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Abstract

This paper delineates the computational complexity of propo-
sitional multi-context systems. We establish NP-membership
by translating multi-context systems into bounded mdda|

and obtain more refined complexity results by achieving the
so-called bounded model property: the number of local mod-
els needed to satisfy a set of formukasin a multi-context
system MS is bounded by the number of contexts addressed
by @ plus the number of bridge rules in MS.

Exploiting this property of multi-context systems, we are able
to encode contextual satisfiability into purely propositional
satisfiability, providing for the implementation of contextual
reasoners based on already existing specializads8lvers.
Finally, we apply our results to improve complexity bounds
for McCarthy's propositional logic of context — we show
that satisfiability in this framework can be settled in non-
deterministic polynomial im&(|¢|?).
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Introduction

The establishment of a solid paradigm for contextual
knowledge representation and contextual reasoning is of
paramount importance for the development of sophisticated
theory and applications in Artificial Intelligence.

McCarthy (1987) pleaded for a formalization of context
as a possible solution to the problemgenerality whereas
Giunchiglia (1993) emphasized the principle lotality:
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Contexts were first implemented as microtheories into the
CYC common sense knowledge base (Lenat & Guha 1990).
However, while in CYC the notion of local microtheories
was a choice, in contemporary settings like the semantic web
the notion of local, distributed knowledge is a must. Modern
architectures impose highly scattered, heterogeneous knowl-
edge fragments, which a central reasoner cannot deal with.
This engenders a high demand for distributed, contextual
reasoning procedures.

More recently, the idea of grid computing (Foster 1998)
has received ample attention and fostered the development
of various distributed reasoning systems (G. Behrmann &
Vaandrager 2000; Chrabakh & Wolski 2003) which show,
from the practical point of view, that implementing logical
reasoners as cooperative systems of autonomous local rea-
soners can indeed improve performance.

The complexityof contextual reasoning, however, has so
far received little attention. Massacci (1996) accomplishes a
non-deterministic tableaux-based decision procedure, which
establishes NP-membership for PLC, but leaves MCS/LMS
out of consideration. Serafini and Roelofsen (2004) provide
a deterministic &T-based decision procedure that applies to
both MCS/LMS and PLC, but they do not consider the effect
that introducing non-determinism may have on the inherent
complexity of the problem they are facing.

The goal of this paper is exactly this: to characterize the
inherent computational complexity of contextual reasoning.
The lion’s share of our analysis regards reasoning based on
MCS/LMS. Towards the end of the paper, however, our re-
sults are shown to be applicable to PLC as well.

reasoning based on large (common sense) knowledge bases We proceed as follows. After defining MCS/LMS and ex-

can only be effectively pursued if confined to a manageable
subset (context) of that knowledge base.

plicating the contextual satisfiability problem we establish
an equivalence result with bounded modg}, which di-

Contextual knowledge representation has been formalized rectly entails NP-membership. In pursuit of more specific
in several ways. Most notable are the propositional logic of UPPer bounds, we subsequently embark upon a more direct

context (PLC) developed by McCarthy, Bdvand Mason
(1993; 1998), and the multi-context systems (MCS) devised
by Giunchiglia and Serafini (1994), which later became as-
sociated with the local model semantics (LMS) introduced
by Giunchiglia and Ghidini (2001). MCS has been proven
strictly more general than PLC (Bouquet & Serafini 2004).
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analysis of contextual satisfiability, which leads to the so-
called bounded model property for multi-context systems.
Next, we encode the contextual satisfiability problem into a
purely propositional one. This encoding paves the way for
the implementation of contextual reasoning systems based
on already existing &r solvers. At last, we show how our
results can be applied to obtain improved complexity results
for PLC. We conclude with a concise recapitulation of our
achievements, and some pointers to future research avenues.



Multi-Context Systems

A simple illustration of the intuitions underlying MCS/LMS
is provided by the so-called “magic box” example (Ghidini
& Giunchiglia 2001), depicted below.

