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by 

Peter van Emde Boas, 
Jeroen Groenendijk & Martin Stokhof 

1. INTRODUCTION 

The aim of this paper is to describe a new application of a formalism, 

designed originally by the last two authors as part of a theory in which 

various pragmatic phenomena concerning the information of language users 

can be handled. Using this framework, we analyse a paradox brought to the 

attention of the first author by CONWAYet al. ( 1977). In fact, the paradox in­

volved is much older. A description of the paradox and its history was 

presented in GARDNER (1977); two variants can be found in LITTLEWOOD (1953). 

Conway's contribution consists of an impressive generalization of the situa­

tions in which the paradox can be shown to arise. We will discuss this 

generalization in Section 2 of the paper, but for reasons of simplicity our 

analysis deals only with the original simple case, indicating the explosion 

of the combinatorial complexity which will arise if our analysis is extend­

ed to more complicated cases. 

The paradox involves hypothetical incomplete information games, to be 

played by perfect logicians. In the most simple situation there are two 

players. Each player has a non-negative number written on his forehead, 

which his opponent can see but which he cannot see himself. There are no 

mirrors available and asking the other player for information is not 

permitted. However, it is known to both players that according to the rules 

of the game the two numbers are adjacent; so a situation like (3,4) is 

legal, whereas (6,9) is not. Moreover, each of the players knows that the 

other player is informed about the rules of the game; this again is mutual 

knowledge up to every level. The goal of the game is to find out which 

number is written on one's own forehead. Both players inform each other in 

alternating turns about whether they know their own number, taking into 

account what they see and the development of the game so far. As soon as 

one of the players affirms that he can decide what his number is, the game 

terminates . 
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As an example, consider the game (0,1); as soon as the player with 

number 1 has to answer he can affirm that he knows his number, for seeing 

a 0, he can conclude that his own number has to be +1 or -1. Since -1 is 

excluded by the rules of the game, he has complete information as to what 

number is written on his forehead: he knows that it is +1. Similarly, in 

the game (1,2) the player with number 2 can answer affirmatively, as soon 

as the player with number 1 has given a negative answer, for the failure 

of the player with number to terminate the game at his first turn proves 

to the other player that he himself does not have a zero, so he must have 

a 2. 

The paradox arises as soon as we start analysing the games (k,k+1) for 

larger values of k. On the one hand a plausible argumentation can be given 

which shows that the game will terminate for every value of k, whereas on 

the other hand a straightforward analysis of a single round during a game 

such as (3,4) shows that such a round does not produce any useful informa­

tion at all, implying that the game will never terminate. We present both 

argumentations in full detail in Section 2. 

Our application of the epistemic framework, developed in GROENENDIJK 

& STOKHOF (1980), will provide for a mathematical model within which the 

termination proof can be shown to be correct by explicit calculation. The 

model also supports the possibility of obtaining a non terminating game by 

restricting the structures used, where these restrictions should correspond 

to psychological barriers in the human mind. However, it is not our inten­

tion to claim that this model explains human behaviour: our main concern is 

to sharpen the mathematical tools, in order to build formalisms applicable 

to the more interesting hard problems involving information. 

The paper is organized as follows. Section 2 presents the details of 

the paradox together with its generalization as described by Conway. It is 

argued that the termination proof is in fact based upon some a priori 

analysis of the game. Section 3 introduces the general epistemic models 

introduced by Groenendijk and Stokhof, and indicates the additional restric­

tions which have to be satisfied by epistemic models in order for them to 

be useful in the analysis of the paradox. In the models there occurs a modal, 

possible world component which is used for expressing information about 

logical and factual relations between states of affairs, information about 

them, etc. This component is applied in Section 4 where a model for the 

initial state of the game is obtained. Still the resulting•model is not suf­

ficiently general, since it does not allow for the representation of the 
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extra information conveyed by a "no" answer from one of the players. This 

missing feature is added by defining an update operator, which transforms 

the entire structure into a new one. This operator is introduced in Section 

5, and it is shown by means of an explicit example that, starting from the 

initial state as defined in Section 4, after finitely many updates a new 

state is obtained where the game will terminate. Section 6 contains some 

concluding remarks. 

2. THE PARADOX 

2.1. Termination and non-termination proof 

Consider a particular instance of the two person game with numbers 

which are not too small, such as the game (3,4). Given the fact that the two 

numbers are adjacent, each player can find out that the parity of his number 

is opposed to the parity of the number which he sees on the forehead of his 

opponent, so he knows whether his own number is even or odd. Let us name 

the players with the even and the odd number 'Eve' and 'Ott', respectively. 

Each player will know at the start of the game which role he or she is 

playing. Now we can easily indicate why the two person game (3,4) will 

never terminate. It can be argued that the first two answers in the game 

will be "no", and moreover that both players . can predict this. This shows 

that virtually no information is exchanged during the first round, so why 

play this round at all? 

The argument is based upon the possibilities which both players can 

discern at the outset. First consider Ott. He sees his opponent carrying 

a 4, so he knows he must have a 3 or a 5. He does not have complete infor­

mation and, if asked whether he knows his number, he can only answer "no". 

Moreover, in both cases the information about Ott's number which is visible 

to Eve, will be of no help for her to solve her problem: if Eve sees a 3 

s he will hesitate between 2 and 4, whe reas seeing a 5 will make her hesitate 

between 4 and 6. Since Ott knows that these are the only two possibilities, 

Ott is sure that the first answer given by Eve has to be "no" as well. Note 

moreover that the fact that Eve actually says "no" does not convey any new 

information to Ott, since he knew at the outset that this was the only pos­

sible answer in the g iven circumstance s. Ott can also figure, out that a "no" 

answer given b y himself, before Eve has had to answer, won't help Eve in 

solving her problem, since he knows that Eve is clever enough to infer that 

L 
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Ott must say "no", regardless of whether he in fact has a 3 or a 5. Add­

ing all this up, we conclude that, regardless of who begins, Ott is sure 

that the first two answers in the game will be "no". 

