CONSTRUCTING THE MODEL

EXPLAINING THE SEMANTICS

QUESTION DEPENDENCY

How the Deontic Issue in the Miners' Puzzle Depends on an Epistemic Issue

Martin Aher¹ Jeroen Groenendijk²

¹Institute of Estonian and General Linguistics University of Tartu

²Institute for Logic, Language and Computation University of Amsterdam

Presented at SPE8 in Cambridge, 19.09.2015

Also presented at the Estonian-Finnish Logic Meeting in Rakvere, 15.11.2015

https://www.illc.uva.nl/inquisitivesemantics/

CONSTRUCTING THE MODEL

X.

QUESTION DEPENDENCY

The Story

KOLODNY AND MACFARLANE (2010)

THE FACTS

- Miners are in one of two mine shafts.
- We can block either shaft.
- Blocking the correct mine shaft saves all miners.
- Blocking the wrong mine shaft kills all miners.
- Blocking neither mine shaft kills one miner.

DEONTIC QUESTION

Ought shaft A, shaft B, or neither be blocked?
 ?(𝔅p' ∨ 𝔅q' ∨ (𝔅¬p' ∧ 𝔅¬q'))

Notation: , , are deontic, , , epistemic modalities.

THE STORY

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

KOLODNY AND MACFARLANE (2010)

THE FACTS

- Miners are in one of two mine shafts.
- We can block either shaft.
- Blocking the correct mine shaft saves all miners.
- Blocking the wrong mine shaft kills all miners.
- Blocking neither mine shaft kills one miner.

Deontic QUESTION

(1) Ought shaft A, shaft B, or neither be blocked? ? $(\square p' \lor \square q' \lor (\square \neg p' \land \square \neg q'))$

Notation: , , are deontic, , , epistemic modalities.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

THE STORY

ONTIC SITUATION

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

THE STORY

ONTIC SITUATION

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

- 日本 - 4 日本 - 4 日本 - 日本

The Story

DEONTIC SITUATION

AIM: least dead

(2) Either shaft A or shaft B ought to be blocked. $\nabla p' \vee \nabla q'$

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

The Story

The puzzle

- (3) a. The miners are in shaft A or shaft B. $p \lor q$
 - b. If the miners are in shaft A, we ought to block it. $p \rightarrow \forall p'$
 - c. If the miners are in shaft B, we ought to block it. $q \rightarrow \heartsuit q'$
 - d. Hence, either shaft A or shaft B ought to be blocked.
 𝔅𝑘² ∨ 𝔅𝑘²

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

THE STORY

CONSIDER THE INFORMATION OF THE RESCUERS

AIM: least dead

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

THE STORY

Deontic situation: miners' location unknown

Answer to the deontic question in this epistemic state:

(5) Neither shaft ought to be blocked. $\Box \neg p' \land \Box \neg q'$

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The Story

Deontic situation: miners' location known

Rescuers learn that the miners are in shaft A.

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

The Story

DEONTIC QUESTION DEPENDS ON THE EPISTEMIC ONE

Deontic QUESTION

(7) Ought shaft A be blocked, or shaft B, or neither? ? $(\square p' \lor \square q' \lor (\square \neg p' \land \square \neg q'))$

Epistemic question

- (8) Is it the case that the miners might be in shaft A and they might be in B? $?(\diamond p \land \diamond q)$
 - a. Yes, they might be in shaft A and they might be in shaft B. $\Diamond p \land \Diamond q$
 - b. No, they must be in shaft A.
 - c. No, they must be in shaft B.

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

The Story

DEONTIC QUESTION DEPENDS ON THE EPISTEMIC ONE

DEONTIC QUESTION

(7) Ought shaft A be blocked, or shaft B, or neither? ?($\square p' \lor \square q' \lor (\square \neg p' \land \square \neg q')$)

EPISTEMIC QUESTION

- (8) Is it the case that the miners might be in shaft A and they might be in B? $?(\diamond p \land \diamond q)$
 - a. Yes, they might be in shaft A and they might be in shaft B. $\Diamond p \land \Diamond q$
 - b. No, they must be in shaft A. $\Box p$
 - c. No, they must be in shaft B.

 $\Box q$

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

The Story

DEONTIC QUESTION DEPENDS ON THE EPISTEMIC ONE

IF THE EPISTEMIC QUESTION IS RESOLVED, THE DEONTIC ONE IS TOO.

• If the miners might be in shaft *A* and they might be in shaft *B*, then neither shaft ought to be blocked.

 $(\Diamond p \land \Diamond q) \rightarrow (\mathbb{V} \neg p' \land \mathbb{V} \neg q')$

- If the miners must be shaft A, shaft A ought to be blocked. □p → ☑p'
- If the miners must be shaft *B*, shaft *B* ought to be blocked. □*q* → ♥*q'*

Conclusion:

Full picture of the deontic information should distinguish epistemic possibilities.

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

The Story

DEONTIC QUESTION DEPENDS ON THE EPISTEMIC ONE

IF THE EPISTEMIC QUESTION IS RESOLVED, THE DEONTIC ONE IS TOO.

