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ABSTRACT

In recent years, several normative systems have been presented in
the literature. Relying on formal methods, these systems support
the encoding of legal rules into machine-readable formats, enabling,
e.g. to check whether a certain workflow satisfies or agents abide
by these rules. However, not all rules can be easily expressed (see
for instance the unclear boundaries between tax planning and tax
avoidance). The paper introduces a framework for norm identi-
fication and norm induction that automates the formalization of
norms about non-compliant behavior by exploring the behavioral
space via simulation, and integrating inputs from humans via ac-
tive learning. The proposed problem formulation sets also a bridge
between Al & law and more general branches of Al concerned by
the adaptation of artificial agents to human directives.
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1 INTRODUCTION

Compliance is crucial for sustainable business, e.g., in banking,
healthcare, (international) trade, construction, logistics, and in any
process in which (potentially sensitive) data is shared. Failure to
comply with laws and regulations can not only have severe con-
sequences on individual organizations, but also have destructive
influence on the economy. Organizations employ teams of experts
to prevent consequences of setting up improper business processes,
as well as to monitor and respond to non-compliance by other social
participants with whom organizations engage (e.g. for contractual
agreements, possibility of frauds, legal accountability, due diligence).
In order to detect non-compliance, researchers and analysts have
introduced and applied over the years various computational meth-
ods, ranging in the whole Al spectrum, from symbolic (rule-based
systems, knowledge graphs) to sub-symbolic approaches (machine
learning models). Automation of these processes have proved to in-
crease the efficiency of compliance-related processes, but a number
of challenges remains to be addressed (see e.g. [2, 14]).

The present work focuses in particular on the problem of iden-
tifying norms that are not made fully explicit by the legal system
(and thus cannot be represented directly using a formal language).
Whether we speak of tax compliance, environmental carbon rules or
trading regulations, the computational encoding of legal rules that
are relatively vaguely defined, and by nature rely on the ruling of
legal authorities on individual cases, remains an open question. Yet,
assuming consistency in the rulings and in the behavioral patterns
associated with non-compliance, one can expect the emergence of
a norm describing the set of non-compliant behaviors. The main re-
search question of this study is how to get from (a minimal number
of labelled) cases to a computational encoding of behavioral rules
defining non-compliance. Building on the intuition that a norm
violation is usually visible as a complex, but still highly regular
phenomenon, our contribution focuses on norm identification and
induction by means of simulation and utility maximization, setting
up an active learning loop in which an oracle (e.g. a legal expert) is
asked to qualify behavior deemed relevant of attention. This prob-
lem formulation can also be easily associated to other branches of
research in Al, concerned by the adaptation of behavior of artificial
agents (e.g. robots) to directives given incrementally by humans.
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Related works. In recent years, several computational norma-
tive systems have been presented in the literature. Based upon
formal methods, these systems support the encoding of legal rules
into some machine-readable format (e.g. [11, 14]), enabling e.g.
to check whether a certain workflow satisfies or agents abide by
these rules (or at least their computational version). Besides for-
mal validity, these systems are mostly concerned by providing a
relatively user-friendly language/framework for normative specifi-
cation [18, 26, 31, 36], computational scalability, but in most cases
do not concern themselves with using behavioral data. Problems
arise however in presence of rules which are difficult to formalize,
for instance because they are inherently vague. The associated im-
plicit legal rules span an infinite set of various behavioral patterns
and legal structures, that can be found for instance in the area of tax
optimization or stock exchange regulation. A system used to find
an optimal sequence of actions satisfying the formalized explicit
legal rules as constraints, but likely violating the implicit rules, can
be used as a very efficient tool for “breaking” the law. Computa-
tional methods can be used to limit this possibility, by facilitating
the alignment of computational normative systems to what is yet
implicit in the legal system.

The area of research in which this study can be positioned is norm
identification and norm induction, which has been predominantly
studied in the area of autonomously learning agents [7, 28, 29].
Symbolically represented behavior learned from observations have
been investigated using various approaches combining symbolic
and sub-symbolic methods, e.g. Bayesian approach [9], grammatical
version of Markov chain Monte Carlo sampling [8], or probabilistic
inductive logic programming [35]. The last two approaches were
used in the area of robotics, where frameworks exploring human
guidance to agent’s normative compliance are actively developed
[10, 22]. Our study takes an analogous approach: humans provide
feedback information to the norm extraction system on whether
an agent is complying with implicit legal rules.

The general task can be characterized as aiming to go from cases
to rules while maintaining consistency. The inductive problem of
identifying the decision patterns applied by a decision-maker on
individual cases partially overlaps with the traditional case-based
reasoning research track in Al & Law [3, 27], aiming to recon-
struct the structure of the rationale behind case decisions, typically
identifying relevant factors and their relative contributions to the
conclusion; however, the “behavioral definition” issue studied in
our work focuses primarily on capturing legally relevant behav-
ioral patterns (scripts), rather than relevant contingent factors: the
temporal nature of actions will play a major role.