Now consider the situation for Eve. By the same argumentation as above 

(where the values of all numbers have to be decreased by 1), we may infer 

that Eve knows as well that the first two answers in the game will be "no", 

regardless who begins. This indicates that there does not happen anything 

interesting during the first round: there is no exchange of new information, 

and during the next and all subsequent rounds the situation will be the 

same - the game does not terminate. 

Next we show that the game always terminates by proving the following 

THEOREM. The game (x,x+1) is terminated at move x+1 by the player having 

the highest number in case the player wi th the odd number starts, and at 

move x+2 otherwise. 

PROOF. Note that from the fact that it is given that the two numbers are 

adjacent, each player is able to infer whether his number is even or odd. 

We prove the result by induction, keeping track of the parity of x. 

(Again we denote the player with the even number by 'Eve' and the other 

player by 'Ott'.) 

Base induction proof, x=O. 

In this situation Ott has complete information (since he sees a 0), whereas 

the information of Eve is incomplete (she may have a 0 or a 2). So Ott 

will terminate the game as soon as his turn is up; this is at move 1 in 

case Ott s tarts and at move 2 otherwise. This proves the result for x=O. 

Induction step, x=2k. 

In this situation Ott has the highest number. He knows that his number 

equals 2k-1 or 2k+1. If the first holds, by induction Eve will terminate 

the game at move 2k, in case Ott starts, and at move 2k+1 otherwise. As soon 

as Ott finds out that this has not happened (which situation arises at 

move 2k+1 or 2k+2, respe ctively) he can terminate the game, which proves 

the result for x=2k. 

Induction step, x=2k+1. 

In this situation Eve has the highest number. The possibility that her 

number equals 2k is ruled out by the behaviour of Ott at turn 2k+1 or 

2k+2, respectively, depending on whether Ott or Eve starts. So at the next 

move, which is move 2k+2 or 2k+3, respectively, Eve can terminate the game. 

This proves the result for x=2k+1. 
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The structure of this proof is illutrated by the diagram below. It shows 

a graph whose vertices are legal configurations in the game . Two configura­

tions are connected by an edge labeled X when player X cannot discriminate 

the two positions on the basis of his/her visible information. For example, 

the games {5,6) and {6,7) are connected by an edge labeled 'Ott', since Ott, 

seeing a 6, cannot decide whether he has a 5 or a 7. 

{0, 1) {1,2) {2,3) {3,4) {4,5) {5,6) {6, 7) --
Eve Ott Eve Ott Eve Ott 

Diagram 1 

A graph describing the two person game 

Note that each game in the graph as two incoming edges, labeled 'Eve' 

and 'Ott', respectively; the only exception being the game {0,1). This game 

has no edge with label 'Ott' which connects it to another game, illustrat­

ing the fact that Ott can terminate this game at his first move. 

In the induction proof presented above the players are supposed to 

perform the following "edge-cutting" game: whenever some player says "no", 

both players take their copy of the above graph and remove from it all 

nodes which have no incoming edge labeled by the player saying "no", to­

gether with all their incoming edges. After this reduction of the graph, both 

players consider the collection of games which remains and investigate 

whether the collection of games which are compatible with the real state 

of the world is reduced to a singleton, in which case the player can ter­

minate the game at his next move. 

The main weakness of the termination proof now can be explained as 

follows: it seems that, in order to terminate the game at all, the players 

are supposed to stop playing the real game, and start playing the edge­

cutting game instead. So an a priori analysis of the game is added to the 

set of rules of the game supposed to be known to both players. Moreover, 

this knowledge is known to the other player as well, up to each level of 

epistemic analysis. Presumably the assertion that the players are "logic­

ally perfect" has to be interpreted in such a way that they independently 

have arrived at the solution just given, before the game starts. We con­

sider this an unreasonable assumption. 

At the same time it is easy to accuse the non-termination proof of 

being a prime example of a proof by intimidation: the rhetoric question: 

"Why play this round at all?" obscures the fact that we did not analyze all 
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possible information of the "A knows that B knows that c knows that 

type which may play a role. 

The present paper aims at developing an epistemic model in which infor­

mation at all epistemic levels can be represented and which, moreover, 

obeys the rules of the game. We do not want to build into the model an 

a priori analysis of the game which tells in advance which conceivable 

position is removed at which move in the game. Instead, we want an update 

operator which removes from the structure those positions which are incom­

patible with a "no" answer given by a player, but which does this indepen­

dently of at which move in the game this "no" answer is given. 

2.2. Generalizations 

Littlewood, in LITTLEWOOD (1953), presents two variants of the 

paradoxical situation described above. He considers cards which are showing 

two adjacent, non-negative integers on the two sides. The two players are 

seated opposite to each other. A third player (the umpire) draws a card 

and puts it between the two players in such a way that each player can 

only see one of the faces. The player having the highest number wins the 

round. However, each player has the right to cancel the round, so the 

first thing the umpire has to do is ask the two players whether they 

will play or whether they want to go to the next rolind by asking for a new 

card. Littlewood claims that by an induction proof it can be shown that all 

rounds are vetoed by some player. 

In the other version the cards are drawn from an urn, containing a 

single copy of the card (0,1), 10 copies of the card (1,2), 100 copies of 

the card (2,3), etc. One can prove that under these circumstances each 

player has a change of one against ten of losing. This latter version brings 

us back to older paradoxes involving probability notions, which can be solv­

ed by basing probability theory on measure theory. 