• If the miners might be in shaft *A* and they might be in shaft *B*, then neither shaft ought to be blocked.

 $(\Diamond p \land \Diamond q) \rightarrow (\mathbb{V} \neg p' \land \mathbb{V} \neg q')$

- If the miners must be shaft A, shaft A ought to be blocked. □p → ☑p'
- If the miners must be shaft *B*, shaft *B* ought to be blocked. □*q* → ♥*q'*

CONCLUSION:

Full picture of the deontic information should distinguish epistemic possibilities.

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

The Story

PICTURE OF THE QUESTION DEPENDENCY

Answer doesn't depend only on the ontic information

(9) If the miners are in shaft A, shaft A ought to be blocked. $p \rightarrow \nabla p'^a$

^aSee von Fintel 2012 for discussion.

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

The Story

PICTURE OF THE QUESTION DEPENDENCY

Answer doesn't depend only on the ontic information

(9) If the miners are in shaft A, shaft A ought to be blocked. $p \rightarrow \overline{v} p'^{a}$

^aSee von Fintel 2012 for discussion.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The Story

Epistemic versus ontic

Answer doesn't depend only on the ontic information (10) If the miners are in shaft A, shaft A ought to be blocked. $p \rightarrow \nabla p'$

CONCLUSION:

The antecedent is taken to be the prejacent of a covert epistemic necessity operator, that contextually relates to the information of the person amenable to the obligation.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

BUILDING BLOCKS

Deontic information models¹

INGREDIENTS OF A DEONTIC INFORMATION MODEL M

- worlds is a non empty set
- states powerset of the set of worlds
- facts maps atoms to {0,1} in each world
- e-state assigns an (information) state to each world
- v-state assign a (violation) state to each world

e-state(w)

the information state in w of a contextually given agent.

v-state(w)

the set of worlds where a rule that holds in w is violated.

¹We're drawing on Aher and Groenendijk 2015 and Ciardelli and Roelofsen 2015.

The Standard Puzzle	CONSTRUCTING THE MODEL	Explaining the semantics	QUESTION DEPENDENCY
Building blocks			

STANDARD CONSTRAINTS ON E-STATE:

- ∀w, v ∈ worlds: if v ∈ e-state(w), then
 e-state(v) = e-state(w) (Introspection)
- $\forall w \in worlds: w \in e\text{-state}(w).$
- Introspection and Trust guarantee that e-state induces a partition on worlds.

CONSTRAINT ON V-STATE:

• $\forall w, v \in worlds: v-state(w) = v-state(v)$ (Indisputability)

Indisputability guarantees that v-state rigidly characterizes a set of worlds:
 bad = {v ∈ worlds | ∃w: v ∈ v-state(w)}

(Trust)

The Standard Puzzle	Constructing the model 000	Explaining the semantics 000000000000000000000000000000000000	QUESTION DEPENDENCY
Building blocks			

STANDARD CONSTRAINTS ON E-STATE:

- ∀w, v ∈ worlds: if v ∈ e-state(w), then
 e-state(v) = e-state(w) (Introspection)
- $\forall w \in worlds: w \in e\text{-state}(w).$
- (Trust)
- Introspection and Trust guarantee that e-state induces a partition on worlds.

CONSTRAINT ON V-STATE:

- $\forall w, v \in worlds: v-state(w) = v-state(v)$ (Indisputability)
- Indisputability guarantees that v-state rigidly characterizes a set of worlds:
 bad = {v ∈ worlds | ∃w: v ∈ v-state(w)}

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

BUILDING BLOCKS

PICTURE OF THE MODEL FOR THE MINERS' PUZZLE

pq p'q'				pq	p'q'
<i>w</i> ₁	10	10	W 7	10	10
W 2	10	00	W8	10	00
W ₃	10	01	₩ ₉	10	01
<i>W</i> 4	01	01	w 10	01	01
W 5	01	00	W11	01	00
w 6	01	10	W 12	01	10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

Semantics

- The semantics is information-based (not truth-based).
- We define by simultaneous recursion:
 - State σ in M supports φ
 - State σ rejects φ
 - State σ in M dismisses a supposition of arphi
- $\begin{array}{l}
 \textbf{M}, \sigma \models^+ \varphi \\
 \textbf{M}, \sigma \models^- \varphi \\
 \textbf{M}, \sigma \models^\circ \varphi
 \end{array}$
- We only present those elements of the semantic clauses that are immediately relevant here.

²We draw upon Groenendijk and Roelofsen 2015.

SEMANTICS.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

ション ふゆ マ キャット マックタン

SUPPORT AND SUPPOSITIONALITY

DISMISSAL IN THE INCONSISTENT STATE.

- Basic feature concerning dismissal:
 - The inconsistent state, Ø, does not support or reject any sentence, it suppositionally dismisses every sentence.

SUPPORT IN A MODEL.

- Notation convention:
 - $M \models^+ \varphi := M$, worlds $_M \models^+ \varphi$
- A model M supports φ if the state consisting of all worlds in M supports φ.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

Semantics

Alternatives and Inquisitiveness.

