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Abstract

This paper delineates the computational complexity of propo-
sitional multi-context systems. We establish NP-membership
by translating multi-context systems into bounded modalKn,
and obtain more refined complexity results by achieving the
so-called bounded model property: the number of local mod-
els needed to satisfy a set of formulasΦ in a multi-context
system MS is bounded by the number of contexts addressed
by Φ plus the number of bridge rules in MS.
Exploiting this property of multi-context systems, we are able
to encode contextual satisfiability into purely propositional
satisfiability, providing for the implementation of contextual
reasoners based on already existing specialized SAT solvers.
Finally, we apply our results to improve complexity bounds
for McCarthy’s propositional logic of context – we show
that satisfiability in this framework can be settled in non-
deterministic polynomial timeO(|ϕ|2).
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Introduction
The establishment of a solid paradigm for contextual
knowledge representation and contextual reasoning is of
paramount importance for the development of sophisticated
theory and applications in Artificial Intelligence.

McCarthy (1987) pleaded for a formalization of context
as a possible solution to the problem ofgenerality, whereas
Giunchiglia (1993) emphasized the principle oflocality:
reasoning based on large (common sense) knowledge bases
can only be effectively pursued if confined to a manageable
subset (context) of that knowledge base.

Contextual knowledge representation has been formalized
in several ways. Most notable are the propositional logic of
context (PLC) developed by McCarthy, Buvač and Mason
(1993; 1998), and the multi-context systems (MCS) devised
by Giunchiglia and Serafini (1994), which later became as-
sociated with the local model semantics (LMS) introduced
by Giunchiglia and Ghidini (2001). MCS has been proven
strictly more general than PLC (Bouquet & Serafini 2004).
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Contexts were first implemented as microtheories into the
CYC common sense knowledge base (Lenat & Guha 1990).
However, while in CYC the notion of local microtheories
was a choice, in contemporary settings like the semantic web
the notion of local, distributed knowledge is a must. Modern
architectures impose highly scattered, heterogeneous knowl-
edge fragments, which a central reasoner cannot deal with.
This engenders a high demand for distributed, contextual
reasoning procedures.

More recently, the idea of grid computing (Foster 1998)
has received ample attention and fostered the development
of various distributed reasoning systems (G. Behrmann &
Vaandrager 2000; Chrabakh & Wolski 2003) which show,
from the practical point of view, that implementing logical
reasoners as cooperative systems of autonomous local rea-
soners can indeed improve performance.

Thecomplexityof contextual reasoning, however, has so
far received little attention. Massacci (1996) accomplishes a
non-deterministic tableaux-based decision procedure, which
establishes NP-membership for PLC, but leaves MCS/LMS
out of consideration. Serafini and Roelofsen (2004) provide
a deterministic SAT-based decision procedure that applies to
both MCS/LMS and PLC, but they do not consider the effect
that introducing non-determinism may have on the inherent
complexity of the problem they are facing.

The goal of this paper is exactly this: to characterize the
inherent computational complexity of contextual reasoning.
The lion’s share of our analysis regards reasoning based on
MCS/LMS. Towards the end of the paper, however, our re-
sults are shown to be applicable to PLC as well.

We proceed as follows. After defining MCS/LMS and ex-
plicating the contextual satisfiability problem we establish
an equivalence result with bounded modalKn, which di-
rectly entails NP-membership. In pursuit of more specific
upper bounds, we subsequently embark upon a more direct
analysis of contextual satisfiability, which leads to the so-
called bounded model property for multi-context systems.
Next, we encode the contextual satisfiability problem into a
purely propositional one. This encoding paves the way for
the implementation of contextual reasoning systems based
on already existing SAT solvers. At last, we show how our
results can be applied to obtain improved complexity results
for PLC. We conclude with a concise recapitulation of our
achievements, and some pointers to future research avenues.



Multi-Context Systems
A simple illustration of the intuitions underlying MCS/LMS
is provided by the so-called “magic box” example (Ghidini
& Giunchiglia 2001), depicted below.