Conway has generalized the paradox in CONWAY et al. (1977) by consider­

ing games with more than two players. In this generalization there are 

k ~ 2 players, each carrying a number on his forehead. The players are seat­

ed in such a way that each player can read all numbers except his own. 

Moreover, there is an umpire, who has written a list of m consecutive num­

bers on a blackboard, one of which is the sum of the numbers on the fore­

heads of the players. We denote an instance of such a game by 

(n 1 ,n2 , ..• ,nk I p 1 ,p2 , ••• ,pm), where n 1 ,n2 , ..• ,~ are the numbers written on 

the foreheads of the players A,B, .•. , respectively, and the numbers 

p 1 ,p2 , ... ,pm the numbers written on the blackboard. The umpire asks the 
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players in cyclic order whether they know their number or not, and the game 

ends on the first "yes" answer. 

By analysing a game such as (1,1,113,4,5) it can be made clear that in 

this game the first three answers will be "no", regardless of who begins, 

so again non-termination is proved by asking what possible use such a round 

could have. On the other hand, Conway has shown by a nice induction proof, 

that the edge-cutting variant of this game will terminate for an arbitrary 

initial position, as long as the number of values on the blackboard m does 

not exceed the number of players k. 

We illustrate the termination by illustrating the edge-cutting variant 

of the above game (1,1,113,4,5) in the diagrams 2 and 3 below. Vertices in 

the game are all positions sharing the public information, i.e. the values 

of the numbers written on the blackboard p 1 , .•. ,pm. In our example these 

are the numbers 3,4,5. A node is therefore completely determined by a triple 

n 1 ,n2 ,n3 with sum equal to 3, 4, or 5. Two positions only differing with 

respect to the value of n 1 ,n2 ,n3 , respectively, are connected by an adge 

labeled A,B,C, respectively, indicating that these two positions can not 

be discriminated by player A,B,c, respectively. It is possible to embed 

the resulting graph in three-dimensional space in such a way that the three 

orthogonal directions correspond to the three edge labels - the diagram 

gives a plane projection of this embedding: hence the label of an edge 

is determined by its direction in the diagram, as indicated in the "tripod" 

shown above the graph. 

As before each player removes at his turn those vertices not having (or 

no longer having) incoming edges labeled by his color; these positions corre­

spond to configurations where he has complete information - a "no" answer 

denies existence of such a configuration, and the configuration is therefore 

removed from the graph. Diagram 3 shows for each node the number of the 

move at which it will be removed in the edge-cutting game. Termination of 

the game is equivalent with the fact that each node sooner or later gets 

numbered. 

The reader may convince himself that it is necessary for the proof to 

work that the players' behaviour is competent. During move 9 player C will 

remove node 211 together with the A-edge connecting it to the considered 

actual game 111. If A fails to terminate the game at move 10 by answering 

"yes", the four nodes numbered 10 will be removed and the graph will become 

empty, r e presenting the situation where the game gets blocked. 
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Diagram 2 

B 
I 

Graph of possible games (a,b,ci3,4,5).The label of an edge is determined 
by its direction. 

Diagram 3 
Edge-cutting game for the graph of Diagram 2. A is the first to move. The 
numbers indicate at which move the position becomes incompatible with a 
"no" answer . 
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3. EPISTEMIC FRAMEWORK 

3.1. Preliminaries 

An epistemic model should not only encode the state of the actual world, 

but also the information that individuals in this world have about that state 

of the world and about the information of other individuals about the world 

or information of other individuals, etc. Disregarding psychological limits 

inherent to the human mind, this formulation leads to rather complex, in­

finite structures. Groenendijk and Stokhof have introduced a set theoretic 

framework for representing this kind of information, which we will describe 

briefly. But first we define some mathematical tools. 

For A, a (finite or infinite) set, we define inductively the sequence 

of sets Ai by: 

where Pf is the finite powerset operation. 

A+ denotes the disjoint union of all sets Ai, i 

is called a graded set. 

01 1, •. • • This union 

Iff: A+ B is a mapping then we can define a mapping f+: A++ B+ by 

defining a sequence of functions ~: Ak + Bk inductively by 

~+1 (w) := {~(x) I x € w}, 

and letting f+ be the disjoint union of the sequence fi. We call f+ a 

graded mapping. 

Consider the following example. Let A= {0,1} be the set of truth 

values. We can take for f the operation I (negation). Then the operation 

I+ is defined by 

l+(x) l(x) 

So, since A = ·{ 0, 1} , { { 0, 1 }, { 0}} € A 2 , and 1 2 ( {{ 0, 1 }, { 0}}) 

{11 ({0,1}),11 ({o})} = {{1(0),1(1)},{1(0)}} = {{1,0},{1}}. 
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3.2. Some sideremarks 

Before going on, we will make some brief remarks on the various ways 

in which graded mappings in more arguments can be defined. What follows is 

not essential to the paper and may safely be skipped. 

The operator + introduced above actually yields a functor from the 

category of s ets and mappings to the category of graded sets and graded 

mappings. If this functor behaved in a certain way with respect to 

Cartesian products, this would lead to a simple theory for functions with 

more than one argument. This turns out not to be the case. There are two 

ways to extend functions in more arguments. First of all, one can simply 

apply the functor + to the mapping f: AxB + c, yielding a graded mapping 

Note however that (AXB) + t- A+ x B +, the latter object being the Cartesian 

product of A+ and B+ in the category of graded sets. Let us call 

A+XB+ := (AxB) %. We can define the graded mapping f % to be the union of 

the mappings f %i AixBi + Ci, where f %i is defined inductively by: 

f, f %i+l(U,V) := {f%i(u,v) I u E U, v E V}. 

