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ABSTRACT

Labeling textual corpora in their entirety is infeasible in most prac-
tical situations, yet it is a very common need today in public and
private organizations. In contexts with large unlabeled datasets,
active learning methods may reduce the manual labeling effort by
selecting samples deemed more informative for the learning pro-
cess. The paper elaborates on a method for multi-class classification
based on state-of-the-art NLP active learning techniques, perform-
ing various experiments in low-resource and imbalanced settings.
In particular, we refer to a dataset of Dutch legal documents con-
structed with two levels of imbalance; we study the performance of
task-adapting a pre-trained Dutch language model, BERTje, and of
using active learning to fine-tune the model to the task, testing sev-
eral selection strategies. We find that, on the constructed datasets,
an entropy-based strategy slightly improves the F1, precision, and
recall convergence rates; and that the improvements are most pro-
nounced in the severely imbalanced dataset. These results show
promise for active learning in low-resource imbalanced domains
but also leave space for further improvement.
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1 INTRODUCTION

Many governmental organizations have an urgent need to regain
control of their document archives [46]. In the Netherlands, for
instance, the “Actieplan Open Overheid”!, and international part-
nerships like the Open Government Partnership?, dictate that gov-
ernment documents need to become publicly available; the “selec-
tion list”® indicates if and how long a document should be publicly

Ihttps://www.rijksoverheid.nl/onderwerpen/digitale- overheid/open- overheid
Zhttps://www.opengovpartnership.org/
3https://vng.nl/sites/default/files/2020-02/selectielijst_20200214.pdf
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available, based on the laws outlined in the Archiefwet 2021*. How-
ever, even if opening up governmental data is acknowledged to
bring several benefits (e.g., transparency, enabling participation,
increasing legitimacy), in practice, organizations are hesitant to act.
Preparing data for publication is time-consuming [48], especially
with unstructured data like text documents (e.g., permits, requests,
complaints, notices, etc.), for which manual labeling is tedious and
expensive [11, 14, 32]. From a broader perspective, it is easy to ac-
knowledge that private organizations face similar challenges. With
the exponential accumulation of digital assets, any administrative-
oriented department has to tackle similar categorization problems.

Motivating problem. The essence of the problem can be described
as such: A massive collection of (administrative) documents needs
to be labeled according to some given categorization scheme, where
there is a lack of quality labeled data. In general, such archives may
contain videos, images, audio, emails, and various other types of
documents; however, as textual data has a prominent role in ad-
ministrative settings, this work focuses only on the problem of
classifying textual documents. In particular, we are interested in
contexts where minority languages are at stake (e.g., Dutch), texts
may be generally written formally, and tend to include expert ter-
minology (e.g., legal texts). This entails that at least part of the data
belongs to a low-resource domain: it is neither English nor part of
the standard training data of typical language models. Additionally,
we assume categories to be highly imbalanced, as this scenario
represents most practical cases.

Manually annotating an entire corpus is infeasible in these condi-
tions; therefore, we aim to train an inferential model to assist with
labeling. In principle, unsupervised (clustering) approaches are less
suitable as they would not necessarily match the desired classifi-
catory schema. Fortunately, when unlabeled data is abundant but
manually acquiring labels is expensive, active learning is a relevant
method to reduce the labeling burden [11, 43]. The technique (not
confined to NLP tasks) aims to maximize the information gain of a
machine learning model by drawing the most informative instances
from the unlabeled pool. Even if active learning assists us in select-
ing the data points to manually label and use training, we still need
to decide on a machine learning method to construct an inferential
model for the task. For this purpose, large pre-trained language
models (PTLMs) are commonly used in NLP today to achieve state-
of-the-art results [39]. They provide language representations that
can be used for downstream tasks in other datasets (e.g., text classi-
fication on a smaller dataset). In principle, PTLMs can be integrated

“https://wetten.overheid.nl/BWBR0007376/2022-05-01;
https://www.nationaalarchief.nl/archiveren/kennisbank/wet-en-regelgeving
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within an active learning process and transfer their embeddings to
help learn the distribution underlying our classes, without the need
to learn a general language first. Indeed, previous work has shown
that active learning can successfully improve PTLM accuracy con-
vergence rates (i.e., less training data is needed for the accuracy
metric to approach the final score), even in an imbalanced binary
classification setting [1, 11].