Mr.1 Mr. 2

Figure 1: The magic box

Example 1 Mr.1 and Mr.2 look at a box, which is called
“magic” because the observers cannot make out its depth.
Both Mr.1 and Mr.2 maintain a local representation of what
they see. These representations must be coherent – if Mr.1’s
sees a ball, for instance, then Mr.2’s must see some ball too.

We will now show how such interrelated local represen-
tations can be captured formally. Our point of departure is a
set of indicesI. Each indexi ∈ I denotes acontext, which is
described by a formal (in this case propositional) language
Li. To state that a propositional formulaϕ in the language
Li holds in contextiwe utilize so-calledlabeled formulasof
the formi : ϕ (when no ambiguity arises we will simply re-
fer to labeled formulasasformulas). Formulas that apply to
different contexts may be related by so-calledbridge rules.
These are expressions of the form:

i1 : φ1, . . . , in : φn → i : ϕ (1)

where i1, . . . , in, i ∈ I and φ1, . . . , φn, ϕ are formulas.
Note that “→” does not denote implication (we’ll use “⊃”
for this purpose). Also note that our language does not
include expressions like¬(i : ϕ) and (i : ϕ ∧ j : ψ).
i : ϕ is called theconsequenceand i1 : φ1, in : φn are
calledpremisesof bridge rule (1). We writecons(br) and
prem(br) for the consequence and the set of all premises of
a bridge rulebr, respectively.

Definition 1 (Propositional Multi-Context System)
A propositional multi-context system〈{Li}i∈I ,BR〉 over a
set of indicesI consists of a set of propositional languages
{Li}i∈I and a set of bridge rulesBR.

In this paper, we assumeI to be (at most) countable andBR
to be finite. Note that the latter assumption does not apply to
MCSs withschematicbridge rules, such as provability - and
multi-agent belief systems (Giunchiglia & Serafini 1994).
The question whether our results may be generalized to cap-
ture these cases as well is subject to further investigation.
Example 2 The situation described in example 1 may be
formalized by an MCS with two contexts1 and2, described
byL1 = L({l, r}) andL2 = L({l, c, r}), respectively. The
constraint that Mr.2 must see a ball if Mr.1 sees one, can be
captured by the following bridge rule:

1 : l ∨ r → 2 : l ∨ c ∨ r
Let Mi denote the class of classical interpretations ofLi.
An interpretationm ∈ Mi is called alocal modelof Li.
Interpretations of entire MCSs are calledchains. They are
constructed from sets of local models.

Definition 2 (Chain) A chain c over a set of indicesI is
a sequence{ci}i∈I , where eachci ⊆ Mi is a set of local
models ofLi. A chainc is i-consistent ifci is nonempty. It is
point-wise if|ci| ≤ 1 for all i ∈ I, and set-wise otherwise.

A chain can be thought of as a set of “epistemic states”, each
corresponding to a certain context (or agent). The fact that
ci contains more than one local model means thatLi can be
interpreted in more than one unique way. So, set-wise chains
correspond to partial knowledge, whereas point-wise chains
indicate complete knowledge.

Example 3 Consider the situation depicted in Figure 1.
Both agents have complete knowledge, corresponding to a
point-wise chain{{{l, r}}, {{l,¬c,¬r}}}. We can imagine
a scenario however, in which Mr.1 and Mr.2’s views are re-
stricted to the right half and the left-most section of the box,
as depicted in Figure 2.