.
ﬁ% Mr. 2

Mrl — —
Figure 1: The magic box

Example 1 Mr.1 and Mr.2 look at a box, which is called
“magic” because the observers cannot make out its depth.
Both Mr.1 and Mr.2 maintain a local representation of what

Definition 2 (Chain) A chainc over a set of indiced is

a sequencdc; },c7, where eachy; C M; is a set of local
models of.;. A chaincisi-consistent it; is nonempty. Itis
point-wise if|c;| < 1 for all i € I, and set-wise otherwise.

A chain can be thought of as a set of “epistemic states”, each
corresponding to a certain context (or agent). The fact that
¢; contains more than one local model means fhatan be
interpreted in more than one unigque way. So, set-wise chains
correspond to partial knowledge, whereas point-wise chains
indicate complete knowledge.

Example 3 Consider the situation depicted in Figure 1.
Both agents have complete knowledge, corresponding to a
point-wise chain{{{l,r}}, {{l, ¢, —r}}}. We can imagine

a scenario however, in which Mr.1 and Mr.2’s views are re-
stricted to the right half and the left-most section of the box,

they see. These representations must be coherent — if Mr.1's as depicted in Figure 2.

sees a ball, for instance, then Mr.2’s must see some ball too.

We will now show how such interrelated local represen-
tations can be captured formally. Our point of departure is a
set of indiced. Each index € I denotes @ontextwhich is
described by a formal (in this case propositional) language
L;. To state that a propositional formufain the language
L; holds in context we utilize so-calledabeled formulasf
the form: : ¢ (when no ambiguity arises we will simply re-
fer tolabeled formulassformulag. Formulas that apply to
different contexts may be related by so-calleitige rules
These are expressions of the form:

QD1 esin i Oy — 1@ Q)
whereiy, ..., i,,i € I and ¢q,...,d,,p are formulas.
Note that “~" does not denote implication (we’ll use>”
for this purpose). Also note that our language does not
include expressions like:(i : p) and (i : @ A j : ).

i : @ is called theconsequencandiy : ¢1,i, : ¢, are
calledpremisesof bridge rule (1). We writecons(br) and
prem(br) for the consequence and the set of all premises of
a bridge ruler, respectively.

Definition 1 (Propositional Multi-Context System)

A propositional multi-context systefdL; };c;, BR) over a
set of indiced consists of a set of propositional languages
{Li}:cr and a set of bridge ruleBR.

In this paper, we assumeo be (at most) countable aifiR

to be finite. Note that the latter assumption does not apply to
MCSs withschematidridge rules, such as provability - and
multi-agent belief systems (Giunchiglia & Serafini 1994).
The question whether our results may be generalized to cap-
ture these cases as well is subject to further investigation.

Example 2 The situation described in example 1 may be
formalized by an MCS with two contextaind 2, described
byL, = L({l,r}) and Ly = L({l, ¢, r}), respectively. The
constraint that Mr.2 must see a ball if Mr.1 sees one, can be
captured by the following bridge rule:

1:lvr — 2:lVeVr

Let M; denote the class of classical interpretations.of
An interpretationm € M, is called alocal modelof L;.
Interpretations of entire MCSs are calleldains They are
constructed from sets of local models.

lLckEi:

f% — Mr.2

Mrl —~
Figure 2: The partially hidden magic box

Now, both Mr.1 and Mr.2 have only partial knowledge; their
observations may be interpreted in several different ways.
This is reflected by the set-wise chain:

{{t,~r} {=l,—r}t},

{{lv ) _‘T} ) {la ) 7'} ) {lv c, _‘T} ) {la & 7”}}
The epistemic states that a chain consists of conmeerand
the samesituation. Therefore, arbitrary sets of local models
may not always constitute a “sensible” chain. The somewhat
vague conception of “sensibility” is captured by the more
formal notion of “bridge rule compliance” specified below.
Definition 3 (Compliance and Satisfiability) Let ¢ be a
chain, ¢ a formula overL;, and br an element of the set
of bridge rulesBR of a multi-context syste/ S.
¢ if m = @ in a classical sense for all local
modelsm € ¢;. We say that satisfies : .

2. c complies withbr if either ¢ |= cons(br) or ¢ ¥ i : £ for

somei : £ € prem(br). c complies withBR if it complies
with everybr € BR.