It is clear from the contents of GROENENDIJK & STOKHOF (1980) that these 

authors intended to use the construction % for products rather than the 

functor +. It can also be seen by considering small examples that the 

functor + does not preserve products (taking the union of products of the 

component sets as a definition of product in the category of graded sets, 

as suggested by the definition of %). The connection between the operations 

+ and % for products is illustrated by Diagram 4. 

Diagram 4 
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The embedding i is obtained as id% , 
AXB 

f th 0 f 0 + + rom e pa~r o mapp~ngs uA and uB, 

whereas the projection p is obtained 

using the fact that (AXB)% is the 

product of A+ and B+ in the category of graded sets and graded mappings. 

A straightforward induction proof shows that p(i) = id %" 
--cAxB) 

This non-preservation of products by the functors described above, 

has, as Groenendijk and Stokhof have observed, as one of its consequences 

that some logical laws concerning the usual logical connectives are no 

longer valid at higher levels. This matter will not be pursued further in 

this paper. 

3. 3 . Epistemic models 

Returning to the topic of this paper, we are now in a position to 

define the notion of an epistemic model, using the tools defined in 3.1. 

* If L is a finite alphabet, then we let L denote the set of finite 

strings over L, letting E denotetheempty string. The length of a string 

sis denoted by lsi. 

DEFINITION. A general epistemic model is a quintuple <L,L,W,A,V>, where 

L represents a language, the elements of which are to be interpreted, 

L is a finite alphabet, the elements of which are called conscious entities 

or persons, 

W is a set of possible worlds (its role will become clear in the next sec­

tion), 

A is some domain of interpretation for the elements of L, 

Vis the interpretation function; it is a mapping V: LXL*xw +A+, such 
Is I that V(f,s,w) € A • 

lows: 

The intended meaning of the valuation function V is expressed as fol-

V(f,E,W) = a 

V(f,Zs,w) 

means: in world w the interpretation of f 

equals a 

{q 1 , ••. ,qr} means: in world w person Z has the information 

that one out of the r possibilities expressed 

by V(f,s,w) = qi is the case, but Z does not 

have the information which one of these pos­

sibilities is in fact the case. 
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As usual in semantic frameworks, the mapping V is required to obey the 

so-called Fregean principle of compositionality, which expresses that the 

meaning of a compound expression is a function of the meanings of its con­

stituent parts (see for example VAN EMDE BOAS & JANSSEN (19 79 ) for a dis­

cussion of this principle). The framework as it was originally proposed in 

GROENENDIJK & STOKHOF (1980), obeys this principle. In the present paper 

compositionality is not under discussion, since the language considered con­

sists of just two atomic expressions. 

For the remainder of this paper we stipulate the following: 

L {X,Y} (representing the numbers of players X andY, respectively), 

L {X,Y} (representing the players X andY, respectively), 

A (the set of natural numbers including 0). 

As an example consider the assertion expressed by the formula 

V(~,YX,w) = {{1,3},{3,5}}. This assertion states that in world w, player Y 

has the information that X is hesitating about his own number; according to 

Y, X is either doubting between 1 and 3 or doubting between 3 and 5, but Y 

does not know which of these two possibilities is in fact the case. This 

assertion describes a situation which arises in the two person game when X 

actually has the number 3 on his head. In this situation Y will hesitate 

whether his number is 2 or 4 and accordingly he will attribute to X corre­

sponding hesitations about his own number: hesitation between 1 and 3 in 

case Y has a 2, and hesitation between 3 and 5 in case Y has a 4. 

3.4. Restricting epistemic models 

The kind of epistemic models covered by the definition given above are 

still much too general. E.g., it is not required at all that the information 

of various persons is connected in a reasonable way. Nor is it required 

that the information reflects knowledge of the rules of the two person 

game. These requirements can be enforced by adding further conditions 

which the valuation function V has to satisfy. The first condition expres­

ses that if a person X has certain information, he also has the information 

that he has this information. Moreover, it is known at each level in the 

epistemic framework that all persons fulfill this requirement. In order to 

express this so-called optimal information principle, we need a further 

operator defined on the set A+. 

Lett . be the operation Ai + 
1 

tion may be extended to a mapping 

Ai+ 1 defined by t(U) := {u}. This opera­

from .U. Aj +A+ in the usual way. Note 
]=1 
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that the operation obtained in this way, which we denote by t:, does not 
~ 

preserve the grading of the set A+; in fact, it increases its grade by one. 

Note also that for i < j !> k both t: and t: are defined on Ak, but that their 
~ J 

effect is different. For example, t 1 ({0,1}) = {{0,1}} and t 0 ({0,1}) = 

{ {O}, {1}}. 

The optimal information principle now can be expressed as follows: 

* for all w E W, f E L, z E E and s 1 and s 2 E E it holds that 

where i = is2 1 + 1. So from V(~,Y,w) 

= {{0,2}}. Similarly, from V(~,XY,w) 

{0,2} we may infer that V(~,YY,w) 

{{1,3},{3,5}} we obtain 

V(~,XYY,w) = {{{1,3}},{{3,5}}} and V(~,XXY,w) = {{{1,3},{3,5}}}. As a 

result, by assuming the optimal information principle, we can specify V 

completely restricting ourselves to values of V with respect to strings s 

without iterated symbols. For our two-element alphabet E this implies that 

we only have to look at alternating strings. We denote this set of strings 

* by Ea; it may be defined by 

E* := (£+Y)(XY)*(£+X), 
a 

where we have used the terminology of regular expressions. In the sequel 

* we shall only consider strings from Ea. 