Contribution. The paper introduces a framework for the auto-
mated formalization of norms by exploring the behavioral space via
simulation, under assumptions (e.g. existence of utility function)
that are likely to hold in certain behavioral domains (e.g. complex
financial transactions). Inputs from humans are integrated in an
active learning cycle, such that the framework provides feedback
suggestions by calculating uncertainty using modern transduction
learning methods [24]. This research outcome can serve as an entry
point to encourage deeper connections between the area of AI &
law and contemporary research in autonomous artificial agents.
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Structure of the paper. This study is structured as follows. Section
2 provides a few relevant examples of non-compliant behavior. In
section 3 we consider a normative system as a transition system,
and define a utility function, and discuss the need for active and
semi-supervised learning component. In section 4, we propose an
active learning framework using (ideally) a small number of labeled
instances of norm (non-)violation. The application of the framework
is illustrated in section 5 on a practical example, as well as on a
simulation example. The simulation example implements a path
finding agent in a normative grid environment using reinforcement
learning. We choose this environment not only because it is a
rather classical problem in the area of autonomous agents, but also
because a number of concepts introduced in this study admit with it
a natural and easy to visualize interpretation. Towards the end, we
discuss the practical applicability, the limitations of the framework,
and a brief note on future work.

2 MOTIVATING EXAMPLES

In socio-legal terms, a wrong supposedly occurs when there are
unmet social expectations (for at least one of the participants).
These expectations are generally specified (in legislation, organiza-
tional policies, agreement, contracts, etc.) via normative directives,
typically concerning prohibitions, obligations, and permissions.
In principle, a wrong should be detectable from the violation of
normative directives, but practical domains exhibit different types
of failure [33]. For instance, in the context of taxes due for real
state transactions, the involved parties may: (a) not pay taxes (syn-
taxic, qualitative failure), (b) pay a formally wrong amount (syn-
taxic, quantitative failure), (c) pay a formally correct but not “right”
amounts, for instance by setting a much-lower nominal price fol-
lowing a fraudulent swap-scheme (semantic failure). Indeed, the
unclear boundaries between tax planning, tax avoidance, and also
the role of tax havens trigger debates both in the academic literature
and in policy circles [23], offer prototypical domains of application
for our study.

The scheme named Double Irish-Dutch Sandwich is for instance
a notoriously known base-erosion and profit-shifting corporate tax
tool, that was legal until 2015. It takes advantage of a legal loophole
that allows royalty payments to be made to several offshore tax
havens (like Bermuda), without incurring Dutch withholding tax.
In the global banking system, this activity can be visible not only by
a regular streams of transactions, but also by a complex ownership
network structures [13]. Although the principles of how this specific
scheme operates are known, one can imagine that there are many
such schemes with operational principles known only to their users.

Theoretically, the high behavioral regularity associated with a
given scheme (to reach the desired profit) could be used to identify
the norm that may close the relevant loopholes. This can be done
by having a human analyst identify the loopholes and design a new
law that will label the scheme illegal. Alternatively, one can take
examples of behavioral manifestations of the scheme, use some
automated procedure to identify the general pattern of actions,
and define a new norm by banning every behavior matching the
pattern.

In general, in any practical normative system there might be
instances of behavior that are undesired, or illegal according to a
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rule that was not (yet) included into the system; we call the associ-
ated norm, because of its unknown formal representation, implicit
rule. Conversely, all norms with known (or adequate) formalization,
integrated and enforced in the normative system, are called explicit
rules.

Under these general terms, the problem may be abstracted from
specific legal domains, and connected to other branches of Al For
instance, in discrete grid environments, allowed/prohibited schemes
would correspond to allowed/prohibited regions on the grid. Known
constraints (explicit rules) would be reified as walls or other block-
ing items, and the problem targeted here be to identify not-yet
reified social constraints (implicit rule).

3 PROBLEM FORMULATION

This section introduces formal requirements necessary to define
the problem in a mathematical way. We elaborate on an abstract
problem formulation, the requirement and use of a utility function,
and of active and semi-supervised learning.

3.1 Modelling the normative system

Consider a computational system that implements the formalization
of explicit rules in some legal domain. Abstracting away from the
specific programming language, we consider it to be a transition
system TS = (S, A, >, Ssrarts Send) Where

e Sis a set of states

e A is the set of actions

e —> € S X A XS is a transition relation

® Sgrart € S is the initial start state

® s.nq C S is the set of terminating end states

Executions of this TS describe possible behavioral processes oc-
curring in the domain. For the normative (prescriptive) dimension,
we can distinguish hard constraints and soft constraints. Let
us denote P(TS) to be a set of all processes generated by the TS.
The hard constraints H c P(TS) implement explicit legal rules
into the system by removing specific processes from the set of pos-
sible processes. Sequences of actions that are possible to execute
in the TS, but violate the implicit rule, are members of the set of
non-compliant behaviors T', and are regarded as soft constraints.
One can easily see that P(TS) = I'° UT: every process generated
by the transition system either complies to the implicit rule or not.
However, unless one knows all the members of T or T, or possess
a predicate defining which instances of P (TS) belong to one or the
other set, it is not possible to enforce compliance to soft constraints
in an exact manner. From a legal point of view, soft constraints can
be enforced only ex-post for each case individually, unlike the hard
constraints that are enforceable ex-ante or on runtime.

