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Abstract

Texts available on the Web have been generated by human
minds. We observe that simple patterns are over-represented:
abcdef is more frequent than arfbxg and 1000 appears more
often than 1282. We suggest that word frequency patterns can
be predicted by cognitive models based on complexity mini-
mization. Conversely, the observation of word frequencies of-
fers an opportunity to infer particular cognitive mechanisms
involved in their generation.

Keywords: Simplicity; Kolmogorov complexity; Web fre-
quency; Zipf’s law

Introduction

The observation of word or number frequencies reveals a few
spectacular patterns. The most obvious one is that simple
items tend to be more frequent. For example, round numbers
such as 1000 or consecutive strings like abcde appear orders
of magnitude more frequently than items such as 1282) or
arfbxg). Intuition suggests that some items are more fre-
quent because they are descriptively simple. This form of
causality, however, requires hypotheses about the way words
and numbers are generated. In particular, we must suppose
that individuals are biased toward simplicity.

Simplicity is expected to play a central role in cognitive
modeling (Chater, 1999). Any reasonable induction system
should favor simplicity (Solomonoff, 1964), and the human
mind is no exception. Solomonoff also links abduction to
simplicity, a principle known as Occam’s razor. Simplic-
ity is essential to define subjective probability (Saillenfest &
Dessalles, 2015; Maguire, Moser, Maguire, & Keane, 2018;
Griffiths & Tenenbaum, 2003). Pattern recognition, ranging
from basic shapes to abstract IQ tests, is guided by simplic-
ity (Chater, 1999; Feldman, 2004; Gauvrit, Zenil, Delahaye,
& Soler-Toscano, 2014; Amalric, Wang, Pica, et al., 2017;
Sablé-Meyer, Fagot, Caparos, van Kerkoerle, & Amalric,
2020). Analogy making is best explained as complexity min-
imization (Murena, Al-Ghossein, Dessalles, & Cornuéjols,
2020). Simplicity is observed to play a decisive role in pre-
dicting phenomena like surprise (Dessalles, 2008), memory
(Planton, van Kerkoerle, Abbih, Maheu, & Meyniel, 2021;
Chekaf, Cowan, & Mathy, 2016; Lemaire, Robinet, & Por-
trat, 2012), interestingness, or emotional intensity (Dessalles,
2011). Moreover, simplicity can be used to re-interpret and
extend Bayes’ rule (Sileno & Dessalles, 2022).

Several studies have applied simplicity principles to text
data, for example, to measure text resemblance (Benedetto,

Caglioti, & Loreto, 2002) or semantic distance between
words (Cilibrasi & Vitanyi, 2007). In this paper, we focus on
the frequency of numbers and words. We will make several
attempts to support the idea that complexity minimization at
the cognitive level may produce some of the spectacular fre-
quency patterns that can be observed in texts or on the Web.

The paper is organized as follows. We begin by defining
the notion of simplicity as it is applied in cognitive modeling,
and we discuss the way it is usually linked to data frequency.
Then we make three attempts to offer causal explanations of
word frequencies. First, we propose a basic generative model
to explain why the frequency of alphabetic sequences such as
passwords obeys a simplicity bias. Second, we examine num-
ber frequency distributions and propose an additional model
that partly accounts for their remarkable simplicity patterns.
Third, we examine word statistics; we show how Zipf’s law
on word frequencies points to certain hypotheses about com-
plexity minimization in word generation.

Defining simplicity
Simplicity is approached here in terms of Kolmogorov com-
plexity. The theoretical notion of Kolmogorov complexity
C(s) corresponds to the size of the smallest program p from
which one can retrieve an object s.

C(s) = min(|p|: M(p) = s). (1)

where |p| designates the length of p in bits. M is a univer-
sal Turing machine (an ideal computer) on which p is run or,
equivalently, a programming language in which p is written.
The sequence 0,1,2,3,4,5,6,7,8 can be seen as simpler
than another sequence 7,1, 9,1,2,0, 2, 8, which means that
it can be expressed with less information. For instance, it can
be generated in Python using the range function, which (ap-
plying optimal encoding principles) can be referenced by its
position in the list of Python’s most-used instructions, applied
to 9. Coding a basic function and one number requires less
information than coding eight numbers.