Mr.1 Mr. 2

Figure 2: The partially hidden magic box

Now, both Mr.1 and Mr.2 have only partial knowledge; their
observations may be interpreted in several different ways.
This is reflected by the set-wise chain:{

{{l,¬r} , {¬l,¬r}} ,
{{l,¬c,¬r} , {l,¬c, r} , {l, c,¬r} , {l, c, r}}

}
The epistemic states that a chain consists of concernone and
the samesituation. Therefore, arbitrary sets of local models
may not always constitute a “sensible” chain. The somewhat
vague conception of “sensibility” is captured by the more
formal notion of “bridge rule compliance” specified below.
Definition 3 (Compliance and Satisfiability) Let c be a
chain, ϕ a formula overLi, and br an element of the set
of bridge rulesBR of a multi-context systemMS.
1. c |= i : ϕ if m |= ϕ in a classical sense for all local

modelsm ∈ ci. We say thatc satisfiesi : ϕ.
2. c complies withbr if either c |= cons(br) or c 2 i : ξ for

somei : ξ ∈ prem(br). c complies withBR if it complies
with everybr ∈ BR.

3. If there exists ani-consistent chainc that satisfiesi : ϕ
and complies withBR, we say thati : ϕ is consistently
satisfiable inMS.

The contextual satisfiability problem, then, is to determine
whether or not a set of labeled formulasΦ is consistently
satisfiable in a multi-context systemMS.
Example 4 Consider an MCS with two contexts1 and 2,
described byL({p}) andL({q}), respectively, and subject
to the following bridge rules:

1 : p → 2 : q
1 : ¬p → 2 : q

The formula2 : ¬q is satisfied in this system by the chain:{
{{p} , {¬p}} ,
{{¬q}}

}



This example reflects that an MCS cannot be encoded into
propositional logic by simply indexing propositions – such
an encoding of the above system would be inconsistent.

Hereafter we refer to the set of bridge rules of MS asBR,
and to the set of contexts involved by formulas inΦ asJ .

Encoding Into Bounded ModalKn

A first insight regarding the complexity of contextual SAT
may be obtained by investigating its encoding into modal
Kn satisfiability. In this section we show that any contextual
satisfiability problem may be reduced to that of satisfying
some formula inKn, whose depth is at most equal to one.
This problem is known to be NP-complete (Ladner 1977;
Halpern & Moses 1992).

Let us define a translation(.)∗ of labeled formulas into
modal formulas:

(i : φ)∗ = �iφ

For bridge rules we have:

(i1 : φ1, . . . , in : φn → i : φ)∗ =
(i1 : φ1)∗ ∧ . . . ∧ (in : φn)∗ ⊃ (i : φ)∗

And aj-consistency constraint is captured by:

(j-cons)∗ = ¬�j⊥

Theorem 1 There is a kripke modelK = 〈W,π,R〉 such
thatK,w0 |= ψ for somew0 ∈W and:

ψ =
∧

i:φ∈Φ

(i : φ)∗ ∧
∧
j∈J

(j-cons)∗ ∧
∧

br∈BR
(br)∗

if and only if there is aJ-consistent chaincK that satisfies
Φ and complies withBR.

Proof. (⇒) We demonstrate how to constructcK fromK.
Let mw be the interpretation of

⋃
i∈I Li associated to a

world w ∈ W ; for any i ∈ I, let mw|i be the restriction
of mw toLi and letcKi = {mw|i |w0Riw}.

As K,w0 |= �iφ, we have thatw |= φ for anyw with
w0Rw. Moreover, asφ ∈ Li, we have thatmw|i |= φ.
This implies thatcK |= i : φ. Bridge rule compliance and
J-consistency are established likewise.

(⇐) FromcK we may obtain a suitable kripke modelK.
Let W consist of a worldw0 plus one worldwmi

for each
local modelmi of every componentcKi of cK . Let every
wmi

∈ W/{w0} evaluateLi according tomi, and assign
True to the rest of

⋃
i∈I Li. Let w0 evaluate every atomic

proposition toTrue. For all i ∈ I, let:

Ri = {〈w0, wmi
〉 | wmi

corresponds tomi ∈ cKi }

The resulting model is schematically depicted in Figure 3.
One can easily verify thatK,w0 |= ψ. �

Contextual satisfiability clearly subsumes classical SAT,
and is therefore NP-hard (Cook 1971). The above result,
and the fact that satisfiability for bounded modalKn is in
NP (Ladner 1977), imply that contextual satisfiability is also
in NP, and therefore NP-complete.
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Figure 3: A schematic kripke model forψ.