Let us assume that, for every transition, the agent incurs a cost
of transition, well-defined for each state, R : S X AX S — R. In addi-
tion, we define a utility function u : P (TS) — R, that aggregates
individual costs for the whole sequence from the start state to
the end state. This utility function must be however viewed not as
exclusively concerned with the transition system, but also encom-
passing a wider horizon of effects, including the risk of detection, or
expected actions of other agents that may influence the utility of a
sequence. u captures therefore an aggregated value; expected value
would then be a formulation consistent with this approach, as well
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as other models or heuristics used for the actualization of value.
If more actors are influencing the states of the system, then the
actions of these actors can be considered as a stochastic component
of the system, and extend the definition of the utility as an expected
value over these stochastic variations (one could then extend the
model from a transition system to a Markov decision process). Here
we will restrict our attention to a deterministic single-agent setting,
but we will return to the discussion about the multi-agent case later
in the paper.

3.2 Exploration of the behavioral space

Taking the point of view of a potential perpetrator, one can consider
an optimization problem of finding a sequence of state transitions
with the highest utility, disregarding the soft constraints. This can
be done both using state-of-art planning algorithms, or model-free
approaches such as reinforcement learning or ant colony optimiza-
tion. More formally, we may write:

max u(x)

xeH (1)

s.t.  start(x) = ssrqrr and end(x) € sqpg

where H c P(TS) denotes sequences that satisfy the hard con-
straints, and start(x) and end(x) are operators returning the initial
state and end state, respectively. This optimization process only
respects the hard constraints that are enforceable in the system; if
needed, the agent may violate the soft constraints to find sequences
of higher utility.

3.3 Norm identification

Formalizing the soft constraints to be integrated within the system
as hard constraints would stop the agent to find profitable sequences
that violate the soft constraints. With this motivation, let us define
the problem of norm identification for the transition system. We
select a grammar G that defines a search space over expressions that
can describe the set of cases in I, and then consider an optimization
routine to maximize the number of covered elements in I' and at
the same time minimize the number of covered elements in I'¢.

Let us denote g € G to be an expression taken from the grammar
G, and let p5(X) be a set function that counts the number of ele-
ments of X C P (TS) that are covered by the expression g. Then we
may formulate the optimization problem of finding an expression
g € G that optimally covers the set T as:

max 1ig(T) = pg(T°) @)

A constraint on j5(I'°) can be introduced to prevent covering too
many instances of T'°. This requirement can be supplemented by a
complexity penalty to set a preference on parsimonious representa-
tion. Equivalently, one could aim to find the description of the set
T'¢, and try to minimize the cover over the elements of T, but for
reasons discussed in the section 4, this should be less effective.

3.4 Active and semi-supervised learning

The exact value of the measures yi3(I') and y14(T) for expression
g € G cannot be realistically known, because one does not have
a list of all elements of ' or I'. The value of y; will always be an
estimate, depending on the available information. Let us consider
D =D1UD_1UDy to be a set of instances of H, respectively
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labeled as compliant D1, non-compliant D_1, and unlabeled Dy .
In full generality, one needs to address two questions. Firstly, which
elements of H to sample. Secondly, which sampled elements to
label. Both of these questions are extensively studied in the area
of active learning, where budgetary constraints are introduced for
both the sampling and labeling process [30].

The answer to the first question is provided here by means of the
utility-maximizing agent solving the optimization problem (1). The
method we propose finds the local optimum of the utility function
with its locally optimal sequence, and use a perturbation method
[16] to obtain instances of behavior that are structurally close to
the optimal sequence, i.e. obtaining representative examples of a
fraud scheme (see section 4.2 for further details).

The answer to the second question is more complex. In the area of
active learning, the oracle usually represents the human component
capable of labeling the sampled instances. From the legal point of
view, the oracle can be e.g. a team of legal analysts, or a judge, that
decides if an instance complies to the implicit legal rule, thus the
soft constraint, or not. The label presented to the oracle are selected
depending on a query strategy, prioritizing which instances to label
such that (in principle) the highest information gain is obtained
with respect to the optimization routine (2). The development of
general strategies is an active area of research, however, here we
can design the strategy based on theoretical considerations.

In the application context, the budgetary constraints on the
number of queries might be extremely tight. This means Dy will
have much larger cardinality than 97 U D_;. This not only means
that the estimate of ji5(T") and piy (T') might have a high estimation
error, but also that the number of instances might be too low to
find an expression g that realistically covers a significant part of
T. In general, the area of research concerned with using unlabeled
data is semi-supervised learning [37]. Transduction learning [38] is
a method of semi-supervised learning related to a set of algorithms
known as case-based learning [1]. This method avoids solving the
general problem of finding the mapping between the input and
the labels, but rather aims to obtain the labels by investigating the
instances locally. Methods operating locally are preferred in this
study, because global classifiers typically require a high number of
labels. We elaborate on the locality property in section 4.