Kolmogorov complexity can be regarded as the result of an
ideal compression. A program pg of length |pg| = C(s) such
that M(pg) = s appears to be a self-extracting compressed
version of s. Simple objects are compressible, whereas com-
plex objects, such as the second sequence above, are not and
are considered random. Kolmogorov complexity can also



be seen as a context-dependent minimal description. For in-
stance, the complexity of an integer N is about log,(N) bits
(using the binary coding of N). However, in a context in
which another number M close to N has just been mentioned,
C(N) is about C(N|M) < 1+C(|N — M|) < 1 +log,(IN —M|)
(the additional bit is used to code for the sign of the differ-
ence). Or, if N is stored in the machine’s memory at the (bi-
nary) address a, then C(N) is about length(a).

Kolmogorov complexity is often perceived as coming with
two handicaps. The first one is the dependence on a ma-
chine M. It could be that there is no readily available function
range in the machine or programming language. Conversely,
7,1,9,1,2,0,2,8 might be the owner’s phone number and
be already stored at a short address in the machine. This de-
pendency on the machine is actually advantageous for cog-
nitive modeling as it can be used to illustrate differences in
background knowledge among observers. The “machine” to
consider is the generic cognitive model used to represent an
individual’s capabilities for a given task (e.g. the ability to
recognize a consecutive sequence), plus their specific knowl-
edge (such as their phone number).

The second alleged drawback of Kolmogorov complexity
is that it is proven to be incomputable: there can be no guar-
antee that a program of minimal length has ever been found,
as it would require trying programs that won’t halt. For sci-
entific purposes, we need a resource-bounded version of Kol-
mogorov complexity (Buhrman, Fortnow, & Laplante, 2002).
Human beings have limited computing power anyway and
sometimes need time to detect hidden structures. Technically,
we just need to limit recursion depth and computation time to
obtain an operational approximation of C(s).

Relation between complexity and frequency

The quantity C(s) quite naturally measures the quantity of in-
formation contained in s, since it measures what is left when
any redundant information has been removed in the operation
of (ideal) compression. This notion of information general-
izes Shannon’s definition of information, which applies to re-
peated events and not to individual objects. If we no longer
consider an object s in itself, but occurrences of s (eg. on the
Web), then we expect the two notions to coincide:

1

C(s) ~ loga 7. @)
where f(s) is the observed frequency of s’s occurrences. Inas-
much as it approximates the corresponding probability p(s),
log, 1/f(s) approximates Shannon’s information log, 1/p(s) rel-
ative to s’s occurrences. The right-hand term of (2) is purely
observational. C(s), on the other hand, refers to programs
and naturally leads to considering the way data are generated.
The present study takes (2) literally and attempts to show how
frequency patterns emerge from the way data are generated.
Our hypothesis is straightforward:

(H): human minds tend to minimize complexity; as a re-
sult, simpler items (words, numbers) tend to be more fre-
quent.

Password Description Complexity Rank
111111 [repetition,[1],6] 8.8 9
333333 [repetition,[3],6] 9.8 28
12345 [increment,1,1,5] 10.2 7
123456 [increment,1,1,6] 104 1
555555 [repetition,[5],6] 10.4 17
1234567 [increment,1,1,7] 10.6 5
666666 [repetition,[6],6] 10.6 26
12345678 [increment, 1,1,8] 10.8 6
777777 [repetition,[7],6] 10.8 32
123456789 [increment, 1,1,9] 10.9 2
7777777 [repetition,[7],7] 11.0 19
888888 [repetition,[8],6] 11.0 21
121212 [repetition,[1,2],3] 11.6 48
654321 [increment, -1, repetition, [6], 2] 13.0 16
987654321 [increment, -1, repetition, [9], 2] 13.5 42
123123 [repetition, [increment,1,1,3],2] 142 10
aal23456 [a,a,increment,1,1,6] 14.4 41
abcl23 [increment,1,a,3,increment,1,1,3] 18.2 11
lovely [Lo,v.e,Ly] 34.5 18
qwerty [q,w.e,increment,2,r,2,y] 36.5 3
1q2w3edr [merge, 1,[increment,1,1,4],[q,w.e,r],0] 38.3 13
iloveyou [increment,3,i,3,v,e,y,0,u] 425 8

i [s.u,n,s,h,i,n.e] 45.0 30
1q2w3edr5t [merge, 1,[increment,1,1,5],[q,w.e,increment,2,r,2],0] 453 33
qwertyuiop [q.w,e,increment,2,r,2,y,u,i,increment,1,0,2] 60.1 15

Table 1: Structure and complexity of popular passwords listed
by frequency of use in (Keck, 2018).

What follows consists of three attempts to test (H) by
showing how frequency distributions can be related to
simplicity-oriented cognitive procedures. We will consider in
turn alphabetic sequences, then numbers, and finally words.