ALTERNATIVES

- The (support) alternatives for φ, alt⁺(φ) is the set of maximal states that support φ.
- The rejection alternatives for φ, alt⁻(φ) is the set of maximal states that reject φ.

INQUISITIVENESS

- φ is inquisitive if there is more than one (support) alternative for φ.
- If there's only one (support) alternative for φ we denote it by |φ|.
- Inquisitiveness plays a role with phrasing the issues facing the rescuers.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

ション ふゆ マ キャット マックタン

Semantics

Atomic sentences

NOTATIONAL CONVENTION:

∀_∃ represents universal quantification with existential import.

CLAUSES FOR ATOMIC SENTENCES:

- $M, \sigma \models^+ p$ iff $\forall_\exists w \in \sigma : w(p) = 1$.
- $M, \sigma \models^{-} p$ iff $\forall_{\exists} w \in \sigma : w(p) = 0$.
- $M, \sigma \models^{\circ} \rho$ iff $\sigma = \emptyset$

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

Semantics

Support alternatives for p and q'

pq p'q'	pq p'q'	pq p'q'	pq p'q'
w ₁ 10 10	w ₇ 10 10	w ₁ 10 10	w ₇ 10 10
w ₂ 10 00	w ₈ 10 00	w ₂ 10 00	w ₈ 10 00
w ₃ 10 01	w ₉ 10 01	w ₃ 10 01	w ₉ 10 01
w ₄ 01 01	w ₁₀ 01 01	w ₄ 01 01	w ₁₀ 01 01
w ₅ 01 00	w ₁₁ 01 00	w ₅ 01 00	w ₁₁ 01 00
w ₆ 01 10	w ₁₂ 01 10	w ₆ 01 10	w ₁₂ 01 10
alt+(p), p	alt ⁺ (q')	, q '

- (11) a. The miners are in shaft A.
 - b. Shaft *B* is blocked.

р

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

Semantics

NEGATION

CLAUSES FOR NEGATION

•
$$M, \sigma \models^+ \neg \varphi$$
 iff $M, \sigma \models^- \varphi$.

•
$$M, \sigma \models^{-} \neg \varphi$$
 iff $M, \sigma \models^{+} \varphi$.

•
$$M, \sigma \models^{\circ} \neg \varphi$$
 iff $M, \sigma \models^{\circ} \varphi$

FACT (DOUBLE NEGATION)

 $\neg \neg \varphi \equiv \varphi$

Fact (Rejection = Support of Negation) alt⁻(φ) = alt⁺($\neg \varphi$)

・ロト・西ト・市・ 市・ うらぐ

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

Semantics

Support of q' = rejection of $\neg q'$

рс	p'q'		pq	<u>p'q'</u>		pq	p'q'		pq	p'q'
(w ₁ 10	10	W 7	10	10	W ₁	10	10	W 7	10	10
w ₂ 10	00	W ₈	10	00	W 2	10	00	W ₈	10	00
w ₃ 10	01	W 9	10	01	W 3	10	01	W 9	10	01
w ₄ 01	01	W ₁₀	01	01	W 4	01	01	w ₁₀	01	01
<i>w</i> ₅ 01	00	<i>W</i> ₁₁	01	00	w 5	01	00	W ₁₁	01	00
w ₆ 01	10	W ₁₂	01	10	w 6	01	10	w ₁₂	01	10
	alt ⁺	(q')					alt-(¬q')		

$$\operatorname{alt}^+(q') = \operatorname{alt}^-(\neg q')$$

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

ション 小田 マイビット ビックタン

SUPPOSABILITY

SUPPOSABILITY IN SUPPOSITIONAL INQUISITIVE

SEMANTICS

SUPPOSABILITY

Let $\alpha \in \operatorname{alt}(\varphi)$, α is supposable in σ , $\sigma \triangleleft \alpha$ iff for all τ in between α and $\sigma \cap \alpha \colon \tau \models^+ \varphi$

IN ALL FOLLOWING EXAMPLES, SUPPOSABILITY BOILS DOWN TO CONSISTENCY:

 $\sigma \triangleleft \alpha \text{ iff } \sigma \cap \alpha \neq \emptyset$

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC POSSIBILITY

CONTEXTUAL EPISTEMIC POSSIBILITY³

SUPPORT CLAUSE

$$M, \sigma \models^+ \Diamond \varphi \text{ iff } \forall_\exists w \in \sigma : \exists^a \alpha \in alt^+(\varphi) : e\text{-state}(w) \triangleleft \alpha.$$

In every e-state compatible with σ some support-alternative for φ is supposable.

^aUniversal quantification over alternatives semantically captures free choice effects but then necessity no longer follows as a natural dual.