4 COMPLETION OF THE NORMATIVE SYSTEM

This section presents a framework that is combining the optimiza-
tion problems (1) and (2) with an active and semi-supervised learn-
ing component in order to formalize soft constraints and integrate
them into the system as hard constraints. The framework is visual-
ized on the diagram on Figure 1.

4.1 Initialization

As the initial step, we need to define the transition system: the
environment in which the agent will operate, the hard constraints,
the utility function, the start state, and the end states. The whole
process is valid per specific start and end states. For example, if
the agent owns $1000 at the start, then the extracted norm will be
valid only for the given start state.!

! Alternatively, with additional machinery, one may consider a variable defining the
amount, but this is out of the scopes of the present paper.
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4.2 Iterative process

The proposed framework requires certain structural properties of
the set T to be likely true, justifying the choice of using the utili-
tarian agent, as well as the perturbation method. These properties
allow for the diagram on Figure 1 to form a closed loop, with ex-
plicit termination criteria. For the cases ruled as norm-violating,
we often see in practice that illegal activities have a tendency to
cluster into distinct schemes that follow a certain behavioral pat-
tern (see e.g. [33]). The combination of consistency in legal practice
and behavioral pattern clustering support us in assuming a par-
titioning of the I into subclasses of non-compliance I} such that
I' =T U ... UTy, with relatively small intersection between indi-
vidual classes. If we wish to find a formal representation for the
set T, it seems reasonable to find the representation for each class
I separately. The main reason for this is that each class should
correspond to a local optimum of the utility function. This intuition
was not only observed empirically [4, 5, 19, 25, 32], but was also
demonstrated computationally, e.g. for Ponzi schemes and for tax
evasion [12, 15].

4.2.1 Structural neighborhood. Following up on the previous dis-
cussion, we are interested to let the agent converge to different
local optima, select the set of instances for automated formaliza-
tion, and repeat until all classes are covered, ideally starting from
the most profitable ones. In other words, the agent needs to tra-
verse the classes I.. Without loss of generality, one can assume
that each class I} has an element with the highest utility. Let us
denote yy to be the local optimum of the class Iy with utility u(yx),
i.e. the most profitable noncompliance scheme of the class. If we
consider a neighborhood function N that assigns a set of neighbors
N(yx) € P(TS), then we can pose a question about the intersection
N(yx) NT, that is, what kind of perturbation of y; can change the
normative membership of the behavioral instance. Clearly, one does
not know how to decide which instances of N(y;) are members
of T}, because this is equivalent to finding the formal expression
for the class I, which is the primary objective. Nevertheless, if the
local optimum y; can be found, then one can expect a significant
intersection between N (yy) and Iy, which gives us an idea of how
to generate elements of Ty.

4.2.2  Perturbation of the local optimum. In order to obtain a for-
malization of the class I}, one needs to build the training set D
that includes not only the optimal instance, but also instances in
its proximity. If the agent ends up converging to a local optima by
solving the optimization problem (1), then we obtain the locally
optimal transition sequence y;. A way to obtain the neighborhood
N (yg) is to perform perturbations to y. In general, if we obtain a
random perturbation of yi, then one needs to check the compliance
of this new instance with the oracle, a choice that would bring to
violate the budgetary constraint, as the number of queries would
be too high. For this reason, a method needs to be defined that pri-
oritizes queries to produce the highest information gain for solving
the optimization problem (2).
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Figure 1: The process starts by introducing the utilitarian agent to a normative system, where both hard and soft constraints are
present, to solve the optimization problem (1). After the agent converges to a local optimum, the locally optimal trajectory will
be used to initiate a perturbation process in order to generate instances of behavior that are structurally close to the trajectory.
A labeling process is then deployed to obtain the dataset . The dataset is used to find a formal expression by solving the
optimization problem (2), defining non-compliant instances in the neighborhood of the locally optimal trajectory. The human
analyst, acting as an oracle, analyzes the proposed expression, and either terminates the process or initiates a new iteration.

4.3 Labeling process and automated
formalization

Depending on how samples are obtained, active learning is usually
divided into a stream-based selective sampling and pool-based sam-
pling [30]. We assume that the process of obtaining the unlabeled
instances of NV (y) is separated from the oracle, which means we
position ourselves in the latter approach.

4.3.1 Level of active involvement. Since the optimization problem
(2) depends on the quality of data D provided, results may vary.
Active learning often takes advantage of this by evaluating the
query strategy based on the optimization results, possibly changing
the strategy if the performance is not sufficient. This means that
the number of repetitions of the optimization problem (2) can be
relatively high, and depends on computational resources. Searching
the discrete space of the grammar G is however a computationally
intense task even for relatively simple grammars. For this reason,
we assume that for each class I} the optimization process (2) is
solved only once, which means the emphasis is placed on gaining
information from unlabeled instances.