Simplicity of short alphabetic sequences

In this section, we consider alphanumeric sequences such as
abcl23 or aal23456 that are used as passwords. Table 1 lists
a few passwords taken from (Keck, 2018) and indicates their
rank by frequency of use. We can see that abc123 is 111
while aa123456 comes in 41,

To test whether our hypothesis (H) obtains in this case,
we must find a way to estimate the complexity of alphanu-
meric sequences. We designed a small “reasonable” model
to capture some basic structural elements such as repeti-
tion or incrementation. The point is to compute plausible
complexity values to see if they match observed frequen-
cies. We selected six operators: repetition, increment,
periodic, merge, map and mirror. Table 2 presents their
syntax through examples. These operators have been manu-
ally selected, but they echo similar operations used in other
proposals. For instance, the PISA compressor used in Struc-
tural Information Theory (SIT) (Leeuwenberg & Van der
Helm, 2013) refers to iteration (similar to the repetition
used here), symmetry (similar to mirror) and alternation
(similar to periodic).!

Complexity is computed as follows: C(N) = log,(1+N)
for a positive integer; C(N) = 1 +log,(1 + N) for a nega-

!Compared to SIT, focusing only on structural aspects, our pro-
posal also considers metrical components.



Instruction Output

[a,a,a,a]
[a,c.e.g]

[a,a,ab,ac.a,dae]

[repetition,[a],4]
[increment,2,a,4]
[periodic, 1,[a],[increment, 1,2,5],0]

[periodic,1,[a],[increment,1,a,5],1] [a,a,b,a,c,a,d,a.e,a]

[merge, 1,[increment, 1,a,4],[increment, 1,1,4]] [a,1,b,2,¢c,3,d,4]
[map,[a,b],[repetition,4]] [a,a,a,a,b,b,b,b]
[mirror,[increment,-1,d,4]] [a,b,c,d,d,c,b,a]

Table 2: Examples to illustrate how our simple operators are
applied to alphabetic sequences.

tive integer (the additional bit is paid for the sign); C(X) =
log,(1 + pos(X)) for a character where pos(X) is the po-
sition of the character X in the alphabet (starting from a);
C(0) =1log,(1+ pos(0)) for an operator where pos(O) is the
index of O in our list of six operators. Objects’ type is known
when in operand position. Otherwise, two bits are added to
indicate which type (integer, character, operator) is chosen.
Note that this code is space-delimited (like the Morse code)?.
We tried to make reasonable choices when selecting and or-
dering operators or types to obtain an ordering of sequences
by complexity. In our experiments, we found that variations
in the order of operators had little impact on the output.

We implemented these computations into a Prolog pro-
gram’. Complexity is computed through the recursive pro-
cedure presented in Algorithm 1.

Algorithm 1 Computation of String complexity

pl'OCSdHl'CI compress
Input: List
Output: description + complexity
if Operator can be applied to the beginning of List then
call compress on Operator’s arguments
insert Operator and its compressed argument in description
else
compute the complexity of the first element
insert the first element in the description
end if
call compress on the rest of List
concatenate results and add complexities

We tested the procedure on the passwords of Table 1.
The table mentions the complexity found by our program.
Figure 1 shows complexity against password use for 8-
letter alphabetic passwords, as retrieved from https://
haveibeenpwned.com/Passwords in 2018*. The procedure
does well in identifying the most frequent passwords as sim-
ple, except for “words” that our simple program has no means
to make sense of (as it has no access to dictionaries). This re-
sult is consistent with the fact that what passwords Web users

2Space delimitation is more natural and simplifies the computa-
tion of Kolmogorov complexity. When objects need to be separated,
e.g. in a random generation context, a prefix-free version of Kol-
mogorov complexity must be used (Li & Vitdnyi, 1993).

3Sources can be found at https://www.simplicitytheory
.science/strings.

4The hierarchy of password use has recently changed, probably
due to constraints imposed by Web sites. Although global correla-
tion with simplicity remains manifest in 2024, statistics tend now to
mask differences among the simplest passwords.
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Figure 1: Complexity and use of a few 8-letter passwords,
including some of the most popular ones (the complexity of
words — pink dots — is overestimated, as the program has no
access to a dictionary).

consider easy to remember are simple sequences, in the Kol-
mogorov sense. Note that the negative correlation between
complexity and frequency of use is hardly apparent among
the blue dots. It would be obvious if “good” passwords were
included (maximal complexity and negligible use, all located
in the top-left corner).