Our next condition represents the rule of the two person game, that 

the two numbers ~ and ~ are adjacent and the fact that this is known to 

both players at all epistemic levels. This leads to what will be called 

the adjacency conditions. The definition requires another operator S+. 

LetS: lN -+ lN1 be defined by S(O) := {1}, S(k+l) := {k,k+2}. So S maps 

each positive number on the pair consisting of its neighbours and maps the 

number 0 on the singleton consisting of its only positive neighbour 1. We 

extend S to a mapping S +: lN + -+ lN + in the usual way. Again the mapping S + 

increases the grading by one. 

The adjacency conditions are going to express the following facts 

about our two person game: 

(0) The actual state is a legal position of the game. 

(i) Each player sees (and consequently knows) the number of the other 

player. 

(ii) Each player knows his number to be a neighbour of the number of his 



100 

opponent. 

(iii) These facts (i) and (ii) are known by each player at all epistemic 

levels. 

The mathematical formulation of the adjacency conditions reads as 

follows: for each world w € W, and each alternating string s not ending 

on Y, and t not ending on X, the following relations hold: 

(0) V(~,£,W) = k, V(Y ,£,w) R, for adjacent, non-negative k and L 

(1) V(~,sY,w) 
+ 

t 0 <vq~,s,w)) "Y knows X" 

(2) V(~,sY,w) S+(V(X,s,w)) "Y knows Y to be a neighbour of X" 

(3) V(~,tx,w) 
+ 

t0 (V(~,t,w)) "X knows Y" 

(4) V(~,tx,w) s+(V(~,t,w)) "X knows X to be a neighbour of Y". 

Together with the optimal information principle the five equations 

above allow us to compute for every actual configuration in the game the 

values of the valuation function for X and ~ with respect to every string 

s. In Diagram 5 we illustrate this for the configuration where ~ 3 and 

~ = 2. In this diagram we let F(f,s) denote V(f,s,w), since w is fixed. 

F(X,£) = 2 

oy- ~<2> 
{2} F(Y,Y) = {1,3} 

/3) ~ 
F(~,Y) 

(4) 

F(~,YX) = {{1},{3}} F(X,YX) { {0,2},{2,4}} (1v-
""' F(~,YXY) = {{{0},{2}},{{2},{4}}} F(~,YXY) 

F(Y ,£) 3 

7- ~3) 
F(X,X) = {2,4} F(Y,X) {3} 

/-(2) ~) 
F(Y,XY) = {{1,3},{3,5}} F(~,XY) {{2},{4}} 

Diagram 5 

(2) 

{{{1},{1,3}},{{1,3},{3,5}}} 

etc. 

Information computed in accordance with theadjacency conditions 

Note that for an index s which ends on Y the values at the deepest 

level in the set F(~,s) are almost never singletons. This relates to the 

fact that Y is uncertain about the value of his own number. Note, however, 

I 

I 



the exception in the example given above: in the computation of F(~,YXY) 

there occurs a single singleton {1} at the deepest level. This singleton 

indicates a configuration of complete information which is going to be 

denied by a "no" answer from Y. 
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Another remark we can make at this point is that the epistemic model, 

although it properly encodes the information the participants may 

have in some configuration of the game, does not account for connections 

between the possibilities arising at different levels. For example, the 

pair {2,4} in the exp~nsion of F(~,YX) comes from the number 3 in F(~,Y) 

and not from the number 1 in the latter set. Our model so far does not yet 

represent this part of the information which we shall need in order to 

complete our analysis of the paradox. 

4. MODAL EPISTEMIC FRAMEWORK 

4.1. The role of the possible world component 

The model as described in Section 3 represents a large part of the 

information of the participants in the game. However, certain connections 

between pieces of information are not accounted for. Generally speaking, 

such connections represent information about logical and factual relations 

between states of affairs, information about them, etc. A representatio.1 

of this kind of information is an essential part of a theory in which 

pragmatic phenomena concerning the information of language-users are to 

be handled. An example of information about a factual relation between 

possible situations in our two person game is the following. 

In the situation where X is hesitating whether ~ equals 2 or 4, he 

infers that at the same time Y must be hesitating either whether ~ equals 

or 3, or whether ~ equals 3 or 5. The first possibility is connected 

to the value 2 for ~, whereas the second corresponds to the possibility 

that X = 4. The information which the participants have about these connec­

tions has not been accounted for in our model so far. 

In order to represent this kind of information we will use the pos­

sible world component in our general epistemic model. Given some state in 

the game, which will be called the actual world hereafter, each player can 

create new possible worlds for himself where he has made hypothetical 

choices between the possibilities available tohim. Moreover, he can imagine 

within such. a world the other player making similar choices, etc. up . to 
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every level of our analysis. Since for our particular game there exist at 

each level at most two possibilities between which a player can choose, 

this leads to a structure which has the form of a (pair of) binary tree(s). 

The nodes of such a tree are labeled by possible worlds, described by 

their V-values, and its edges are labeled by strings which indicate which 

player created this hypothetical situation. The logic of the game is re­

presented by the fact that, up to some particular level, the V-values are 

obtained by hypothesis formation (i.e. explicitly assumed by the involved 

conscious entity), whereas below this level the V-values are again 

computed using the optimal information principle and the adjacency rules. 

Implicitly we enlarge the collection of legally possible worlds through 

addition of these so-called s-extensions, to be described in more detail 

shortly. First, we define some more mathematical tools. 

4. 2 . Formal implementation 

Let A be some set and let q be a member of A+ We say that q is a 

1-singleton iff q is a singleton, and we fiay that q is a k+1 singleton for 

k > 0 iff q is a singleton whose only member is a k-singleton. We denote 

this property by k-~(q). If q is a k-singleton then its only element at 
k k k-1 level k is denoted [q] • So if q = {r} then [q] = [r] . 