Although the introduction of active learning dates back over
three decades, the earliest systematic study on employing active
learning to fine-tune transformer-based PTLMs dates back only
to three years ago [11], gaining traction in the context of trans-
fer learning and large language models. Multiple active learning
strategies have been explored in [27] to fine-tune a BERT model
for classification on AG News [15], TREC-6 [38], and an internal
Hindi-English hybrid dataset. The Mixed Aspect Sampling frame-
work [1] proposes to use active learning to fine-tune a PTLM to
detect misogynism and hate speech in text in imbalanced datasets.
A more general active learning framework is investigated in [22],
introducing a new sampling strategy and testing different strategies
to fine-tune PTLMs to a host of common NLP benchmark tasks like
topic classification, sentiment analysis, natural language inference,
and paraphrase detection. However, all of these contributions are
evaluated mainly on data sources similar to those used in PTLM
training (e.g., English texts), with little imbalance and/or binary
classes.

Classification on legal texts. Classification of legal texts (e.g.,
[3, 4, 33, 36]) is a field of its own. Although inspired by these works,
we here approach the problem primarily from a low-resource, lack-
of-quality labels perspective. Some of these papers, e.g., [3] find
state-of-the-art results in PTLMs; others, e.g., [4] are critical of
deep learning in the legal domain and show that it can be out-
performed by concept-based machine learning approaches. Poten-
tial for greater results has been observed by integrating concept-
based approaches with fine-tuned deep learning as in [35]. Since
these works tend to operate in a fully labeled setting, active learning
could be helpful in the complementary niche domain where labels
are hard to come by.

Aims and contribution of the paper. Our research objective, aligned
with the business problem outlined in the introduction, is to in-
vestigate multi-class classification in an imbalanced, low-resource
setting. In this work, after constructing a dataset for this specific
task, we run a series of experiments, creating the first insights on
the effectiveness of active learning. Our main contributions are then:
(1) We define and publish a dataset of (Dutch, legal) low-resource
text for (imbalanced) multi-class classification task (section 3); (2)
We show that active learning (section 4) can slightly outperform
our random baseline in this task (section 5); and, more importantly,
(3) we observe and discuss how active learning significantly boosts
the convergence rate in a severely imbalanced dataset (section 6).

The code for this paper is available online’.

Shttps://github.com/emielsteegh/mdwnlp
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2 BACKGROUND

2.1 PTLM, Domain Adaptation, and Text
Classification

General language understanding tasks like SuperGLUE [39] and
its predecessor GLUE [40] are dominated by Pre-Trained Language
Models (PTLMs). The shift from first-generation word embedding
models to second-generation pre-trained contextual encoders can
largely be attributed to the BERT model and the transformer archi-
tecture [9, 28]. They rapidly advanced accuracies on various tasks
in the field. Extensive surveys and taxonomies have been presented
eg. in [18, 28]. In downstream NLP tasks like text classification,
PTLMs can transfer language representations [28] to reduce the
labeling burden.

Domain Adaption. Different text domains have different lan-
guage use [29]. Large language models like BERT usually learn
general or domain-specific language representations during the pre-
training based on their training data. In pre-training, it performs
self-supervised language modeling tasks (e.g., next sentence predic-
tion, masked language modeling) [18]. Training from scratch is the
first step in training a PTLM [9]. SciBERT [2] is a domain specific
PTLM trained from scratch on a corpus of science texts. Although
proven effective, it is very time-consuming and requires a large
volume of text. In Continued Pre-Training (CPT), parameters from
a base PTLM (trained on a similar domain) are initialized, and the
model continues pre-training on domain-specific data. For example,
BioBERT[19] was created by initializing a base BERT and adapting
it to Biomedical. Parameters are not learned from scratch; the base
model parameters are tuned to the target domain. This requires
fewer data than training from scratch if lower-level language con-
cepts are similar between domains [18]. Task-Adaptive Pre-Training
(TAPT) is an inexpensive way to adapt to a domain; the base model
is initialized and performs only one or two epochs of continued
pre-training on a small amount of unlabeled task-related data. Per-
forming CPT or TAPT before fine-tuning can result in significant
performance boosts in downstream tasks [10, 17, 18, 21, 23, 29],
especially when dealing with a large volume of data without la-
bels. In this work, we choose to perform TAPT and compare the
performance of the adapted model to its base model. We choose
BERTje [7] — a monolingual Dutch PTLM — as the base PTLM for
our experiments because of its proximity to our target domain, due
to the shared Dutch language.

Text Classification. In the supervised fine-tuning process for clas-
sification, the PTLM network is extended with one or more task-
specific layers and then trained on a labeled dataset [28]. In low-
resource text classification domains such as Dutch [9], German [30],
Filipino [6], and legal [3], fine-tuned PTLMs consistently beat pre-
vious methods in terms of performance. Modifications can be made
to the fine-tuning process to improve results further. We decide to
follow [10, 22], which show that running multiple evaluations per
epoch and keeping the checkpoint with the lowest validation loss
consistently leads to better results.