4.3.2  Selection based on similarity. The challenging aspect of norm
induction is that arbitrary large perturbations from y; do not nec-
essarily change the compliance class membership, and, at the same
time, even one change in a single state-action pair can make y
fully compliant (see e.g. section 5.1). Due to this property, we claim
that the query method ought to be focused on the boundary region,
that is, the instances where the compliance class is shifted by the
perturbation. Therefore, we need a method that provides a good

guess where the boundary region is, i.e. where the instances with
the highest level of uncertainty about the class membership are
located. Case-based learners typically utilize a similarity function to
obtain numeric values describing the similarity between instances.
The working assumption is that instances with high similarity are
more likely to have the same label.? A weight matrix W can be ob-
tained by calculating the similarity between each pair of the sample
set N'(yg). A transductive inference method can be then applied to
calculate scores w of unlabeled instances. In binary classification,
a score close to 1 would indicate compliance, and a score close to
—1 non-compliance. Labeled instances have scores equal exactly to
1 or —1. The score close to zero might be the most interesting one
for the query strategy, as zero indicates either an instance that is
not similar to most data, or an instance that lies on the boundary.

4.3.3  Forming of the final dataset. The labeled sets D1 U D_1 pro-
vided by the oracle might be insufficient to have a good estimate
of pig(T) — pg(T€). Moreover, the correct expression g from the
grammar G might not be identifiable for a small labeled dataset. To
mitigate this issue, the score vector w can be element-wise com-
pared to a predefined threshold 1 and enrich the set of labeled
instances. In other words, the i-th generated instance by the per-
turbation method will be added to the set D1 if w; > 5 or to the set
D_q if w; < —n. Finally, the enriched dataset is then used to solve
the optimization problem (2) for the chosen grammar G.

2For the moment, we simply assume that the similarity function is given. We will
discuss this assumption in the examples and in the discussion section.
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4.4 Termination, verification and testing

The human analyst can terminate the process on Figure 1 based on
predefined termination criteria. The trivial criterion for termination
is that the dataset D_; is empty (no soft constraint violation was
observed). Once the system generates a proposed formal expression,
there are reasons why the oracle may reject the expression. It can
be that the proposed expression blocked every possible path from
Sstart tO Seng, labeling the system unusable. If the expression is
possible to understand by the human analyst, then the analyst
acting as the oracle can inspect the proposed expression and make
the final decision by conducting its legal analysis. If the proposed
expression is accepted, then it will be integrated into the normative
system as a hard constraint, and the whole process is repeated for
a different local optimum y, ;.

5 APPLICATION OF THE FRAMEWORK

This section illustrates the proposed formalism on two distinct
examples: a simplified practical environment, and a grid world.
Both demonstrations have certain modelling properties relevant
when developing solutions at scale. The former bridges the previous
theoretical considerations with an applied perspective, and the
latter dives deeper into computational machinery of the framework.

5.1 Tax optimization

Consider a transition system modelling transfer of an intellectual
property (IP) among international companies, and transactions of
royalty payments for the usage of the IP. Each agent (company)
has tax residence as its main attribute, together with a variety
of owned assets, e.g. IP ownership, account balance, company
shares. Attributes of each agent define the state of the transition sys-
tem. The actions allowing transitions are: IP-transfer (oldOwner,
newOwner) to transfer IP, IP-sublicense(licensor, licensee)
to sublicense IP, payRoyalties(payer, receiver) for paying for
the use of the IP. Moreover, each company can create a new (child)
company using the action createChild(attributes) (attributes
are specified as a dictionary). For simplicity, we assume the system
provides these actions without the need to specify further details.

5.1.1 Initial state and the utility. Let us define the initial state of the
system consisting of a US-based company named Multi-national
enterprise, which owns intellectual property IP, and is active in
Portugal through a child company named Portuguese company.
Clearly, the profits of the child company need to be transferred to
its parent. The utility function can be thus defined as the profits
minus the aggregate transaction costs. These costs predominantly
depend on the tax code of the country of residence, namely US and
Portugal. However, if the transactions are passing through different
countries, then various tax benefits may apply. The goal of the
agent is to find the most profitable transaction sequence, i.e. to find
a sequence of actions minimizing the amount of taxes paid.

5.1.2  Optimal sequence. Recalling section 2, the optimal sequence
of actions to minimize taxes paid in Portugal or US (prior to 2015)
is to use Double Irish-Dutch Sandwich base erosion and profit

3Although we assume that the expressions drawn from the grammar G are fully
understandable by the human, it might still be the case that the expression is too
complex to be analyzed in a reasonable time.
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shifting scheme [17]. In our case, this is implemented by writing 11
commands:

createChild({name: Irish company A, tax residence: Bermuda})
IP-transfer(Multi-national enterprise, Irish company A)
createChild({name: Dutch company, tax residence: Netherlands})
IP-sublicense(Multi-national enterprise, Dutch company)
createChild({name: Irish company B, tax residence: Ireland})
IP-sublicense(Dutch company, Irish company B)
IP-sublicense(Irish company B, Portuguese company)
payRoyalties(Portuguese company, Irish company B)
payRoyalties(Irish company B, Dutch company)
payRoyalties(Dutch company, Irish company A)
payRoyalties(Irish company A, Multi-national enterprise)

Following this scheme, the profits v are received in the form of
royalty payments with little to no tax. The essence of the Double
Irish-Dutch Sandwich can be described in a relatively concise way,
attaining a form that can be regarded as minimal, because removing
or inverting any action would label the scheme useless. A scheme
ought to be therefore understood always as a set of non-compliant
activity following a certain pattern, with a minimal form being
present as the main representative of the set.