Now let w0 be a possible world in an epistemic model satisfying the 

adjacency conditions such that V(~,£,w0 ) and V(~,£,w0 ) are two adjacent 

non-negative numbers y and y+1. With respect to string X we have 

V(~,x,w0 ) = {y,y+2} and V(~,x,w0 ) = {y+1}. The values of V(f,s,w0 ) for s 

starting with X are computed from these values in accordance with the 

adjacency conditions. 

We can introduce two possible words w1 and w2 such that 

(i) V(~,£,w 1 ) 

(ii) V(~,x,w 1 ) 

(iii) V(~,x,w 1 ) 

V(~,£,w2 ) V(~,£,w0 ) and similarly for ~; 

V(~,X,w2 ) V(~,X,w0 ); 

{y}, V(~,X,w2 ) = {y+2}; 

(iv) for other strings starting with X the values of V are computed in 

accordance with the adjacency conditions starting from (ii) and (iii). 

The worlds w1 and w2 are called the elementary X-extensions of w0 . Note 

that we do not require anything about the values of V in the extensions 

with respect to strings starting withY, but for definiteness we preserve 

the values at w0 • The worlds w1 and w2 are hypothetical situations in the 

mind of X and information available to Y is completely unrelated to these 
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worlds, so it makes no difference at all what is postulated concerning the 

values of V with respect to strings starting with Y. 

Assume that we have already defined the elementary s extensions for s 

starting with X of length~ j. Lets' = XYXY .•. be string of length j+l, 

s the string of length j resulting by removing the last element of s', 

and let w be one of the extensions of w0 with respect to s. By induction 

hypothesis the following conditions are fulfilled: 

(a) for s" starting with X and length j"~ j it is the case that V(f,s",w) 

is a j"-singleton q such that [q]j", its only element at level j", 

occurs as an element in an element in an element ••••• in V(f,s",w0 ). 
j"-times 

(b) for f = either ~ or ~ (depending on the parity of j) it is the case that 

V(f,s',w) is a j+l-singleton, whereas for the other it is a j-singleton 

q with [q]j possibly being a pair. 

(c) For strings t longer than j+l the values of V(f,t,w) are computed in 

accordance with the adjacency conditions starting from the values men-

tioned sub (a) and (b) • 

The s'-extensions of ware constructed as follows: 

(i) for strings up to length j the values are equal to those in w; the 

same holds for s' and the expression X or~, whichever yields a 

j+l-singleton as mentioned sub (b). 

(ii) for string s' and the remaining expression X or Y the value is 

a j+l-singleton q' with [q']j+l obtained by-making a choice 

among the members of the pair mentioned sub (b). 

(iii) For longer strings the values are obtained by computation in 

accordance with the adjacency conditions starting from the values 

obtained sub (i) and (ii) • 

The collection of s'-extensions of w0 is obtained by performing the 

above construction for each s-extension of w0 • Since each s-extension yields 

at most two s'-extensions the system of s-extensions for strings starting 

with X results in a binary tree structure. The binary tree, called the 

x-tree, represents the information available to X at the initial state of 

the game, together with all possible hypothetical situations which X can 

conceive and which might have led to the situation as it is observed. The 

structure of the tree makes explicit the connection between hypotheses at 

various levels. 
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A similar construction can be performed for indices starting withY. 

In Diagram 6 below we give an example of a part of the (infinite) Y-tree 

labelling all nodes with partial information about the values of V at these 

nodes; only the most relevant part of the information is presented, from 

which the other values can be computed easily. A pair of such trees, an 

X-tree and Y-tree, models the initial state of the game. 

F(Y,Y) = 
F(~,YX) 

{2} w 

/•o~;; 
y = 4 

{2,4} 

F(Y,Y) = {4} «1,3}/ '\ w 1 F (~, YX) = {{ 3 ,5}} 

F(X,YX) = {{1}} w 

F(~,YXY) - H(O,~ 4\ 

F(Y,YXY)={{{O}}} w6 w5 
F (~I YXYX ) = {{{{ 1 }}}} 

Diagram 6 

F(X,YX) = {{3}} 
F(~,YXY) = {{{2,4}}} 

F(Y,YXY) = {{{2}}} 
F (~, YXYX) = {{{{ 1,3 }}}} 

Fragment of the Y-tree for the initial state of the game (3,4) 

5. UPDATING THE STATE 

5.1. What Updating comes to 

Consider the representation. of the initial state of the game where 

X= 2 andY= 3. It follows that V(~,x,w0 ) = {2,4}, i.e. X is uncertain 

about his number. Similarly it follows that V(~,Y,w0 ) = {1,3}, i.e. Y is 

uncertain as well. So both players will answer "no" when asked whether they 

know what their number is. Further, it holds that V(~,XY,w0 ) = {{1,3},{3,5}}. 

This means that X knows that X is hesitating between two possible values, 



although X, at his turn, is hesitating about which pair. So X knows in 

advance that Y will answer "no". The same holds for Y. 
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In order to have any progress in the game it is necessary that the 

players use the information conveyed by a "no"-answer being given for up­

dating their information about the state of the game. If the players don't 

use this information nothing will change and the game will last forever. But 

how is the information conveyed by a "no"-answer to be used? Once X or Y has 

answered "no", it may be assumed that both players know that this answer has 

been given, and that they know that the other will know so as well, etc. 