Number simplicity

In this section, we consider numbers, which can be seen
as particular character sequences or even “words”. We ex-
pect round numbers (in base 10), such as 1000, to be much
more frequent in texts than less simple ones such as 1244.
This is indeed what we observe. Figure 2 shows results ob-
tained when querying numbers between 0 and 2050 on a
search engine and retrieving the number of results®. The
over-representation of multiples of 10, 50, and 100 is man-
ifest. Several patterns also emerge at the global scale. We can
see how the frequency of small numbers decreases exactly as
log,(N) (red curve). The sharp decrease in both directions
apart from the present (~ 2023) suggests that most numbers
around this value represent dates. Their frequencies also fol-
low a logarithmic shape (green curve), which is consistent
with a proximity effect.

Syntax and semantics of numbers

To test hypothesis (H) on numbers, we first applied our
compress program designed for alphabetic sequences. Fig-
ure 3 shows the expected simplicity of numbers based on their
pure alphanumeric (or syntactic) form. We observe some con-
vergence with Figure 2, in line with (H): multiples of 10 and
100 emerge as simpler; the overall logarithmic decrease of
simplicity is also apparent. However, we observe unwanted
outcomes, such as 1111, 1234, or 1001 which stand out above

5Yahoo, Bing and Google provide the number of results for each
query.
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Figure 2: Querying numbers between 0 and 2050 on
a search engine in logarithmic scale. = The red curve
is log,(#hits(0)) —log,(N), while the green curve is
log, (#hits(2023)) — 1.4210g, (2%63N)  (the results are dis-
played for Yahoo, but we obtained superposable results with Bing

and Google).
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Figure 3: Simplicity (i.e. shifted opposite of complexity) of
numbers between 0 and 2050, considered as mere character
sequences (syntactic view).

1000. This shows that a purely syntactic approach (i.e. rela-
tive to form only) to number simplicity is insufficient.

Our second move was to consider the semantics of num-
bers. Numbers most often have a meaning as they represent
quantities (even when numbers are used as ordinals instead
of cardinals, they still mean a magnitude representing po-
sition). A typical computer knowing about numbers needs
about log, (N) bits to represent an integer N unambiguously.
The same is true for human beings, at least verbally. We
need four words, twelve hundred [and] forty-four, to repre-
sent 1244. The number of words (or digits) grows logarith-
mically with N. Representing number meaning as quantity
involves logarithms as well (Feigenson, Dehaene, & Spelke,
2004). For instance, most individuals would negotiate a raise
of their salary x 4 dx not by considering the absolute value dx
of the increase, but by evaluating its relative value 4x/x when
demanding x(1 4 4x/x). The sensitivity to relative variations is

Theoretical simplicity
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Figure 4: Simplicity when rounded numbers are systemati-
cally used as reference points to assess magnitude (semantic
view).

a clear indication that human beings estimate magnitudes log-
arithmically (as d(logx) = dx/x), and therefore represent num-
bers based on their complexity C(N) = log,(1 + N), keeping
in mind that for most values of N this expression is close to
the best estimate®.

Round numbers are exceptions to this rule. Most contribu-
tors to texts found on the Web are using the decimal system.
They rely on round numbers as reference points to locate pre-
cise numbers. They would use 1240 to locate 1244 and, if
necessary, 1200 to locate 1240 and 1000 to locate 1200. As
aresult, we expect round numbers to become simple because
of their role as reference points. For an arbitrary point N of
the number line, the use of a reference point r verifies:

C(N) <C(r)+C(N|r) 3)

This chain rule simply means that using r as a proxy is a
reasonable, though possibly sub-optimal way to achieve the
most concise description of N. In this writing, we implicitly
suppose that the r giving the lowest upper bound has been
picked. If r terminates with k zeroes in decimal base, we
suppose that it is used as a reference point for the segment
[r,7 + 10¥[ (subtracting r from N is a straightforward opera-
tion above the reference point r). We may suppose that us-
ing r as a proxy in the interval is not sub-optimal on aver-
age. As a result, C(r) cannot deviate much from the aver-
age of C(N) — C(N|r) for N € [r,r + 10¥[. If C(N|r) within
this interval is assessed as the magnitude of (N —r), then
C(N|r) ~ logy(14+ N —r). Taking the middle of the inter-
val as average, C(N) is averaged at log, (1 + r+ 10°/2) while
C(N|r) is averaged at log, 10"/2 (this approximation amounts
to saying that log, (N) is nearly constant in the interval). We
obtain:

2
C(r) = loga(1+ ) @

As previously mentioned, this estimate of complexity works
only if we consider numbers in isolation. When codes for num-
bers must be separated within a program, we have to use pre-
fix complexity, which gives a typical estimate close to log,(N) +
2log, (log, (N)) for the complexity of N > 0 (Li & Vitanyi, 1993).