5.1.3 Complexity and camouflage. In practice, the Double Irish-
Dutch Sandwich scheme is far more complex, as the network of
child companies, IP sublicensing, or royalty payments is typically
substantially larger. In fact, this additional level of complexity can
be associated with camouflaging behavior, i.e. additional actions
performed with the purpose to make it more difficult to track all
transactions by the tax authorities. This illustrates the idea of struc-
tural neighborhood of a scheme discussed in sec. 4.2. The agent can
add some additional actions that preserve the operating principle,
i.e. being structurally close to the minimal form, e.g. creating addi-
tional layer of child companies in various countries. If we assume
that any camouflage incurs a cost on its own, and then camouflag-
ing will decrease the utility of non-compliance, then the minimal
form is locally optimal. If a data-driven detection method is used
to penalize the utility function, then the camouflaging costs are
outweighed by the benefits of lower detection risks.

5.1.4 Abstraction. In order to formally describe the scheme as a set,
one can use the minimal form representative to find its structural
neighbors that are non-compliant. By perturbation of the minimal
form located in the local optimum of the utility function, one can
either generate a new instance of the scheme, or make the sequence
of actions compliant. In the case of Double Irish-Dutch Sandwich
scheme, a more complex instance can be created by inserting a few
additional commands, e.g.:

createChild({name: Dummy company, tax residence: Tax heaven})
IP-sublicense(Irish company A, Dummy company)
payRoyalties(Dummy company, Irish company A)

anywhere into the sequence above. The issue is that there can be
arbitrarily more complex instances, and not all of them might be
necessarily non-compliant. For example, adding a command:
IP-sublicense(Multi-national enterprise, Portuguese company)

makes the sequence of transactions compliant, because the tax on
royalty payments would be paid. For this reason, one needs to have
a sufficiently general formal model and an efficient way to learn
the description of the scheme, capturing all its instances.
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5.2 Pathfinding with hard and soft constraints

At this point, we illustrate the application of the proposed frame-
work on a 8 x 8 grid environment displayed on Figure 2 with hard
(blue tiles) and soft constraints (red tiles, unknown at start). In
this environment, an agent is tasked with finding the sequence
of state-action pairs that maximize the total reward as a sum of
its immediate rewards. After every action, the agent gets imme-
diate reward —0.1, except when reaching the end position with
reward of 50. Since we assume we do not know where are the non-
compliant positions, we cannot integrate this knowledge into the
reward function at the start of the learning process.

The state of the system observed by the agent is its coordinate
position. The set of actions is up, left, right, down movement
from any position, except if the agent is about to get out of the grid
or is about to violate the hard constraints, in which case the action
is impossible to make. This environment exhibits two important
properties that will simplify the computation:

o objective accountability: in order to decide if a sequence is
in I, it is sufficient to consider the states of the system as
partially observed by the agent.

e Markov “normative” property: a sequence is in I' if and only
if there exists a state s € I" such that the transition sequence
goes through s.4

The first property clearly holds, as the path of the agent is uniquely
defined by the sequence of its own positions. This means that the
environment can be modelled only as a sequence of positions, being
the states of the transition system, and not necessarily as a sequence
of states of the entire environment, which greatly simplifies the
computation. The second property holds because every path over
the positions violates the soft constraint if and only if at least one
position of the path is inside the red region. By both properties, the
information that will be recorded into D are the positions of the
agent.

5.2.1 Utilitarian agent. The goal of the utilitarian agent is to reach
the end position starting from the start position so that its utility
is maximized. The choice of the algorithm to solve this task ought
to be suited well for the given environment, as some algorithms
can perform better in specific environments. In this study, we chose
reinforcement learning, as this class of algorithms appear to gen-
erally scale well across various environments. We implement the
utilitarian agent using standard Q-learning to find the optimal path
[39], with discount factor @ = 0.9, and learning rate & = 0.5.
Starting from the start position, we perform 1000 episodes with
200 actions per episode during the training phase. The e-decay is
set to 0.001 with initial value 1.0. If the algorithm converges, the
optimal path represents the local optimum y.

5.2.2  Perturbation routine. After the optimal sequence is found,
the perturbation routine is used to generate the neighborhood.
We chose a very simple perturbation routine that will explore the

4 Analogous to Markov property of memorylessness, i.e. the compliance status is
independent of the path and depends only on individual states visited.