3. If there exists an-consistent chair that satisfies : ¢

and complies witlBR, we say that : ¢ is consistently
satisfiable inM S.
The contextual satisfiability problem, then, is to determine
whether or not a set of labeled formulésis consistently
satisfiable in a multi-context systei S.
Example 4 Consider an MCS with two contextsand 2,
described byL({p}) and L({q}), respectively, and subject
to the following bridge rules:
l:p — 2:¢q
1l:=p — 2:q
The formula2 : —q is satisfied in this system by the chain:

{ {{r}. {-p}}. }

{{—da}}



This example reflects that an MCS cannot be encoded into

propositional logic by simply indexing propositions — such

an encoding of the above system would be inconsistent.
Hereafter we refer to the set of bridge rules of MB&s

and to the set of contexts involved by formulagbiras.J.

Encoding Into Bounded Modal K,

A first insight regarding the complexity of contextuakiS
may be obtained by investigating its encoding into modal
K, satisfiability. In this section we show that any contextual
satisfiability problem may be reduced to that of satisfying
some formula inK,,, whose depth is at most equal to one.
This problem is known to be NP-complete (Ladner 1977;
Halpern & Moses 1992).

Let us define a translatiof)* of labeled formulas into
modal formulas:

(i:0)" =00

For bridge rules we have:

(1 : D1y veyin : Gp —i:@)*
(G1:P1)* Ao Ain s ) D (P2 )"

And aj-consistency constraint is captured by:
(j-cong™ = -0, L

Theorem 1 There is a kripke modek’ = (W, r, R) such
that K, wy = 1 for somew, € W and:

b=/ (i:¢)" A \(-cong* A A (br)*

i:ped jeJ breBR

if and only if there is a/-consistent chair’ that satisfies
® and complies witBR.

Proof. (=) We demonstrate how to construdt from K.
Let m,, be the interpretation °U1;e ; L; associated to a
world w € W; for anyi € I, let m,|; be the restriction
of m,, to L; and letc® = {m.,|; lwoR;w?}.

As K,wy = 0,4, we have thatv = ¢ for any w with
woRw. Moreover, asp € L;, we have thatn,|; = ¢.
This implies thate® |= i : ¢. Bridge rule compliance and
J-consistency are established likewise.

(<) FromcX we may obtain a suitable kripke modg.
Let W consist of a worldw, plus one worldw,,, for each
local modelm; of every component of cX. Let every
wpm, € W/{wy} evaluateL; according tom;, and assign
True to the rest ol J,; L;. Letw, evaluate every atomic
proposition tal'rue. For alli € I, let:

Ri = {(wo, wm,) | wm, corresponds tan; € ¢}

The resulting model is schematically depicted in Figure 3.
One can easily verify thak, wg = v. O

Contextual satisfiability clearly subsumes classicat,S
and is therefore NP-hard (Cook 1971). The above result,
and the fact that satisfiability for bounded modg), is in
NP (Ladner 1977), imply that contextual satisfiability is also
in NP, and therefore NP-complete.

Figure 3: A schematic kripke model for.

Moreover, the syntax of the formula that results from our
translation is highly constrained: we obtain a conjunction of
disjunctions of (negated) boxed formulas. Each disjunction
comprises at most one boxed formula that is not negated, and
furthermore, each boxed formula is purely propositional.
This form strongly alludes to the existence of relatively ef-
ficient ways to solve the contextual satisfiability problem.
Therefore, to obtain a more nuanced understanding of its
complexity, we proceed with a more direct analysis.

Firsthand Analysis

We first introduce some notation and terminology. The size
of a labeled formula : ¢ is denoted byi : ¢|. Let P(i : ¢)

and P(®) be the set of propositional atoms appearing in a
formulai : ¢ or a set of formula®. Let GG; be the number

of local models contained by th&* component of a chain,
and letG be the total number of local models comprising
that chain. Let=Z(br) and Z(BR) consist of the premises
and the consequence(s) of a bridge ml®r a set of bridge
rulesBR. Finally, let N be the total size of the formulas in

® and=(BR):
> lixg

N= > li:gl+
iped 1:£€E(BR)

We first consider thenodel checking problenthat is, the
problem of determining whether a given chaiconsistently
satisfies a set of formulaB in a multi-context system MS.
This task can be split into three sub-tasks:

1. Check whether satisfiesd;
2. Check whether complies withBR;
3. Check whethet is J-consistent.

Theorem 2 Model checking can be performed determinis-
tically in time:

i1 PUZ(BR)

o( Gi x |el)

Proof. First consider sub-task 1. Checking whether a par-
ticular formula: : ¢ € @ is satisfied bye can be done as
follows. Lety,..., ¢, be an ordering of the subformulas
of ¢, such thatp, = ¢ and if ¢; is a subformula ofp;,
theni < j. Sincey has at mosty| subformulas, we have

k < |¢|. By induction onk’ we can label each local model
m in ¢; with eithery; or —yp;, for j = 1,..., k', depend-
ing on whether or notn = ¢;, intime O(G; x k'). As a
result, checking whether satisfies® can be carried out in
time O(3,.,.cq Gi x |2]).



Sub-task 2 takes time(}_, ;czsr) Gi x [€]), as in the

The only “guessing” involved in constructing apart from

worst case it involves checking whether all the consequences the choice ofCons and Prem, are the truth values to which

and premises of every bridge rule BRR are satisfied or
not. Sub-task 3 merely consists in checking wheti)eils

nonempty, forj € J. This can be done i®(|.J|) t|mesteps

The result follows directly.

Next, we consider satisfiability. We first show that MCSs
enjoy the so-calletbounded model propertyMore specifi-
cally, we establish that if a chain consistently satisfieis
MS, then it can be reduced to a chain that contains at most
|J] + |BR| local models and still consistently satisfi®s
Using this result, we reprove contextual satisfiability to be
NP-complete, and establish an upper bound for the amount
of time it requires.

Theorem 3 (Bounded Model Property) A set of formulas

® is consistently satisfiable in a multi-context system MS iff
there is aJ-consistent chain that contains at m$t+ |BR|
local models and satisfiel in compliance wittBR.

Proof. Take any.J-consistent chaire that satisfiesp in
compliance withBR. Let BR* C BR be the set of bridge
rules whose consequences are not satisfied. byEvery

br € BR* must have a premise which is not satisfied in some
local modelm,,. contained by. On the other hand, for ev-
eryj € J, there must be at least one local model € ¢;
that satisfies all those formulasdnthat apply to contexj.
The chainc* obtained frone by eliminating all local models

except for:
Umju U Mpr

jeJ breBR*

is J-consistent, satisfie® in compliance withBR and con-
tains at mostJ| + |[BR*| < |J| + |BR| local models. O

Theorem 4 Contextual satisfiability is NP-complete and
can be settled in non-deterministic time:

O((|7] + IBR]) x N)

Proof. We already observed that contextual satisfiability is
NP-hard. Now, to determine satisfiability we may proceed as
follows. First, we non-deterministically appoint a $&tns

of bridge rule consequences, and aBetm of bridge rule
premises, such that for eveby € BR, eitherbr's conse-
guence is irCons, or one ofbr’s premises is iPrem. Let

J, Icons, andIp,.,, be the set of contexts involved L,
Cons, andPrem, respectively. Furthermore, I&t, Cons;,

and Prem; be the set of-formulas contained by, Cons,

and Prem, respectively. We construct a chaipsuch that:

e Foralli € Ip,em, ¢; containg Prem;| local models;
e Foralli € J/Iprem, ¢; CONtains exactly one local model;
e Foralli ¢ JU Iprem, ¢; is empty;

e For alli € I, eachm € ¢; evaluates the propositional
atomsnot appearing inb; U Cons; U Prem; to True.

each local model irc; should evaluate the propositional
atoms inP(®; U Cons; U Prem;). Notice thatc contains at
most|J|+|Prem| < |J|+|BR| local models, which are dis-
tributed over those componentsof c with i € J U Ip,em;
all the other components efare empty. Consider a local
model m contained in¢; for some: € J U Ipyen. The
number of atomic propositions(®; U Cons; U Prem,)|
thatm should “explicitly” evaluate is clearly bounded By.
We must appoint at mo$f | + |BR| such explicit valuations
(one for each local model in), soc can be constructed in
non-deterministic time&((|.J| + |BR|) x ).