Relevant Example:

(12) The miners might be in shaft A.
$$\Diamond p$$

Support of (12) boils down to:

 $M, \sigma \models^+ \Diamond p \text{ iff } \forall_\exists w : e\text{-state}(w) \cap |p| \neq \emptyset.$

³See Aher and Groenendijk 2015.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EPISTEMIC POSSIBILITY

CONTEXTUAL EPISTEMIC POSSIBILITY IN THE MODEL

pq p'q'	pq p'q'	pq p'q'	pq p'q'
w ₁ 10 10	w ₇ 10 10	w ₁ 10 10	w ₇ 10 10
w ₂ 10 00	w ₈ 10 00	w ₂ 10 00	w ₈ 10 00
w ₃ 10 01	w ₉ 10 01	w ₃ 10 01	w ₉ 10 01
w ₄ 01 01	w ₁₀ 01 01	w ₄ 01 01	w ₁₀ 01 01
w ₅ 01 00	w ₁₁ 01 00	w ₅ 01 00	w ₁₁ 01 00
w ₆ 01 10	w ₁₂ 01 10	w ₆ 01 10	w ₁₂ 01 10
	0	alt ⁺ (<u> </u>
$M \models^+ \diamond p$ iff \forall	w: e-state(w)	$ p \neq \emptyset.$	
$M \not\models^+ \diamond p$			

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC POSSIBILITY

Conjunction

SUPPORT CLAUSE:

$$M, \sigma \models^+ \varphi \land \psi$$
 iff $M, \sigma \models^+ \varphi$ and $M, \sigma \models^+ \psi$

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EPISTEMIC POSSIBILITY

CONJUNCTION OF POSSIBLE MINER LOCATIONS

pq p'q'	pq p'q'	pq p'q'	pq p'q'
w ₁ 10 10	w ₇ 10 10	w ₁ 10 10	w ₇ 10 10
w ₂ 10 00	w ₈ 10 00	w ₂ 10 00	w ₈ 10 00
w ₃ 10 01	w ₉ 10 01	w ₃ 10 01	w ₉ 10 01
w ₄ 01 01	w ₁₀ 01 01	w ₄ 01 01	w ₁₀ 01 01
w ₅ 01 00	w ₁₁ 01 00	w ₅ 01 00	w ₁₁ 01 00
w ₆ 01 10	w ₁₂ 01 10	w ₆ 01 10	w ₁₂ 01 10
alt ⁺	(<i>◇q</i>)	alt ⁺ (\$p	v ∧ ◊q)
$M \models^+ \diamond q$ iff \forall	w: e-state(w)	$\cap q \neq \emptyset.$	
$M \not\models^+ \diamond p \land \diamond q$			

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

DEONTIC OBLIGATION

OBLIGATION⁴

SUPPORT CLAUSE

 $M, \sigma \models^+ \boxtimes \varphi \text{ iff } \forall_\exists \alpha \in \mathsf{alt}^-(\varphi) \colon \sigma \triangleleft \alpha \text{ and } \sigma \cap \alpha \subseteq \mathsf{bad}.$

Every reject alternative for φ is supposable in σ and when we suppose it, all remaining worlds are violation worlds

(13) Shaft B ought not to be blocked. $\nabla \neg q'$

Support for (13) in the whole model boils down to:

 $M \models^+ \boxtimes \neg q'$ iff $|q'| \neq \emptyset$ and $|q'| \subseteq$ bad

⁴The definition follows Aher 2013 and Aher and Groenendijk 2015. 🚊 🗠 🤉

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

DEONTIC OBLIGATION

The obligation not to block shaft B in the model

pq p'q'	pq p'q'	pq p'q'	pq p'q'
w ₁ 10 10	w ₇ 10 10	w ₁ 10 10	w ₇ 10 10
w ₂ 10 00	w ₈ 10 00	w ₂ 10 00	w ₈ 10 00
w ₃ 10 01	w ₉ 10 01	w ₃ 10 01	w ₉ 10 01
w ₄ 01 01	w ₁₀ 01 01	w ₄ 01 01	w ₁₀ 01 01
w ₅ 01 00	w ₁₁ 01 00	w ₅ 01 00	w ₁₁ 01 00
w ₆ 01 10	w ₁₂ 01 10	w ₆ 01 10	w ₁₂ 01 10
		alt ⁺ (⊻-	<u>י</u> q')

 $M \models^+ \boxtimes \neg q' \quad \text{iff} \quad |q'| \neq \emptyset \text{ and } |q'| \subseteq \mathbf{bad}$ $M \not\models^+ \boxtimes \neg q'$

Constructing the model

Explaining the semantics

QUESTION DEPENDENCY

DEONTIC OBLIGATION

OBLIGATION TO BLOCK NEITHER

pq p'q'	pq	p'q'	pq p'q'	pq p'q'
w ₁ 10 10	<i>w</i> ₇ 10	10	w ₁ 10 10	w ₇ 10 10
w ₂ 10 00	<i>w</i> ₈ 10	00	w ₂ 10 00	w ₈ 10 00
w ₃ 10 01	w ₉ 10	01	w ₃ 10 01	w ₉ 10 01
w ₄ 01 01	w ₁₀ 01	01	w ₄ 01 01	w ₁₀ 01 01
w ₅ 01 00	w ₁₁ 01	00	w ₅ 01 00	w ₁₁ 01 00
w ₆ 01 10	w ₁₂ 01	10	w ₆ 01 10	w ₁₂ 01 10
alt+(⊠ ¬p′)		alt+(⊡¬p' ∧	$\sqrt{V} \neg q')$
<i>M</i> ⊭ ⁺ ⊠¬ <i>p</i> ′				
$M \not\models^+ \blacksquare \neg p' \land \blacksquare$	⊴¬q′			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The		Puzzle
	000000	