5Q-learning [39] approximates a Q-function Q(s, a) capturing aggregated rewards by
following an iterative procedure:

Q(s,a) < Q(s,a) +a - [R(s,a) +w - maxy Q(s",a") = Q(s,a)]
where R(s, a) is the immediate reward, c is the discount factor, « is the learning rate,
and s’ is the new state. This Q-function is then used to select actions of the agent.
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Figure 2: The grid environment with soft and hard con-
straints marked by red and blue, respectively. The start state
of the agent is at position (0,0) and the end state is position
(7,0). The immediate reward (cost) of each move action to a
square is —0.1, except for the blue region that is not accessible
by the agent, and the end position with reward equal to 50.
Note that the red regions do not have higher reward, which
means the agent has no intrinsic motivation to violate the
soft constraint.

positions close to the positions traced by the optimal path. The
agent starting on the start position and acting according to the
optimal Q-table takes a random action with probability p = 0.1 to
deviate from the optimal path. Since the agent is acting according
to the Q-table, it will converge back to the optimal path in the
next action to eventually reach the end position. Since the Markov
normative property holds, one does not need to record the entire
sequence, but only needs to record the positions that were not
previously visited. Following this routine, the agent will eventually
visit all positions in proximity to positions traced by the optimal
path. In order to obtain a good sample of the neighborhood N (y),
we run this perturbation routine for 50 paths.

5.2.3 Active learning component. Initially, only the compliance sta-
tus of the start position and the end position is known, and labeled
with 1. As discussed in section 4, it is desirable to query instances
with score close to zero. We model this requirement by defining an
acquisition function f, that maps the scores w to a vector of the same
length, such that f(-1) = f(1) = 0 and max,¢(_1,1) f(x) = f(0).
A function that satisfies these requirements is the kernel of a shifted
Beta distribution (see Figure 3). Once the vector w is mapped by
the acquisition function, the output vector is normalized in order to
define a discrete probability distribution over the corresponding in-
stances. Using this distribution, a random instance is queried. Once
the label is obtained from the oracle, the score vector w is updated
including the new label, and the labeling process is repeated until
the budgetary constraint is met. Once the labeling process reaches
its budgetary constraint, one more update of w is performed, and
the final dataset is formed using the threshold rule |w;| > n = 0.65
for each generated instance i.
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Figure 3: Kernel of a shifted Beta distribution with param-
eters 5, 5. The shape of the curve defines the strength of
preference to exploration. Instances with score equal to —1
and 1 are mapped to zero, which means there is zero proba-
bility to be selected for a query. Conversely, instances with
the score equal to zero have the highest chance to be picked
for a query.

5.24 Semi-supervised learning component. Graph-based transduc-
tion learning can be used to obtain the score vector w relevant
for query strategy [34]. In order to obtain the similarity matrix W,
a similarity measure is used to calculate the similarity between
every two instances. In our case, we use the Euclidean distance
between the position coordinates. Once the similarity matrix W is
calculated, the next step of the graph-based transduction learning is
construction of the graph. The graph is constructed by identifying
the instances with nodes, and the edge set E is formed by draw-
ing an edge between all pairs of nodes with similarity lower than
7 = 1.5. Finally, the score vector w is obtained using an inference
algorithm.

While several methods were developed [34], we chose the Gauss-
ian random fields method [40] to find the labeling score w, because
of its simplicity and ability to calculate the score while keeping the
score of known labeled instances equal to 1 or —1. The algorithm
propagates known label information over the network, and assigns
a score to each node as the weighted average of the score of the
label assigned to its neighbor. The scores can be obtained iteratively
by updating the score according to the following formula:

2 (uveE) WuoWu

-
o Z(u,uEE) Wiy

for every unlabeled node v using labeled and unlabeled nodes u. The
vector w is initialized using the true labels and random values for
unknown labels. During the simulation, we have used 50 iteration
updates.

Graph-based transduction admits a natural interpretation in the
grid environment, as can be seen in the lower row on Figures 4.
The score of every square is influenced by its closest neighboring
squares, and the parameter 7 controls the maximal distance of influ-
ence. The Gaussian random field algorithm can then be interpreted
as propagation of known label information through the grid, with
7 controlling the distance of the information source.

5.2.5 Automated formalization. In section 1, we claimed that non-
compliant behavior has the tendency to cluster into schemes, i.e.
classes in the space I'. This is a core requirement not only for the
semi-supervised learning component, but also for the design of the
grammar. In the grid example, this property holds, and manifests
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by the non-compliant (red) regions forming connected areas. This
means one can consider a grammar that is formalizing the notion
of an area, that is, a geometric object expressed in a mathematical
language. In this illustrative example, we already know a rectangle
is the most suitable. Assuming this type of regularity, the high level
representation covering the set I for k = 1,2 is defined by the
expression {(x,y)|x1 < x < x2,y1 < y < ya}, interpreted in the
standard geometric way as all position coordinates contained in a
square defined by two opposite corner points (x1,y1) and (x2, y2).
Even after correctly identifying the most suitable description for
the subsets of I, solving the optimization problem (2) is still a non-
trivial task. A heuristic method is employed to find optimal (x1,y1)
and (x2, y2) by randomly sampling points from the grid. To restrict
the expressibility of the high-level expression, that is, the covering
area of the rectangle, we consider a penalty of the objective function.
The value of the objective function is multiplied by (ab) ", where a
and b are the length and height of the rectangle. This means that the
objective function is penalized by the area of the proposed rectangle
controlled by the parameter h, thus restraining the solution from
covering too many unlabeled data. We set this parameter to 0.25.

