is always the same as taking each g ∈ s one at a time, figuring out {g} [φ], and
collecting the results.

Eliminativity and distributivity aren’t two randomly chosen properties. Together
they characterize the update systems that are additive.44

Definition 15 An update system 〈S, [·]〉 for L with join + is additive iff for every
s ∈ S and φ ∈ L:

s[φ] = s + 1[φ]

44 This basic idea goes back to van Benthem (1986) but its modern formulation can be found in
both Groenendijk and Stokhof (1990) and Veltman (1996). See also Rothschild and Yalcin (2016).
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Such systems are commutative (s[φ][ψ] = s[ψ][φ]) and idempotent (s[φ][φ] =
s[φ]). So there’s not much dynamics: [φ] is less an instruction for how to move
from a given state s to a posterior state t and more a description of a state that shares
information with both s and 1[φ].
Fact 23 An update system 〈S, [·]〉 for L with join + is additive iff it is both
eliminative and distributive.

So US and DPL are both non-additive but in exactly complementary ways.

Extensions, Amendments, Revisions

We have long since run out of space. So covering all the many ways in which DPL (in
spirit if not always in letter) has been subsequently put to use is out of the question.
But to close, I want to mention one prominent extension.

The fact that US and DPL depart from additive systems in different directions is
part of what makes it interesting, and hard, to think about systems that track the
dynamics of both discourse and world information. This is taken up in Groenendijk
et al. (1996).45

One thing that needs grappling with is how ∃x re-assigns values. Above we
breezily slid from talk of distributive re-assignment to global random assignment;
the difference didn’t matter. To highlight the issue, consider these two options:

s[∃xφ] =
⋃

d∈D

(s[x/d][φ]) (8.49)

s[∃xφ] = (
⋃

d∈D

s[x/d])[φ] (8.50)

In the presence of a consistency-testing modality, there is a difference between
these.

(10) a. Someone is hiding in the closet. He might be guilty.
∃xHx ∧ ♦Gx

b. Someone who is hiding in the closet might be guilty.
∃x(Hx ∧ ♦Gx)

45 There are similar issues when the dynamics of quantification and the dynamics of presupposition
mix. A dynamic presupposition operator ∂ naturally has a test profile: s[∂φ] = s if s φ and
is undefined otherwise. This leads to a non-additive system for reasons of non-distributivity. So
modeling the dynamics of quantification together with the dynamics of presupposition poses a lot
of the same types of issues and requires a lot of the same kinds of innovations. On this score, see
Beaver 2001.
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These sentences (arguably) don’t say the same thing and the distributive, but not the
global, way of re-assigning values to variables can predict this.46

This, of course, is not the last word on how the dynamics of discourse and world
information fit together, but it will in fact be the last word here.47
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Appendix: Some Official Definitions

Definition 16 (First Order Languages) LFO is a first order language iff LFO is
built from a set V of variables, a set of predicate symbols, and the operators ¬,∧,
and ∃ in the usual way.48 Other operators are introduced as abbreviations: (φ →
ψ) = ¬(φ ∧ ¬ψ), (φ ∨ ψ) = ¬(¬φ ∧ ¬ψ), and ∀xφ = ¬∃x¬φ.

Definition 17 (Propositional Modal Languages) A propositional modal language
L♦ is built on a set A = {p, q, . . . } of atomic sentences, and operators ¬,∧, and ♦
in the usual way. � abbreviates ¬♦¬.

Definition 18 (PDL w/tests) Fix a set A of atomic programs. The language LPDL

is the smallest set of sentences including L0 (propositional logic) and is closed as
follows:

1. LPDL is closed under → and ¬;
2. � is the smallest set including A and is such that: (a) if π1, π2 ∈ � then so are

π1;π2 (composition), π1 ∪ π2 (choice), and π∗
1 (iteration); and (b) if φ ∈ LPDL

then φ? ∈ �;
3. If φ ∈ LPDL and π ∈ � then 〈π〉φ ∈ LPDL.

Definition 19 (Semantics for PDL) A PDL (propositional) model is a pair M =
〈W,V 〉 where W is a non-empty set of states and V is a function taking atomic
formulas to subsets of W and atomic programs to subsets of W × W . �·�M is the
interpretation function based on M iff for any p, a, φ,ψ, π :

46 Suppose you don’t know who did it and you don’t know who is in the closet. Then (10a) is true.
But if you also know that certain people are not guilty but you can’t rule out that one of them is
who is in the closet, then arguably (10b) isn’t.
47 Recommended reading: van Eijck and Cepparello (1994); Groenendijk et al. (1996); Aloni
(2005); Dekker (2012).
48 We focus on languages with variables and no constants. When there is no risk of confusion omit
the subscript on LFO (this goes for L♦ and LPDL, too).
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1. Atomic:

(a) �p� = V (p) for atomic formulas
(b) �a� = V (a) for atomic programs

2. Boolean:

(a) �¬φ� = W \ �φ�
(b) �φ → ψ� = (W \ �φ�) ∪ �ψ�

3. Programs:

(a) �π1;π2� = �π1� ◦ �π2�
(b) �π1 ∪ π2� = �π1� ∪ �π2�
(c) �π∗� = (�π�)∗
(d) �φ?� = {〈w,w〉 : w ∈ �φ�

}

4. Modalities:

(a) �〈π〉φ� = {
w : there is a v s.t. 〈w, v〉 ∈ �π� and v ∈ �φ�

}

(b) �[π ]φ� = {
w : for all v if 〈w, v〉 ∈ �π� then v ∈ �φ�

}

In this definition, ∗ has a dual role. Attached to a program as in π∗ this is the program
you get by executing π zero or more times; attached to a program’s meaning (i.e.,
a relation on states) as in (�π�)∗ this is the reflexive and transitive closure of the
relation �π�.

Definition 20 (Relational DPL) Let M = 〈D, I 〉 be a first-order model and g an
assignment function. Let g[x]h iff for some d ∈ D: h = g[x/d]. Then �·�M

DPL is
defined as follows:

1. g �P t1, . . . , tn� h iff h = g and 〈[t1]g, . . . , [tn]g〉 ∈ I (P )

2. g �¬φ�h iff h = g and for no k : g �φ� k

3. g �φ ∧ ψ�h iff there is a k s.t. g �φ� k and k �ψ� h

4. g �∃xφ� h iff there is a k s.t. g[x]k and k �φ� h

Definition 21 (Update Semantics) [·]US : I → I is defined as follows (where p is
any atomic sentence and φ,ψ are any sentences of L♦):

1. s[p] = {w ∈ s : w(p) = 1}
2. s[¬φ] = s \ s[φ]
3. s[φ ∧ ψ] = s[φ][ψ]
4. s[♦φ] = {w ∈ s : s[φ] �= ∅}
Definition 22 (Functional DPL) Let M = 〈D, I 〉 be a first-order model. Define the
DPL interpretation function [·]MDPL : ℘(DV ) → ℘(DV ) as follows (super-/subscripts
omitted when unambiguous):

1. s[Px1 . . . xn] = {g ∈ s : 〈g(x1), . . . , g(xn)〉 ∈ I (P )}
2. s[¬φ] = s \ {g : {g} [φ] �= ∅}
3. s[φ ∧ ψ] = s[φ][ψ]
4. s[∃xφ] = ⋃

d∈D(s[x/d][φ])
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