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

IMPLICATION

IMPLICATION

SUPPORT CLAUSE:

$$M, \sigma \models^+ \varphi \rightarrow \psi$$
 iff $\forall_\exists \alpha \in \mathsf{alt}^+(\varphi) \colon \sigma \triangleleft \alpha$ and $M, \sigma \cap \alpha \models^+ \psi$.

Every support alternative α for φ is supposable in σ , and when we suppose it, then ψ is supported.

Relevant example

(14) If the miners might be in shaft A and they might be in shaft B, then neither shaft ought to be blocked. $(\diamond p \land \diamond q) \rightarrow (\boxtimes \neg p' \land \boxtimes \neg q')$

For this example the clause boils down to:

 $M \models^+ (\diamond p \land \diamond q) \to (\boxtimes \neg p' \land \boxtimes \neg q')$ iff $|\diamond p \land \diamond q| \cap |p'| \cap |q'| \neq \emptyset$ and $|\diamond p \land \diamond q| \cap |p'| \cap |q'| \subseteq \mathbf{bad}$.

	Puzzle
000000	

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

IMPLICATION

IMPLICATION

SUPPORT CLAUSE:

$$M, \sigma \models^+ \varphi \rightarrow \psi$$
 iff $\forall_\exists \alpha \in \mathsf{alt}^+(\varphi) \colon \sigma \triangleleft \alpha$ and $M, \sigma \cap \alpha \models^+ \psi$.

Every support alternative α for φ is supposable in σ , and when we suppose it, then ψ is supported.

Relevant example

(14) If the miners might be in shaft *A* and they might be in shaft *B*, then neither shaft ought to be blocked. $(\Diamond p \land \Diamond q) \rightarrow (\boxtimes \neg p' \land \boxtimes \neg q')$

For this example the clause boils down to:

 $M \models^+ (\diamond p \land \diamond q) \to (\boxtimes \neg p' \land \boxtimes \neg q')$ iff $|\diamond p \land \diamond q| \cap |p'| \cap |q'| \neq \emptyset$ and $|\diamond p \land \diamond q| \cap |p'| \cap |q'| \subseteq \mathbf{bad}$.

	Puzzle
000000	

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

IMPLICATION

IMPLICATION

SUPPORT CLAUSE:

$$M, \sigma \models^+ \varphi \rightarrow \psi$$
 iff $\forall_\exists \alpha \in \mathsf{alt}^+(\varphi) \colon \sigma \triangleleft \alpha$ and $M, \sigma \cap \alpha \models^+ \psi$.

Every support alternative α for φ is supposable in σ , and when we suppose it, then ψ is supported.

Relevant example

(14) If the miners might be in shaft *A* and they might be in shaft *B*, then neither shaft ought to be blocked. $(\Diamond p \land \Diamond q) \rightarrow (\boxtimes \neg p' \land \boxtimes \neg q')$

For this example the clause boils down to:

$$M \models^+ (\Diamond p \land \Diamond q) \to (\boxtimes \neg p' \land \boxtimes \neg q')$$

iff $|\Diamond p \land \Diamond q| \cap |p'| \cap |q'| \neq \emptyset$ and $|\Diamond p \land \Diamond q| \cap |p'| \cap |q'| \subseteq \mathbf{bad}$.

Constructing the model

Explaining the semantics

QUESTION DEPENDENCY

IMPLICATION

IMPLYING AN OBLIGATION TO BLOCK NEITHER

pq p'q'	pq p'q'	pq p'q'	pq p'q'						
w ₁ 10 10	w ₇ 10 10	w ₁ 10 10	w ₇ 10 10						
w ₂ 10 00	w ₈ 10 00	w ₂ 10 00	w ₈ 10 00						
w ₃ 10 01	w ₉ 10 01	w ₃ 10 01	w ₉ 10 01						
w ₄ 01 01	w ₁₀ 01 01	w ₄ 01 01	w ₁₀ 01 01						
w ₅ 01 00	w ₁₁ 01 00	w ₅ 01 00	w ₁₁ 01 00						
w ₆ 01 10	w ₁₂ 01 10	w ₆ 01 10	w ₁₂ 01 10						
$alt^{+}(\Diamond p \land \Diamond q) \qquad alt^{+}(\nabla \neg p' \land \nabla \neg q')$ $ \Diamond p \land \Diamond q \cap p' \cap q' = \{w_7, w_9, w_{10}, w_{12}\}$ $M \vdash^{+}(\Diamond p \land \Diamond q) \rightarrow (\nabla \neg p' \land \nabla \neg q')$									
	<i>ו) → (ש¬ף ∧</i> ש¬	Ψ)							