Moreover, the syntax of the formula that results from our
translation is highly constrained: we obtain a conjunction of
disjunctions of (negated) boxed formulas. Each disjunction
comprises at most one boxed formula that is not negated, and
furthermore, each boxed formula is purely propositional.
This form strongly alludes to the existence of relatively ef-
ficient ways to solve the contextual satisfiability problem.
Therefore, to obtain a more nuanced understanding of its
complexity, we proceed with a more direct analysis.

Firsthand Analysis
We first introduce some notation and terminology. The size
of a labeled formulai : ϕ is denoted by|i : ϕ|. LetP (i : ϕ)
andP (Φ) be the set of propositional atoms appearing in a
formula i : ϕ or a set of formulasΦ. LetGi be the number
of local models contained by theith component of a chain,
and letG be the total number of local models comprising
that chain. LetΞ(br) andΞ(BR) consist of the premises
and the consequence(s) of a bridge rulebr or a set of bridge
rulesBR. Finally, letN be the total size of the formulas in
Φ andΞ(BR):

N =
∑

i:ϕ∈Φ

|i : ϕ|+
∑

i:ξ∈Ξ(BR)

|i : ξ|

We first consider themodel checking problem, that is, the
problem of determining whether a given chainc consistently
satisfies a set of formulasΦ in a multi-context system MS.
This task can be split into three sub-tasks:

1. Check whetherc satisfiesΦ;
2. Check whetherc complies withBR;
3. Check whetherc is J-consistent.

Theorem 2 Model checking can be performed determinis-
tically in time:

O(
∑

i:ϕ∈Φ∪Ξ(BR)

Gi × |ϕ|)

Proof. First consider sub-task 1. Checking whether a par-
ticular formulai : ϕ ∈ Φ is satisfied byc can be done as
follows. Letϕ1, . . . , ϕk be an ordering of the subformulas
of ϕ, such thatϕk = ϕ and if ϕi is a subformula ofϕj ,
theni < j. Sinceϕ has at most|ϕ| subformulas, we have
k < |ϕ|. By induction onk′ we can label each local model
m in ci with eitherϕj or ¬ϕj , for j = 1, . . . , k′, depend-
ing on whether or notm |= ϕj , in timeO(Gi × k′). As a
result, checking whetherc satisfiesΦ can be carried out in
timeO(

∑
i:ϕ∈ΦGi × |ϕ|).



Sub-task 2 takes timeO(
∑

i:ξ∈Ξ(BR)Gi × |ξ|), as in the
worst case it involves checking whether all the consequences
and premises of every bridge rule inBR are satisfied or
not. Sub-task 3 merely consists in checking whethercj is
nonempty, forj ∈ J . This can be done inO(|J |) timesteps.
The result follows directly. �

Next, we consider satisfiability. We first show that MCSs
enjoy the so-calledbounded model property. More specifi-
cally, we establish that if a chain consistently satisfiesΦ in
MS, then it can be reduced to a chain that contains at most
|J | + |BR| local models and still consistently satisfiesΦ.
Using this result, we reprove contextual satisfiability to be
NP-complete, and establish an upper bound for the amount
of time it requires.

Theorem 3 (Bounded Model Property) A set of formulas
Φ is consistently satisfiable in a multi-context system MS iff
there is aJ-consistent chain that contains at most|J |+|BR|
local models and satisfiesΦ in compliance withBR.