2.2 Active Learning

After adapting a PTLM to the task domain, fine-tuning trains the
model on the downstream classification task; however, supervised
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classification needs labels. Active Learning (AL) is a technique
that aims to improve model prediction accuracy at a lower cost by
selecting the most informative instances for labeling [13, 32, 43].
Its purpose is to reduce the cost/time spent on human annotation.
Figure 1 provides an illustration of AL. The Oracle O labels an
initial sample of the unlabeled data D, creating the labeled
data Dj,p. The model M is trained on Dy, producing the initial
model. Then the active learning loop starts: The Query Strategy
S selects a new sample from D, that is labeled by the Oracle
and added to D, and then the model trains again on the new
Dy ap- This loop repeats until we meet a stopping criterion SC. The
stopping criterion is frequently defined as a labeling budget (e.g.,
1000 samples).

Query Strategies. The most important factor amongst the hyper-
parameters (query strategy, query sample size, initial sample strat-
egy or size, stopping criterion) is the query strategy S(Dpo01) [1]-
Strategies usually fall into two categories: diversity sampling or
uncertainty sampling [31, 32]. Diversity sampling methods aim to
select samples representative of D, or the data source, to exploit
the differences between classes in the feature space. Uncertainty
sampling takes advantage of the model’s low confidence predic-
tions; entropy is usually the best performing classical sampling
strategy. Random sampling is generally used as a baseline strat-
egy. Depending on the fine-tuning implementation, this iterative
random approach leads to better [22] or similar[34] accuracies com-
pared to sampling the entire budget for one iteration of training.

2.3 Active Learning for NLP

It is known that active learning can improve convergence rates
in NLP tasks [1, 12, 22, 32]. The investigation of PTLMs in active
learning as a way to deal with small datasets was identified in [31]
as an open research question.

State of the art query strategies. Recent state-of-the-art NLP ac-
tive learning works use more complex query strategies that com-
bine model uncertainty and data diversity. In the contrastive active
learning (CAL) framework [22], S selects samples based on the
similarity between labeled and unlabeled documents (diversity);
these neighboring samples are then ranked based on prediction
certainty. In [22], CAL outperforms all other strategies, yet Entropy
sampling results are always among the bests. Active Learning by
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Local Sensitivity and Hardness (ALLSH) [47] determines sample
informativeness by creating augmented data regions around their
samples (diversity) and checking them for diverging predictions
(uncertainty). [47] shows that ALLSH consistently outperforms
Entropy and CAL accuracies in NLP tasks (except in question an-
swering) by about 0.2 — 2%. Unfortunately, we could not access its
code nor reproduce it. The Mixed Aspect Sampling (MAS) [1] for
binary classification relies on committee query strategies to sam-
ple different aspects of the dataset. MAS scores as the best of the
strategies, although the gap with other historically well-performing
strategies is only 1-2%; yet it provides a significant accuracy im-
provement compared to the random baseline.

Practical obstacles for active learning in NLP. Two main obsta-
cles are identified in the literature. First, uncertainty estimates are
generally inaccurate [31]: PTLMs do not naturally produce class
uncertainty scores the way earlier models used in active learning do
(e.g., support vector machines). This can be overcome by training
the model to predict certainty as well as the usual outcomes [1].
A second obstacle is the robustness of D, when it is tuned to
a given model with no regard for diversity; uncertainty-sampled
labeled sets can perform worse than a randomly sampled set when
used to fine-tune another model [20]. This is strategically problem-
atic: labeled data is a stable asset, whereas language models exhibit
rapid changes.

Research Gap. Investigating the effectiveness of these approaches
in a low-resource setting, the present work combines the adjacent-
domain BERTje model with and without task adaptive pre-training
in an active learning pipeline. We vary the query strategy between
random sampling (as a baseline), entropy sampling (because it is
shown to have consistently good performance in almost all works
covered), and contrastive sampling (as a reproducible hybrid method,
providing more robustness). Additionally, we perform our experi-
ments in an imbalanced domain.

3 DATASET

To avoid issues with archives that may not be accessible or publish-
able due to their privacy-sensitive nature, we devised a proxy task
to test whether state-of-the-art methods are still effective in a low-
resource and imbalanced setting. This section explains why and
how we acquired the “Open data Rechtspraak NetherLands” (ORNL)
dataset and generated two datasets from it, ORNL8 and ORNL 26, for
multi-class text classification.