Individuals use multiples of 10 as simple reference points
r not only for locating absolute numbers N, but presumably
also for assessing differences (N — ). Evidence for this is
provided by the tendency to celebrate “round” anniversaries
of historical events, i.e. after 10, 50, or 100 years. If we
use the above expression of C(r) and use the chain rule re-
cursively for r and (N — r), we can compute the simplicity
of numbers based on their proximity to multiples of 10. Fig-
ure 4 shows the resulting expected frequencies. The resem-
blance with real data (Figure 2) is again imperfect. However,
the model succeeds in reproducing the overall logarithmic de-
crease (red line) and the simplicity effect observed after refer-
ence points. The obvious drawback is that the main reference
points (500, 1000, 1500) are over-simple, while multiples of
10 and 100 are not simple enough. We can only conclude
from our two attempts to reproduce the observations of Fig-
ure 2 that contributors to the Web are probably sensitive to
both the syntactic and the semantic aspects of numbers, de-
pending on context, in a way that remains to be explored.

Recency effects

Numbers around the present (~ 2023) are over-represented in
Figure 2. The obvious interpretation is that most numbers in
this zone should be viewed as dates. It seems “natural” that
dates close to the present be more frequent. Could it be that
they are frequent because they are cognitively simple?

A cognitive model based on simplicity would consider that
any magnitude, including duration, is represented using a
minimal code. As a result, in the absence of a reference point
other than the present 7y, the cognitive complexity of an event
located at time ¢ must grow logarithmically with the time dis-
tance to the event:

To—t

C(t) =log,(1+ ) %)

where T is the characteristic timescale at which the class of
events is considered (eg. days for seeing a friend, months
for being sick, decade for moving house). This expression
of C(t) has been used to predict unexpected occurrences, as
when the same type of event (eg. getting sick) occurs twice in

log2(#hits)
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Figure 5: Model approximation of the frequency of years.
The fitting curve is shifted vertically down by 4 bits to match
actual Web frequencies.

arow independently, making the second occurrence “too sim-
ple” (Dessalles, 2008). If the dates of occurrence are #; and
tp, the coincidence is unexpected if C(r2|t;) = loga (1 + %)
is close to 0.

We obtained a good numerical fit with empirical data close
to 2023 in Figure 2 with the following logarithmic curve:

To—t
)

log, f(To) — 14210%2(@

(6)
where Tp = 2023. This fitting expression is reminiscent of (5)
with T = 0.35. However, even if recent dates refer to events, it
is not clear how the different values of T would aggregate to an
average value of 0.35. Moreover, the Web accumulates pages
about the recent past while growing in size. From (Total num-
ber of Websites, 2019) we estimated the growth of the Web as
W (t) = 3500 x (t — 1992)*. Then we estimated the number
of pages created at time ¢ about year y as (,VXS)/T fort >y,
or else 0 (with the previous estimate of T = 0.35). Then we
integrated over ¢ to get the cumulated number of pages about
y created since 1992. The fit we obtain, shown in Figure 5, is
not perfect but is at least reasonable.

Word frequency

After considering alphabetic sequences and numbers, we ex-
amine simplicity effects in word statistics. An empirical law
first discovered by the physicist Edward Condon (Condon,
1928) and then known as Zipf’s law reveals a systematic link
between the frequency f(w) of words in texts and their rank
r(w) by frequency in the same texts:

fw)=— (7

This relation translates into a straight line of slope -1 in log-
log coordinates: log, f(w) = log, (k) —log, r(w). Figure 6
shows that the law is robust (we may mix texts, even in differ-
ent languages) and is a signature of natural texts (eg. slightly
tampering with a text by merely removing so-called “stop
words” perturbs the phenomenon, as shown bottom left of
the figure). Zipf’s law is not any power law: the slope is very
close to —1 (Montemurro, 2001).