Proof. Take anyJ-consistent chainc that satisfiesΦ in
compliance withBR. Let BR∗ ⊆ BR be the set of bridge
rules whose consequences are not satisfied byc. Every
br ∈ BR∗ must have a premise which is not satisfied in some
local modelmbr contained byc. On the other hand, for ev-
ery j ∈ J , there must be at least one local modelmj ∈ cj
that satisfies all those formulas inΦ that apply to contextj.
The chainc∗ obtained fromc by eliminating all local models
except for: ⋃

j∈J

mj ∪
⋃

br∈BR∗
mbr

is J-consistent, satisfiesΦ in compliance withBR and con-
tains at most|J |+ |BR∗| ≤ |J |+ |BR| local models. �

Theorem 4 Contextual satisfiability is NP-complete and
can be settled in non-deterministic time:

O((|J |+ |BR|)×N)

Proof. We already observed that contextual satisfiability is
NP-hard. Now, to determine satisfiability we may proceed as
follows. First, we non-deterministically appoint a setCons
of bridge rule consequences, and a setPrem of bridge rule
premises, such that for everybr ∈ BR, eitherbr’s conse-
quence is inCons, or one ofbr’s premises is inPrem. Let
J , ICons, andIPrem be the set of contexts involved byΦ,
Cons, andPrem, respectively. Furthermore, letΦi,Consi,
andPremi be the set ofi-formulas contained byΦ, Cons,
andPrem, respectively. We construct a chainc, such that:

• For all i ∈ IPrem, ci contains|Premi| local models;

• For all i ∈ J/IPrem, ci contains exactly one local model;

• For all i /∈ J ∪ IPrem, ci is empty;

• For all i ∈ I, eachm ∈ ci evaluates the propositional
atomsnot appearing inΦi ∪ Consi ∪ Premi to True.

The only “guessing” involved in constructingc, apart from
the choice ofCons andPrem, are the truth values to which
each local model inci should evaluate the propositional
atoms inP (Φi ∪Consi ∪Premi). Notice thatc contains at
most|J |+|Prem| ≤ |J |+|BR| local models, which are dis-
tributed over those componentsci of c with i ∈ J ∪ IPrem;
all the other components ofc are empty. Consider a local
modelm contained inci for somei ∈ J ∪ IPrem. The
number of atomic propositions|P (Φi ∪ Consi ∪ Premi)|
thatm should “explicitly” evaluate is clearly bounded byN .
We must appoint at most|J |+ |BR| such explicit valuations
(one for each local model inc), soc can be constructed in
non-deterministic timeO((|J |+ |BR|)×N).

It remains to check whetherc is J-consistent, satisfiesΦ,
and complies withBR. By theorem 2 this can be done in
deterministic timeO((|J |+ |BR|)×N).

Theorem 3 assures that, ifΦ is consistently satisfiable in
MS, then guessing a chain as described above is bound to
result in a suitable one. Thus, consistent satisfiability ofΦ
in MS can be determined in non-deterministic polynomial
timeO((|J |+ |BR|)×N). �

Encoding Into Propositional SAT
As contextual satisfiability is in NP, it is tractably reducible
to purely propositional SAT. In providing such a reduction,
we may loose the particular structure of our problem, but do
lay the groundwork for the implementation of purely SAT-
based contextual reasoners, which could benefit from the
well-advanced techniques developed by the SAT community.

To obtain a purely propositional representation of multi-
contextual satisfiability problems, we exploit the under-
standing we obtained while establishing the bounded model
property in the previous section. The key insight there was
that a set of formulasΦ is satisfied by a chainc if and only
if it is satisfied by chaincb such that:
• For eachj ∈ J , cbj contains at least one local modelmj

that satisfies all the formulas inΦ that apply to contextj.

• For every bridge rulebr ∈ BR whose consequence is not
satisfied byc, there is at least one premisei : ξ of br, such
thatcbi contains a local modelmbr that satisfies¬ξ.

Notice that to meet these requirements, the number of local
models in each component ofcb can be kept down to|BR|
(we assume that|BR| ≥ 1). Also, if a non-empty component
of cb contains less than|BR| local models it can be extended
to comprise exactly|BR| models, simply by adding dupli-
cates of already existing models. So we may say thatΦ is
consistently satisfiable in MS if and only if it is satisfied by
a J-consistent chainc∗ all of whose components are either
empty or contain exactly|BR| local models.