The information must be used for ruling out hypothetical extensions of the 

actual world in which the player who has given the "no"-answer has the kind 

of complete information which he just denied to have. Note that the s-exten­

sions of the actual world constructed in the preceding section are hypothe t-

ical situations in which the players have more information than they have in 

the actual world -they were constructed in that way. In some of these 

a player has complete information. Often this fact is the direct outcome 

of a choice between alternatives. But there are some worlds in which this 

is not the case. In these worlds the fact of complete information is not 

simply chosen from the alternatives, or to put it differently, it is not 

enforced by extending the choice that created the world upto the corre spond­

ing level. 

Consider world w6 in Diagram 6 in the preceding section. In this world 

choices have been made upto level 3. In this situation Y knows that X knows 

that Y knows the following remarkable fact: "X knows that~= 1", and this 

instance of complete information was not created by choice-expanding upto 

leve l 4. It is the e x istence of such a world which is denied by the fact 

that, after X says "no", Y knows that X knows that Yknows that X has said 

"no". So w6 no longer should be considered to be a possible world. Moreover, 

the possibilities higher up in the tree which led to its creation in the 

tree of extensions should be removed as well. This task has to be performed 

by an update operator which we shall now define. 

5. 2 . The Update operator 

The actual world w is called a world with complete information for Y 

iff V(~,Y,w) is a singleton. Similarly for X . Lets be a string of length k 

ending with X, and l e t w' be some s-extension of world w. We s ay that w• 

i s a world with comple t e information f or Y i ff V(~,sY,w') is a k +1-sin g l e t on. 
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Similarly, if sends withY and V(~,sX,w') is a k+1-singleton then w• is a 

world with compl e te informati on for X. 

In the game the answer given by a player will be "yes" if the actual 

world is a world of complete information for that player, and "no" other­

wise. Consider the binary tree representing the information of Y, consisting 

of some world labelling the root (called the actual world) together with all 

s-extensions for strings s starting withY. In order to represent the con­

figuration which occurs after X says "no", we introduce the update operator 

$X, which modifies the tree in the following way: 

(i) all words in the tree which are worlds with complete information for 

X are removed, together with all their descendants; 

(ii) if some world w" at level k (the level of the root being 0) is 

removed from the tree, the information present in thi s world i s 

k-extracted from the information in all worlds on the path from the 

actual world to w"; 

(iii) the resulting tree with updated information forms a new tree consist­

ing of an actual world at the root together with its s-extensions 

for indices s starting withY. 

The operation of k-extraction used in clause (ii) above is defined as 

follows: let w" be a world which is removed at level k and let w' be some 

* ancestor at level k 1 < k. Then w' is replaced by a new world w such that 

V(f,s,w*) 

V(f,s,w*l 

V(f,s,w') 

V(f,s,w') \ k V(f,s,w") 

where the operator \ k is defined by: 

if s is of length < k, 

otherwise, 

A\. 1B := {a\ .b J a E A, b E B} 
J+ J 

for j ~ 1. 

A similar definition can be given for updating the Y-tree after Y has 

said "no", yielding an operator $Y. Analogous definitions are r equired in 

order to explain how the operators $X and $Y modify the X-tree. Note that 

the actual world occurs in both trees: in order to have it updated properly 

the values of V(f,s,w0 ) are modified according to the definition for the 

X-tree for indices starting with X and according to the definition for the 

Y-tree for indices starting withY. 

We now have developed all tools needed for calculating the t e rmi n a tion 

of our game. The calculation consists of two stages: 
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stage 1: By computing the values in accordance with the adjacency conditions 

a world describing the initial state of the game is defined . This 

world w0 becomes the root of both an X-tree and a Y-tree which are 

constructed according to the methods described in Section 4. 

stage 2: If it is X's turn to answer, we inspect whether the actual world 

is a world with complete information for X. If so, the game ter­

minates; otherwise the operator $X is performed on both the X- and 

the Y-tree. Similarly, if it is Y' s turn to answer. Next stage 2 

is repeated . 

We illustrate by an example that the calculation, starting from the 

situation described by Diagram 6 shown at the end of the preceding section, 

terminates after three answers, assuming that it is X who begins. 

YXY 

y 

wo ~=3, ~=4, 

\ 

F(Y,Y)={2,4}, F(X,X)={3,5} 
F(~,YX) =_{{1,3},{3-,5}}, F(~,XY)={{2,4},{4,6}}, 
F (Y, YXY) -{{{0,2} ,{ 2,4}} ,{{2,4} I { 4,6}}} I -

w1 F(~,Y)={4}, 

w2 F(~,Y) ={2}, 

\ ~ (X I YX) ={{ 1, 3}} I 

>X~(~,YXY)=fi{0,2},{2,4ll}, 

w3 F(~ 1 YX)={{3}}, 

F (X I YX) ={{ 1}} I 
F (~, YXY) ={{{ 0 1 2}}} 

ws F (~, YXY) ={{{ 2}}} I 

F (Y I YXY) ={{{ 0}}} I 

F (~, YXYX) ={{{{ 1 }}}} 1 

Diagram 7 

Initial state: X says "no"; w6 is a world with complete informati on 

for X; the information presented in w6 is 3-extracted from the tree. 
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y 

X=3, Y=4 
F(Y,Yl={2,4}, F(X,X)={3,5} 
F (X, YX)={{1 ,3} ,{3-,5}}, F (Y ,XY)={{2,4},{4,6}} 
F (~, YXY)={{{2}, { 2, 4}}, {{ 2, 4}, { 4,6}}} 

w1 F(~,Y)={4} 

w F(Y,Y)={2} 
2 F(X,YX)={{1,3}} 

YX \ F (j', YXY) ={{( 2), ( 2, 4})} 

F (~, YX) ={{3}} 

F (X, YX) ={{ 1 }} 
F (~, YXY) ={{{ 2}}} 

F (~, YXY)={{{2}}} 

Diagram 8 

Stage after X's "no" answer; Y says "no"; w4 is a world with complete in­

formation for Y; its information is 2-extracted from the tree. 