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC NECESSITY

CONTEXTUAL EPISTEMIC NECESSITY⁵

SUPPORT CLAUSE:

$$M, \sigma \models^+ \Box \varphi \text{ iff } \exists \alpha \in \mathsf{alt}^+(\varphi) \colon \exists w \in \sigma \colon \mathbf{e}\text{-state}(w) \triangleleft \alpha;$$
$$\forall \beta \in \mathsf{alt}^-(\varphi) \colon \forall w \in \sigma \colon \mathbf{e}\text{-state}(w) \not \triangleleft \beta.$$

Some support-alternative for φ is supposable in some e-state compatible with σ ; and no rejection-alternative for φ is supposable in any e-state compatible with σ .

⁵See Aher and Groenendijk 2015.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC NECESSITY

CONTEXTUAL EPISTEMIC NECESSITY

Relevant example:

(15) The miners must be in shaft A.

 $\Box p$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Support in the model for $\Box p$ boils down to:

$$M \models^+ \Box p$$
 iff $\exists w : e\text{-state}(w) \cap |p| \neq \emptyset$; and
 $\forall w : e\text{-state}(w) \cap |\neg p| = \emptyset.$

Constructing the model

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC NECESSITY

Necessity of miners being in a shaft

pq p	o'q'	pq	p'q'			pq	p'q'		pq	p'q'	
w ₁ 10 1	10 w	7 10	10		<i>w</i> ₁	10	10	W 7	10	10	
w ₂ 10 0	00 w ₈	3 10	00		w ₂	10	00	W 8	10	00	
w ₃ 10 (01 w _g	9 10	01		W ₃	10	01	W ₉	10	01	
w ₄ 01 0	01 w ₁	₀ 01	01		<i>W</i> 4	01	01	w ₁₀	01	01	
w ₅ 01 0	00 w ₁	1 01	00		w 5	01	00	W ₁₁	01	00	
w ₆ 01 1	10 w ₁	₂ 01	10		W 6	01	10	w ₁₂	01	10	
$M \models^+ \Box p$ iff $\exists w : e-state(w) \cap p \neq \emptyset$; and											
	٢	/w: e	-stat	t e (w)∩	$ \neg p $	$= \emptyset.$				
$M \not\models^+$	⁻ □ <i>p</i>						• • • •		► < Ξ	× ≣	

EXPLAINING THE SEMANTICS

EPISTEMIC NECESSITY

CONTEXTUAL AND NON-CONTEXTUAL NECESSITY

	pq	p'q'		pq	p'q'		pq	p'q'		pq	p'q'
<i>w</i> ₁	10	10	W 7	10	10	<i>w</i> ₁	10	10	W 7	10	10
w ₂	10	00	W ₈	10	00	w ₂	10	00	W ₈	10	00
W 3	10	01	W ₉	10	01	W ₃	10	01	W ₉	10	01
<i>w</i> ₄	01	01	w ₁₀	01	01	W4	01	01	w ₁₀	01	01
w 5	01	00	W ₁₁	01	00	w 5	01	00	W ₁₁	01	00
w 6	01	10	W ₁₂	01	10	W 6	01	10	w ₁₂	01	10
NI	on-co	ntovt		nl ie			0	ontavt			

Non-contextual $|\Box p|$ is |p|

One consequence of adopting contextual necessity: $M \not\models^+ p \rightarrow \boxtimes p'$ but $M \models^+ \Box p \rightarrow \boxtimes p'$

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

ション 小田 マイビット ビックタン

EPISTEMIC NECESSITY

OBLIGATION CONTINGENT ON P

EXAMPLE (16) If the miners are in shaft A, then it ought to be blocked. $p \to \mathbb{V} p'$

Support for the formula (16) in the model boils down to:

 $M \models^+ p \to \mathbb{V}p' \text{ iff } |p| \cap |\neg p'| \neq \emptyset \text{ and}$ $|p| \cap |\neg p'| \subseteq \mathbf{bad}.$

Constructing the model

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC NECESSITY

Obligation contingent on P

	pq p'q'		pq	p'q'			pq	p'q'		pq	p'q'	
<i>w</i> ₁	10 10	W 7	10	10		<i>w</i> ₁	10	10	W 7	10	10	
w ₂ -	10 00	W ₈	10	00		w ₂	10	00	W ₈	10	00	
w ₃ -	10 01	W9	10	01		W ₃	10	01	W ₉	10	01	
w ₄ (01 01	₩ ₁₀	01	01		<i>W</i> 4	01	01	w ₁₀	01	01	
w ₅ (01 00	W ₁₁	01	00		W 5	01	00	W ₁₁	01	00	
w ₆ (01 10	W ₁₂	01	10		W 6	01	10	W ₁₂	01	10	
$M \models^+ p \rightarrow \boxtimes p'$ iff $ p \cap \neg p' \neq \emptyset$ and												
	$ p \cap \neg p' \subseteq bad.$											
A	s p ∩ ¬	p' = {	W ₂ , V	v 3, w	8,	₩ 9},	M⊭	$^+ p \rightarrow$	• [v] p'	► < Ξ	لة الا	