Now, we construct a propositional formulaψ, which is
satisfiable if and only if such a chainc∗ exists. We express
this formula in a language which contains a propositional
atompk

i for everyp ∈ Li, and for everyk = 1, . . . , |BR|.
Intuitively, the truth value assigned topk

i by a propositional
model ofψ corresponds to the truth value assigned top by
the kth local model inc∗i . The language also contains an
atomic propositionei for each indexi ∈ I. Intuitively, ei

being assignedTrue corresponds toc∗i being empty.



We writeK = {1, . . . , |BR|}. For any formulaϕ, and
eachi ∈ I andk ∈ K, letϕk

i denote the formula that results
from substituting every atomic propositionp in ϕ with pk

i .
Furthermore, letϕK

i =
∧

k∈K ϕk
i . Then, the translation of a

labeled formula reads:

(i : ϕ)∗ = ei ∨ ϕK
i

For bridge rules we have:

(i1 : ϕ1, . . . , in : ϕn → i : φ)∗ =
(i1 : φ1)∗ ∧ . . . ∧ (in : φn)∗ ⊃ (i : φ)∗

A j-consistency constraint is captured by:

(j-cons)∗ = ¬ej

Theorem 5 There is an assignmentV to the propositions
{pk

i | i ∈ I andk = 1, . . . , |BR|} ∪ {ei | i ∈ I} that
satisfies:

ψ =
∧

i:φ∈Φ

(i : φ)∗ ∧
∧
j∈J

(j-cons)∗ ∧
∧

br∈BR
(br)∗

if and only if there is aJ-consistent chaincV that satisfies
Φ in compliance withBR.

Proof (⇒) FromV we construct a chaincV , such that each
componentcVi is empty if V (ei) = True and consists of
exactly|BR| local models otherwise. In the latter case, the
kth local model ofcVi is made to evaluate each propositional
atomp ∈ Li toTrue iff V (pk

i ) = True. It’s easy to see that
cV is J-consistent and satisfiesΦ in compliance withBR.

(⇐) By the above observations, if there is aJ-consistent
chainc that satisfiesΦ in compliance withBR, there must
also be aJ-consistent chainc∗ each of whose components
is either empty or contains exactly|BR| local models, and
which still satisfiesΦ in compliance withBR.

Fromc∗ we may obtain a truth assignmentV as follows.
To an atomic propositionei, let V assignTrue iff c∗i = ∅.
To an atomic propositionpk

i , let V assignTrue if the kth

local model ofc∗i satisfiesp, False if the kth local model of
c∗i satisfies¬p, and any truth value ifc∗i is empty. It should
be straightforward to see thatV satisfiesψ. �

Application to PLC
We apply the results presented above to improve current
complexity bounds for the propositional logic of context as
described in (McCarthy 1993; McCarthy & Buvač 1998).
The best result so far has been established by Massacci
(1996). He proposes a tableaux-based decision procedure,
which determines satisfiability of a PLC formulaϕ in non-
deterministic polynomial timeO(|ϕ|4).

We translate a PLC formulaϕ into a labeled formulaε : ϕ
and a multi-context system MCS(ϕ), so thatϕ is satisfiable
in PLC iff ε : ϕ is consistently satisfiable in MCS(ϕ). The
translation is only sketched here – details can be found in
(Bouquet & Serafini 2004). Subsequently, we demonstrate
that determining whether or notε : ϕ is consistently satisfi-
able in MCS(ϕ) takes non-deterministic timeO(|ϕ|2).