It remains to check whetheris J-consistent, satisfies,
and complies witlBR. By theorem 2 this can be done in
deterministic timeD((|J| + |BR|) x N).

Theorem 3 assures that,&f is consistently satisfiable in
M S, then guessing a chain as described above is bound to
result in a suitable one. Thus, consistent satisfiabilityp of
in M S can be determined in non-deterministic polynomial
time O((|J| + [BR|) x N). O

Encoding Into Propositional SAT

As contextual satisfiability is in NP, it is tractably reducible
to purely propositional &r. In providing such a reduction,
we may loose the particular structure of our problem, but do
lay the groundwork for the implementation of purelyis
based contextual reasoners, which could benefit from the
well-advanced techniques developed by thg Sommunity.

To obtain a purely propositional representation of multi-
contextual satisfiability problems, we exploit the under-
standing we obtained while establishing the bounded model
property in the previous section. The key insight there was
that a set of formula$ is satisfied by a chainif and only
if it is satisfied by chair? such that:

e For eachj € J, ¢% contains at least one local model;
that satisfies all tfme formulas i that apply to contexj.

e For every bridge rulér € BR whose consequence is not
satisfied by, there is at least one premise¢ of br, such
thatcb contains a local modeh,,. that satisfies¢.

Notice that to meet these requirements, the number of local
models in each component df can be kept down tdBR|

(we assume thaBR| > 1). Also, if a non-empty component

of ¢® contains less thalBR | local models it can be extended
to comprise exactlyBR| models, simply by adding dupli-
cates of already existing models. So we may say dhat
consistently satisfiable in MS if and only if it is satisfied by
a J-consistent chair* all of whose components are either
empty or contain exactiiBR| local models.

Now, we construct a propositional formula which is
satisfiable if and only if such a chairi exists. We express
this formula in a language which contains a propositional
atomp’ for everyp € L;, and for everyk = 1,...,|BR).
Intuitively, the truth value assigned ¢ by a propositional
model of) corresponds to the truth value assigneg tay
the k" local model inc;. The language also contains an
atomic propositiore; for each index € I. Intuitively, e,
being assigned'rue corresponds te; being empty.



We write K = {1,...,|BR|}. For any formulap, and
eachi € I andk € K, lety? denote the formula that results
from substituting every atomic propositignin ¢ with p¥.
Furthermore, lepX = A, x ¢¥. Then, the translation of a
labeled formula reads:

(i:0) =e Ve
For bridge rules we have:

(i12g01,...,in:(pn—>i;¢)*:
(i1Z¢1)*/\.../\(in:¢n)*D(i:¢)*

A j-consistency constraint is captured by:
(j-cong™ = —e;

Theorem 5 There is an assignmenf to the propositions
{pF | i e Tandk = 1,...,|BR|} U {e; | i € I} that
satisfies:

b=/ (i:¢)" A \(G-cong* A N (br)*

iiped jed breBR

if and only if there is aJ-consistent chair" that satisfies
® in compliance witBR.

Proof (=) FromV we constructa chaif’, such that each
component:) is empty if V(e;) = True and consists of
exactly | BR| local models otherwise. In the latter case, the
k*" local model ofc}” is made to evaluate each propositional
atomp € L; to Trueiff V(pF) = True. It's easy to see that
¢ is J-consistent and satisfidsin compliance witfBR.

(<) By the above observations, if there igyaconsistent
chainc that satisfiesb in compliance withBR, there must
also be aJ-consistent chair* each of whose components
is either empty or contains exactBR| local models, and
which still satisfiesb in compliance withBR.

Fromc* we may obtain a truth assignmeiitas follows.
To an atomic proposition;, let V assignTrue iff ¢; = 0.

To an atomic propositiop?, let V' assignTrue if the k"
local model ofc} satisfiep, False if the k*" local model of
c; satisfies—p, and any truth value i} is empty. It should
be straightforward to see thlt satisfies). O

Application to PLC

The translation works as follows. For each nesting pattern
ist(ky,...ist(k,,¥)...) In ¢, let MCS(p) contain a context
labeled with the sequendsg ...k,. Let the language of
contextk; ...k, contain all the atomic propositions if,
plus a new atomic proposition for each formula of the form
ist(k, x) occurring iny. Finally, equip MCSp) with the
following bridge rules:

kk:ap — k :ist(k, 1)
k :ist(k, ) — kk :

k. —ist(k, ist(h,v)) — kk : —ist(h, 1))

k : —ist(k, —ist(h, 1)) — kk : ist(h,v)

wherek = k; ... k, refers to any context of MCS${, whose
language containist(k, v) orist(k, ist(h, x)), respectively.