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC NECESSITY

OBLIGATION CONTINGENT ON EPISTEMIC NECESSITY

Example

(17) If the miners must be in shaft A, then it ought to be blocked. $\Box p \rightarrow \nabla p'$

Support for the formula (17) in the model boils down to:

 $M \models^+ \Box p \to \boxtimes p' \text{ iff } |\Box p| \cap |\neg p'| \neq \emptyset \text{ and}$ $|\Box p| \cap |\neg p'| \subseteq \mathbf{bad}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

EPISTEMIC NECESSITY

Obligation contingent on epistemic necessity

	pq p	o'q'		pq	p'q'			pq	p'q'		pq	p'q'
<i>w</i> ₁	10	10	W 7	10	10		W 1	10	10	W 7	10	10
<i>w</i> ₂	10 (00	W ₈	10	00		w ₂	10	00	W ₈	10	00
w 3	10 (01	W 9	10	01		W ₃	10	01	W 9	10	01
<i>w</i> ₄	01 (01	w ₁₀	01	01		W4	01	01	w ₁₀	01	01
W 5	01 (00	W ₁₁	01	00		W 5	01	00	W ₁₁	01	00
w 6	01	10	W ₁₂	01	10		<i>w</i> ₆	01	10	W ₁₂	01	10
$M \models^+ \Box p \rightarrow \boxtimes p'$ iff $ \Box p \cap \neg p' \neq \emptyset$ and												
$ \Box p \cap \neg p' \subseteq bad.$												
	As ∣□,	p ∩ -	¬p' =	{ W ₂	, w 3}	, N	1⊨+	$\Box p$	$\rightarrow V p$	/ ///////////////////////////////////	€ ∢ ≷	▶ 星

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

QUESTION DEPENDENCY

DEONTIC QUESTION DEPENDS ON THE EPISTEMIC ONE

DEONTIC QUESTION

(18) Ought shaft A be blocked, or shaft B, or neither? ? $(\square p' \lor \square q; \lor (\square \neg p' \land \square \neg q'))$

EPISTEMIC QUESTION

(19) Is it the case that the miners might be in shaft A and they might be in *B*? $?(\diamond p \land \diamond q)$

(18) depends on (19), so when (19) is resolved, (18) is too

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

QUESTION DEPENDENCY

Inquisitive disjunction and questions

SUPPORT CLAUSE:

$$M, \sigma \models^+ \varphi \lor \psi$$
 iff $M, \sigma \models^+ \varphi$ or $M, \sigma \models^+ \psi$

There can be more than one alternative for disjunction, so a disjunction can be inquisitive.

NOTATION CONVENTION FOR QUESTIONS:

 $\varphi := \varphi \lor \neg \varphi$

QUESTIONS IN INQUISITIVE SEMANTICS

In inquisitive semantics, $p \lor \neg p$ i.e., ?p, isn't a tautology. It isn't informative, it's inquisitive. For example, $M \not\models^+ p \lor \neg p$.

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

QUESTION DEPENDENCY

Equivalence fact about deontic and epistemic

QUESTIONS IN THE MODEL

DEONTIC QUESTION

$$?(\nabla p' \vee \nabla q; \vee (\nabla \neg p' \wedge \nabla \neg q')) \equiv_M \nabla p' \vee \nabla q' \vee (\nabla \neg p' \wedge \nabla \neg q')$$

Epistemic question

 $?(\diamond p \land \diamond q) \equiv_M \Box p \lor \Box q \lor (\diamond p \land \diamond q)$

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

QUESTION DEPENDENCY

Equivalence fact about deontic and epistemic

QUESTIONS IN THE MODEL

DEONTIC QUESTION

$$?(\mathbb{V}p'\vee\mathbb{V}q;\vee(\mathbb{V}\neg p'\wedge\mathbb{V}\neg q'))\equiv_{M}\mathbb{V}p'\vee\mathbb{V}q'\vee(\mathbb{V}\neg p'\wedge\mathbb{V}\neg q')$$

EPISTEMIC QUESTION

 $?(\Diamond p \land \Diamond q) \equiv_M \Box p \lor \Box q \lor (\Diamond p \land \Diamond q)$

ENTAILMENT

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

QUESTION DEPENDENCY AND ENTAILMENT⁶

DEFINITION OF ENTAILMENT FOLLOWS IMPLICATION:

 $\varphi \models_M \psi$ iff $\forall_\exists \alpha \in \mathsf{alt}^+(\varphi) \colon M, \alpha \models^+ \psi$

QUESTION DEPENDENCE AND ENTAILMENT

A question depends on another if the latter entails the former.

Does the deontic question depend on the epistemic question? $\Box p \lor \Box q \lor (\diamond p \land \diamond q) \models_M \Box p' \lor \Box q' \lor (\Box \neg p' \land \Box \neg q')$

⁶On question dependency and entailment see Ciardelli 2014.