The translation works as follows. For each nesting pattern
ist(k1, . . . ist(kn, ψ) . . .) in ϕ, let MCS(ϕ) contain a context
labeled with the sequencek1 . . . kn. Let the language of
contextk1 . . . kn contain all the atomic propositions inψ,
plus a new atomic proposition for each formula of the form
ist(k, χ) occurring inψ. Finally, equip MCS(ϕ) with the
following bridge rules1:

k̄k : ψ → k̄ : ist(k, ψ)
k̄ : ist(k, ψ) → k̄k : ψ
k̄ : ¬ist(k, ist(h, ψ)) → k̄k : ¬ist(h, ψ)
k̄ : ¬ist(k,¬ist(h, ψ)) → k̄k : ist(h, ψ)

wherek̄ = k1 . . . kn refers to any context of MCS(ϕ), whose
language containsist(k, ψ) or ist(k, ist(h, χ)), respectively.

Example 5 Consider the following PLC formula:

ϕ = p ∨ ist(k, q ⊃ (ist(h, r ∧ s) ⊃ ist(j, q)))

MCS(ϕ) consists of four contexts which are labeledε (the
empty sequence),k, kh, and kj. The language ofε, Lε,
contains two propositions,p and ist(k, q ⊃ (ist(h, r ∨ s) ⊃
ist(j, q))); Lk contains two propositions,q and ist(h, r∧s);
Lkh = L({r, s}) andLkj = L({q}). The bridge rules of
MCS(ϕ) are as stated above.

Theorem 6 (Bouquet & Serafini, 2004)ϕ is satisfiable in
PLC if and only ifε : ϕ is consistently satisfiable in MCS(ϕ).

Theorem 7 Satisfiability ofϕ in PLC can be computed in
non-deterministic polynomial timeO(|ϕ|2).

Proof. By theorem 6 any satisfiability problem in PLC can
be transformed into an equivalent satisfiability problem in
MCS. This transformation can be established in linear time.

Every bridge rule in MCS(ϕ) involves at least one propo-
sition of the formist(k, ψ). Every such proposition occurs
in at most four bridge rules. Every subformula ofϕ of the
form ist(k, ψ) (and nothing else) results in a proposition
of the form ist(k, ψ) in the language of exactly one con-
text in MCS(ϕ). The number of subformulas ofϕ of the
form ist(k, ψ) is bounded by|ϕ|. From these observations,
we may conclude that the number of bridge rules|BR| in
MCS(ϕ) is bounded by4× |ϕ|. Moreover, by construction,
the sum of the lengths of the formulas involved in any bridge
rule of MCS(ϕ) is at most four.

By theorem 4, contextual satisfiability ofε : ϕ in MCS(ϕ)
can be settled in non-deterministic time:

O((|Φ|+ |BR|)× (
∑

i:ϕ∈Φ

|i : ϕ|+
∑

br∈BR

∑
i:ξ∈Ξ(br)

|i : ξ|))

In the light of the above observations, and keeping in mind
thatΦ merely consists ofε : ϕ, we may rewrite this in terms
of ϕ as:

O(|ϕ|2)
�

1The first two bridge rules correspond to the notions ofentering
andexitingcontexts (McCarthy & Buvǎc 1998), while the last two
bridge rules correspond to the∆ axiom introduced by Buvǎc and
Mason (1993).



Conclusion
We have analysed the complexity of contextual reasoning
based on propositional multi-context systems with finite sets
of bridge rules.

A first insight was obtained by establishing an encoding of
contextual satisfiability into satisfiability in bounded multi-
modalKn, which is well-known to be NP-complete. Next,
we accomplished a more fine-grained upper bound for the
complexity of contextual satisfiability by a direct investiga-
tion of its semantical properties. Herein we observed that
multi-context systems enjoy the bounded model property.

We also provided a tractable encoding of contextual sat-
isfiability problems into purely propositional ones. In doing
so, we laid the groundwork for SAT-based implementations
of contextual reasoning systems.

Finally, we obtained improved complexity results for the
satisfiability problem in McCarthy’s propositional logic of
context, by translating it into the satisfiability problem that
we have considered in this paper.

Future work will encompass experimentation with both
native and SAT-based contextual reasoning systems. Also,
we are interested whether, or to what extent, our results may
be generalized so as to apply to multi-context systems with
schematic bridge rules as well.
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