wo ~=3, ~=4 
F(Y,Y)={2,4}, F(X,X)={3,5} 

\

F (~, YX)={{3},{3 ,5-}}, F (~,XY)={{2, 4}, { 4,6}} 
F (~, YXY) ={{{ 2, 4}}, {{ 2 ,4}, { 4,6}}} 

y y 

w1 F(~,Y)={4} 

F(Y,Y)={2} 
F (X, YX)={{3}} 
F (~, YXY) ={{{ 2, 4}}} 

F (~, YX) ={{ 3}} 

Diagram 9 

Stage after Y's "no" answer; X says "no"; w2 is a world with complete in­

formation for X; its information is 1-extracted from the tree. 
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X=3, Y=4 
F(Y,Yl={4}, F(X,X)={3,5} 
F (X, YX)={{3} ,{3-,5}}, F (Y,XY)={{2, 4} ,{4,6}} 
F(~,YXY)={{{4},{4,6}}} -

F(~,Y)={4} 

Diagram 10 

Stage after X 's second "no" answer; w0 is a world with complete 

information for Y, soY says "yes" and the game terminates. 
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Note that in Diagram 10 the update on F(~,YXY) in the actual world is 

the combined result of a !-extraction of the information at world w2 in 

Diagram 9, together with a 3-extraction of a world with complete information 

two levels below w3 (which is not shown in the diagram) • This illustrates 

that indeed the entire tree has to be updated at infinitely many places at 

once, in order for the computation to work out correctly. If we restrict 

ourselves to V-values with respect to strings of bounded length, the 

"active" part of the tree, which we have to keep track of, will be finite. 

6. CONCWSION 

As shown in the preceding two sections, the mathematical model developed 

in this paper has the required property: the termination of the game in the 

simple situation can be derived by an explicit calculation which does not 

involve an a priori analysis of the entire game. On the other hand the 

machinery involved is rather cumbersome: a complete formal definition of 

the tree structures involved would probably require several pages densely 

filled with formulas, and a formal proof that the computation works as it 

should, will take many more pages without presenting any new insight. A 

possible way of proving such a claim might be to show that after k moves, 

after the first answer of the player with the highest number, all numbers 

less than k have disappeared from the trees, yielding a new situation which 

is isomorfic with the initial situation under the mapping m + m-k. This 

claim can be proved by induction by showing that it is correct for a single 

move (disregarding the first move in the game in case this is a move by 

the player with the lowest number) . The proof of this induction step will 

require a nice recursive description of the trees. Note that in each tree 
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there are infinitely many worlds with complete information since each node 

is ancestor of infinitely many worlds of this type at arbitrary distances. 

Therefore, the computation stages described in the previous sections actual­

ly require infinitely many steps, and at first glance, it is not at all 

clear that the resulting stage is always well-defined. It is conceivable that 

techniques for proving correctness of programs working on recursive data 

structures can be applied here. 

If we consider the generalization of the formalism required for model­

ling the three-person game described by Conway, the combinatorial complexity 

increases strikingly: whereas the analysis given above only involves the 

linearly ordered chain of alternating strings, X, XY, XYX, ••. , andY, YX, 

YXY, ... , relevant strings in the three-person game itself form a tree, 

since there are two relevant ways of extending a string. For each path in 

this tree of strings a ternary tree of hypothetical extensions of the actual 

world has to be constructed. There will be some generalization of the 

adjacency conditions which have to be used for computing the initial struc­

tures. The update operator for processing a "no" answer probably will be 

more or less the same as the one presented in Section 5. 

Our analysis disregards the question whether the termination of the game 

obtained corresponds to real human behaviour. One might argue that the model 

is "non-human". Consider again the tree as presented in Diagram 4 and 

consider world w6 • In this world, Y knows that Y 2, but on the other hand 

Y knows also that X is certain that Y knows that Y = 0, but in fact : = 4! 

In this world the players not only use false hypotheses, but also hypotheses 

which they know by observation to be inconsistent with the real situation. 

In fact, they are required to disregard the real situation completely, 

i.e. they are required to act "as if" and to forget that they act "as if". 

After all it may therefore be the case that, from a psychological point of 

view, the non-termination argument corresponds to the real human situation, 

in particular for games (y,y+l), where y is sufficiently large (larger than 

4 might already suffice) • A similar conclusion might be obtained based upon 

complexity arguments. In order to terminate the game our analysis for the 

game (y,y+l) requires the players to develop the possible world trees up to 

level y at least. If one assumes that the human mind is incapable of dealing 

with information about information about information •.. , at a level higher 

than three or four, these parts of the tree become inaccessible for human 

analysis and, consequently, the removal of worlds with complete information, 

which is necessary for the termination of the game, will never occur -
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these worlds are too complex to be considered at all. 

Clearly, the above remarks concerning human behaviour are highly 

speculative. However, the limit 3 or 4 is said to be reasonable by various 

colleagues during discussions held after talks given about the analysis 

presented. The reader is invited to amuse (or abuse?) his visitors at some 

future party be experimenting with the game, using his guests as victims. 

Such a test would at best affirm the existence of a limit value for y 

beyond which the game becomes non-terminating, without providing us with 

a precise explanation why this limit exists. Further psychological inves­

tigations will be needed in order to determine whether our model explains 

real behaviour or not. 

From the above observations it now becomes clear how the paradox 

should be resolved; the conscious entities considered in the non-termination 

and termination proofs, respectively, are of different nature: humans versus 

robots. 
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