ENTAILMENT

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

QUESTION DEPENDENCY AND ENTAILMENT⁶

DEFINITION OF ENTAILMENT FOLLOWS IMPLICATION:

 $\varphi \models_M \psi$ iff $\forall_\exists \alpha \in \mathsf{alt}^+(\varphi) \colon M, \alpha \models^+ \psi$

QUESTION DEPENDENCE AND ENTAILMENT

A question depends on another if the latter entails the former.

Does the deontic question depend on the epistemic question? $\Box p \lor \Box q \lor (\diamond p \land \diamond q) \models_M \Box p' \lor \Box q' \lor (\Box \neg p' \land \Box \neg q')$

⁶On question dependency and entailment see Ciardelli 2014.

ENTAILMENT

CONSTRUCTING THE MODEL

QUESTION DEPENDENCY

QUESTION DEPENDENCY AND ENTAILMENT⁶

DEFINITION OF ENTAILMENT FOLLOWS IMPLICATION:

 $\varphi \models_M \psi$ iff $\forall_\exists \alpha \in \mathsf{alt}^+(\varphi) \colon M, \alpha \models^+ \psi$

QUESTION DEPENDENCE AND ENTAILMENT

A question depends on another if the latter entails the former.

Does the deontic question depend on the epistemic question? $\Box p \lor \Box q \lor (\diamond p \land \diamond q) \models_M \boxtimes p' \lor \boxtimes q' \lor (\boxtimes \neg p' \land \boxtimes \neg q')$

⁶On question dependency and entailment see Ciardelli 2014.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

QUESTION DEPENDENCY ILLUSTRATED

DEONTIC QUESTION DEPENDS ON THE EPISTEMIC ONE

		pq	p'q'		pq	p'q'			
	<i>w</i> ₁	10	10	W 7	10	10			
$M, \Box p \models^+ \boxtimes p'$	W ₂	10	00	W ₈	10	00			
$M, \Box q \models \forall \Box q$ $M, \diamond p \land \diamond q \models^+ \Box (\neg p' \land \neg q')$	W 3	10	01	W 9	10	01			
	W ₄	01	01	w ₁₀	01	01			
$M \models^+ \Box q \to \heartsuit q'$ $M \models^+ \Box q \to \heartsuit q'$	w 5	01	00	<i>w</i> ₁₁	01	00			
$M \models^+ (\Diamond p \land \Diamond q) \to (\overline{\mathbb{V}} \neg p' \land \overline{\mathbb{V}} \neg q')$	w 6	01	10	W ₁₂	01	10			
	alt	+(□µ	$p \lor \Box q$	∨(\$p	$\land \diamond i$				
$\varphi \models_{M} \psi \text{ iff } \forall_{\exists} \alpha \in alt^{+}(\varphi) \colon M, \alpha \models^{+} \psi$ $\Box p \lor \Box q \lor (\diamond p \land \diamond q) \models_{M} \heartsuit p' \lor \boxtimes q; \lor (\boxtimes \neg p' \land \boxtimes \neg q')$									

Constructing the model

EXPLAINING THE SEMANTICS

QUESTION DEPENDENCY

QUESTION DEPENDENCY ILLUSTRATED

The end (Or is it?)

Thank you for listening

Feedback: martin.aher@ut.ee

https://www.illc.uva.nl/inquisitivesemantics/

We gratefully acknowledge support of the Netherlands Organisation for Scientific Research and the Estonian Research Council.

CONSTRUCTING THE MODEL

Explaining the semantics

QUESTION DEPENDENCY

QUESTION DEPENDENCY ILLUSTRATED

Papers that inspired the work

- Aher, Martin: Modals in Legal Discourse. PhD thesis, University of Osnabrück. September 2013.
- Aher, Martin and Groenendijk, Jeroen: Deontic and epistemic modals in suppositional [inquisitive] semantics. To appear in the Proceedings of the Nineteenth Sinn und Bedeutung conference, 2015.
- Ciardelli, Ivano and Roelofsen, Floris: Inquisitive dynamic epistemic logic. Synthese 192(6), pp. 1643-1687, 2015.
- Ciardelli, Ivano: Interrogative dependencies and the constructive content of inquisitive proofs. In Kohlenbach, Ulrich et. al (eds.), Proceedings of the 21st International Workshop on Logic, Language, Information and Computation (WOLLIC), pp. 109-123, Lecture Notes in Computer Science, Springer, 2014.
- Jeroen Groenendijk and Floris Roelofsen: Towards a Suppositional Inquisitive Semantics. In Aher et. al (eds.) 10th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2013, Gudauri, Georgia, September 23-27, 2013. Revised Selected Papers, pp 137-156, Lecture Notes in Computer Science, Springer, 2015.
- von Fintel, Kai: The best we can (expect to) get? Challenges to the classic semantics for deontic modals: Paper for a session on Deontic Modals at the Central APA, February 17, 2012.
- Niko, Kolodny and MacFarlane, John: "Ifs and Oughts." Journal of Philosophy 107(3), pp 115-143, 2010.