Here as well, we may gain a better understanding of this
spectacular phenomenon by acknowledging that the human
mind tends to minimize complexity (hypothesis (H)) when
processing language. A cognitive model of language includes
the ability to retrieve words for expressing meaning. Let’s ex-
tend the machine metaphor and suppose that the meaning of
a word w is accessible through its “address” a(w). We are
not considering binary addresses literally. Partial contents
that trigger associative links can be regarded as addresses (a
meaning can therefore be accessible through many of such
“addresses”). The shortest address to a word w, available in
the current context, offers concise access to its meaning. As
such, its size |a(w)| is an approximation of the word’s cog-
nitive complexity: C(w) = |a(w)|. Following George Zipf
(Zipf, 1936, p. 19), we submit that addresses evolve, through
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Figure 6: Word relative frequency vs. frequency rank for one
of the authors’ books (top left), the concatenation of the book
and its translation (English + French) (top right), the book
without English usual stop words (bottom left), and a syn-
thetic text based on the book’s vocabulary (bottom right).

learning, to be optimal. Being optimal for a system of ad-
dresses means that address lengths correspond to a Shannon-
Fano code, i.e. they should be close to the logarithm of the
word’s frequencies: |a(w)| = —log,(f(w)). This principle
is used in communication technology to guarantee minimal
codes on average (e.g. with Huffman coding). To sum up:

logy (1/7w) = la(w)| = C(w) ®)

The preceding account goes from left to right: people learn
word frequency from their language; they store meanings
with optimal addresses whose size offers a measure of the
meanings’ cognitive complexity (averaged over different con-
texts). However, language is not only learned but also gener-
ated. To close the loop, we must have a right-to-left reading
of (8). In line with hypothesis (H), we suppose that cognitive
complexity controls meaning and word generation: meanings
with smaller complexities trigger the use of the corresponding
words with higher frequencies in a way that matches equation
(2). As suggested by Zipf, each word w in a given context
is in competition with synonyms, hypernyms and hyponyms.
The winner tends to be the word compatible with the intended
meaning that has the shortest address a(w) in the context.

We just formulated two hypotheses to formalize Zipf’s
original intuition (Zipf, 1936). (H1): optimal length of mental
addresses, and (H2): complexity-biased generation of words
(which is a version of (H)). Now we can derive Zipf’s law.
Technically, the logarithm of the rank log, r(w) is sufficient
to retrieve a word w. Hence it also offers an approximation
of Kolmogorov complexity. We may write (up to an additive
constant):

1
loga 7y |a(w)| = C(w) = log, r(w) ©)

By using cognitive complexity C(w) as a go-between, (9)
shows how Zipf’s law is an expected consequence of com-
plexity minimization. If words are generated through optimal
(i.e. Shannon-fano compliant) addresses, the probability for
a word w accessible through address a to be chosen is (for bi-
nary addresses) 2-lal Texts generated this way will system-
atically verify Zipf’s relation (7). As an illustration, Figure 6
(bottom right) shows the frequency-rank relation for a syn-
thetic text generated with the lexicon of the same book and
with the same frequencies.

Discussion

Equation (2) is often taken for granted, for it is widely cited
in the scientific literature. It is nevertheless surprising as it
establishes a coincidence between two separate notions. Fol-
lowing (Solomonoft, 1964), equation (2) can be read as a pre-
diction. If the machine is optimal in the Kolmogorov sense,
output frequencies should match complexities.

The present study goes the other way around. We start from
frequency patterns in human-generated data and try to infer
the cognitive mechanisms that generate them, while assum-
ing that these mechanisms minimize complexity, i.e. achieve
maximal compression. We did so on three types of data: al-
phabetic sequences, numbers, and words. In each case, we
could make reasonable assumptions that make the frequency
patterns less surprising. Notably, we were able to explain:

* the high frequency of simple passwords;

« the frequency pattern of numbers, which perfectly matches
the logarithm in base 2 (red curve in Figure 2), where the
logarithm in base 2 is the baseline for the Kolmogorov
complexity of numbers (Li & Vitdnyi, 1993);

* the overrepresentation of round numbers and neighbors;
* the recency effects for dates close to the present;

* the inverse proportionality between frequency and fre-
quency rank in the vocabulary (Zipf’s law).

We are not aware of any principle, for example, one based
on pure probability or Bayesian computations, which could
account for all these phenomena without any reference to
simplicity, in the sense of optimal compression.

Of course, much work still needs to be done to improve the
accuracy of our simplicity-based explanations. Our goal was
to highlight the relevance and feasibility of the approach. We
are convinced, in line with (Chater, 1999), that simplicity in
the sense of optimal compression remains under-exploited in
Cognitive Science and should be considered a fundamental
principle in cognitive modeling.
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