5.2.6 Simulation results. On Figure 4 we can see how the frame-
work managed to include most of the set ' = I} U I as hard
constraints. The sensitivity of the parameters of the relevant algo-
rithms remains to be investigated, but generally it appeared that
the framework provides a good robustness, and manages to cover
a significant part of T within 3 iterations with the budget of 5
queries per iteration. Note that even if there are still some remain-
ing red squares in the environment (eg, Figure 4c), the paths leading
through the remaining red squares are no longer profitable. This
means there is no reason for the utilitarian agent to cross the red
squares, and can choose a compliant path of higher utility. We also
observed that the component mainly influencing the success of the
framework is the quality of the query. If less informative squares
happen to be sampled, then the framework can fail in blocking all
profitable non-compliant paths.

6 DISCUSSION

The strength of the proposed framework lies in its modularity. Ev-
ery component of the system, whether it is the algorithm for solving
the optimization task (1), the perturbation method, the query strat-
egy, label inference, or the grammar and search algorithm for the
optimization task (2), can be substituted by a tool more suitable for
the given context.

6.1 Formal model choice

In the example in section 5.2 the grammar used consisted only of
the expression of a rectangular area with two free variables. If the
non-compliant areas were circles or any other shapes, then the set
I' would be either insufficiently covered, or covered including many
compliant instances. Having no prior knowledge on the topology of
I' makes it difficult to choose a suitable model. The grammar could
be extended with different geometric objects, but this would come
at the cost of a larger search space. In the example in section 5.1,
the task gets more difficult due to the fact that the minimal form of
the Double Irish-Dutch Sandwich scheme can be extended with an



Do agents dream of abiding by the rules?

(a) The environment with all non-
compliant profitable paths free.

mal path.

(d) Inferred information about the
optimal neighborhood

(b) The first soft constraint is inte-
grated, the agent finds a new opti-

(e) Inferred information about the
new optimal neighborhood.
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(c) Integration of the last region re-
sults in blockage of all profitable
paths.

(f) The set D_; is empty, the in-
ference process labels all instances
with 1.

Figure 4: In the upper row, we see the optimal paths of the agent. In (a), initially, all soft constraints (red area) are crossable.
The agent finds the optimal path y; (marked in purple dots). Using the optimal path, the perturbation routine generates the
neighborhood N (y1) and the oracle performs labeling with the help of graph-based transduction learning. In (d) the score vector
w of the neighborhood is plotted, where green squares indicate high certainty of a compliant position and the red squares
indicate high certainty of non-compliant position. The squares with yellowish color indicate uncertainty about the compliance
status of the square. All instances with score higher than the threshold n = 0.65 are included into the automated formalization
process. In (b), we can see that the system identified the norm-violating region, which means this region is integrated as a hard
constraint. In the next iteration step, the agent is free to find a new optimal path y;. The formalization process is repeated with
a new score vector w, as visible in (e), and another norm-violating region is integrated. The agent is free again to find a new
path, however, as can be observed in (f) there are no known norm-violating instances; the completion process terminates.

arbitrary amount of camouflaging actions. These are examples of
insights relevant for the grammar design.

6.2 Similarity and multi-agent extension

While research on autonomous utilitarian agents have progressed
rapidly, the main weakness of the framework appears to be its re-
liance on the notion of similarity to extrapolate knowledge from
a few labeled instances. General similarity functions cannot be
expected to reliably extract relevant information about the true sim-
ilarity between legal cases. Metric learning might however mitigate
the issue [20]. A more crucial limitation of the preset framework
is that it is not applicable in multi-agent settings (cooperating,
competing). Recent advancements in the area of (utilitarian) multi-
agent learning seems to be promising in solving the optimization

problem (1) [21]. However, the identification of the cooperative
behavioral pattern into an explainable formal expression remains
a most prominent challenge in the area of norm identification [6],
and in principle our framework could provide a starting point.

7 CONCLUSIONS

Norm identification, induction, formalization, and integration, is
still an open topic in the area of Al & law. While the interaction
between an autonomous agent and a human providing sparse feed-
back is a traditional topic in robotics, our study brings forth this
question in the context of normative systems and compliance check-
ing.

From the point of view of a potential perpetrator, formalization
of laws can also be used as an efficient tool for optimization of
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norm-violating behavior. The framework proposed in this study
has the potential to act as an effective countermeasure. For their
modularity and generality, the principles outlined in our study
may serve as methodological guidelines for developing solutions
at scale. On the experimental side, further research is needed on
applying our or similar frameworks on use-cases of compliance
checking systems used in practice, to compare and benchmark
various available state-of-art AI methods, possibly extending the
framework to a multi-agent setting.
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