Example 5 Consider the following PLC formula:
p =pVist(k,q D (ist(h,r A s) D ist(j,q)))

MCS(p) consists of four contexts which are labele¢the
empty sequence};, kh, and kj. The language o¢, L.,
contains two propositiong; and is{k, ¢ D (ist(h,r V s) D
ist(4,¢q))); Li contains two propositiong,and is{h, r A s);
Ly, = L({r,s}) and L,; = L({q}). The bridge rules of
MCS(p) are as stated above.

Theorem 6 (Bouquet & Serafini, 2004) ¢ is satisfiable in
PLC if and only ife : o is consistently satisfiable in MCS)

Theorem 7 Satisfiability ofp in PLC can be computed in
non-deterministic polynomial tim@(|»|?).

Proof. By theorem 6 any satisfiability problem in PLC can
be transformed into an equivalent satisfiability problem in
MCS. This transformation can be established in linear time.

Every bridge rule in MCSY) involves at least one propo-
sition of the formist(k, ). Every such propaosition occurs
in at most four bridge rules. Every subformulafof the
form ist(k,+) (and nothing else) results in a proposition
of the formist(k, ) in the language of exactly one con-
text in MCS(p). The number of subformulas of of the
form ist(k, v) is bounded byy|. From these observations,
we may conclude that the number of bridge ruB®| in
MCS(p) is bounded byt x |¢|. Moreover, by construction,
the sum of the lengths of the formulas involved in any bridge
rule of MCS(p) is at most four.

By theorem 4, contextual satisfiability of ¢ in MCS(y)

We apply the results presented above to improve current can be settled in non-deterministic time:

complexity bounds for the propositional logic of context as
described in (McCarthy 1993; McCarthy & Buvd 998).

The best result so far has been established by Massacci
(1996). He proposes a tableaux-based decision procedure

which determines satisfiability of a PLC formutain non-
deterministic polynomial timé(||*).

We translate a PLC formulainto a labeled formula : ¢
and a multi-context system MCg), so thaty is satisfiable
in PLC iff € : ¢ is consistently satisfiable in MCg). The

translation is only sketched here — details can be found in

O((|1®| +BR) x (Y lizel+ > D li:€])

iipEP breBR i:£€E(br)

'In the light of the above observations, and keeping in mind

that® merely consists of : ¢, we may rewrite this in terms
of ¢ as:
O(lel?)
O

1The first two bridge rules correspond to the notionsmikring

(Bouquet & Serafini 2004). Subsequently, we demonstrate andexitingcontexts (McCarthy & Buva1998), while the last two

that determining whether or net: ¢ is consistently satisfi-
able in MCS() takes non-deterministic tim@(|¢|?).

bridge rules correspond to th axiom introduced by Buv@aand
Mason (1993).



Conclusion

We have analysed the complexity of contextual reasoning
based on propositional multi-context systems with finite sets
of bridge rules.

Afirstinsight was obtained by establishing an encoding of
contextual satisfiability into satisfiability in bounded multi-
modal K,,, which is well-known to be NP-complete. Next,
we accomplished a more fine-grained upper bound for the
complexity of contextual satisfiability by a direct investiga-
tion of its semantical properties. Herein we observed that
multi-context systems enjoy the bounded model property.

We also provided a tractable encoding of contextual sat-
isfiability problems into purely propositional ones. In doing
so, we laid the groundwork for/ -based implementations
of contextual reasoning systems.

Finally, we obtained improved complexity results for the
satisfiability problem in McCarthy’s propositional logic of
context, by translating it into the satisfiability problem that
we have considered in this paper.

Future work will encompass experimentation with both
native and &1-based contextual reasoning systems. Also,
we are interested whether, or to what extent, our results may
be generalized so as to apply to multi-context systems with
schematic bridge rules as well.
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