Requirements. Considering our research context, we decided the
dataset must be multi-class, with at least ten classes. The data points
must be labeled with a class so that we can validate our learning
results. The text must be in a language other than English, e.g., in
Dutch. The texts must also be out-of-domain for the language model,
so they cannot be generic texts such as news or Wikipedia articles.
The dataset should have more than 60k samples. We prefer diverse
contents to diverse structures; we suspect learning structural and
metadata representations is easier than high-level linguistic pat-
terns. We also want the dataset to be imbalanced; however, this is
not strictly necessary, as imbalance is easy to mimic. Lastly, the
dataset must be publicly accessible. We want to ensure reproducibil-
ity and allow other researchers to use the same dataset. Current
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popular and public Dutch multi-class classification datasets do not
sufficiently represent the outlined properties. They frequently have
too few classes, are in-domain (e.g., CONLL-2002 [37]), or miss truth
labels (e.g., CC100-dutch [5]).

Source data. The Open Data of rechtspraak.nl® satisfies all of the
previous requirements. It is Dutch judiciary data that consists of
(anonymized) judgments, European Case Law Identifiers (ECLI),
and sources of jurisprudence. The raw data is publicly available,
categorized into four main classes, and optionally into one of the 26
sub-classes.” The individual files are tag structured. The five tags
relevant to our case are dcterms:subject, inhoudsindicatie,
uitspraak & conclusie (topic, short content description, verdict,
conclusion), and the European Case Law Identifier (ECLI) as a unique
identifier.

Furthermore, we create two separate task-oriented datasets for
training. The first dataset, ORNLS, is artificially turned into a more
class-balanced set with eight classes. The second dataset, ORNL26,
is more representative of the actual class diversity, with 26 classes.
The latter risks introducing far more noise, but it is more reflective
of the substantial imbalance in the original problem.

3.1 The Dataset

The detailed process to get from the raw data to a usable dataset is
available on GitHub®. The raw dataset (as available on July 2022)
contains 229172 rows. Figure 2 visually shows the label balance. The
calculated token overlap with our PTLMs tokenizer is 38% (Jaccard
similarity coefficient 24%). Compared to the 42% overlap of SciBERT
[2], we are fairly confident that WordPiece tokenization [25] will
be able to handle the vocabulary difference.

3.1.1 Lightly and Severely Imbalanced. During processing, we ex-
tracted two overlapping datasets. Initially, we want to validate
active learning as a strategy for out-of-domain NLP. The class im-
balance is reduced in the first processed dataset, while it is fully
captured in the second. To reduce the size of the dataset to man-
ageable proportions, we limit the maximum amount of samples in
the dataset. So we end up with two variations of the ORNL dataset:

o ORNLS: a lightly imbalanced dataset with eight total classes.
From ORNL all subtopics with at least 5000 samples are in-
cluded up to a maximum of 30000 samples (randomly sam-
pled) per subtopic, resulting in eight total classes.

e ORNL26: a severely imbalanced dataset with 26 total classes.
All subtopics from ORNL are included as a class, but each
subtopic has a maximum of 5000 samples.

Both datasets are pre-split into a stratified train, validation, and
test set (80/10/10). We published them to the python datasets
package®. This makes it easy for researchers to use the datasets for
further research.

Shttps://www.rechtspraak.nl/Uitspraken/paginas/open-data.aspx

"The data is stored in one XML file per judgment, bundled by year from 1905 to 2022.
It is updated monthly and, as of 2022-06-14, contains 2580352 files (16.4 GB). Many
judgment files are empty because the case was not fit for publication.
8https://github.com/emielsteegh/mdwnlp/tree/main/ORNL
“https://huggingface.co/datasets/Rodekool/ornl8 and https://huggingface.co/datasets/
Rodekool/ornl26
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Figure 2: Occurrences of subtopics in the raw data. The up-
per horizontal line marks the maximum class size for ORNL8
(30000). The lower horizontal line marks the minimum class
size for ORNL8 and the maximum class size for ORNL26.

4 METHOD
4.1 Task Adaptation

We use two variations of BERTje as our model M. The first one is
the off-the-shelf version GroNLP/bert-base-dutch-cased, with-
out further pretraining. For the second model, we perform task-
adapted pretraining (TAPT) and continue pretraining as recent lit-
erature suggests, using the implementation from the HuggingFace
library [42]. This section outlines the TAPT process.

4.1.1 Performing Pretraining. Following the original training pro-
cess of BERTje [7] we perform the same two tasks during continued
pretraining: Next Sentence Prediction (NSP) and Masked Language
Modelling (MLM) as described in [9]. In NSP, the model will need
to predict whether sentences are successive. For the MLM part, the
model must predict the masked token in a sentence. We prepare a
dataset for continual fine-tuning: the dataset will have successive
and non-successive sentence pairs; 15% of the tokens in the text
will be masked.

Within the scope of this work, it was impossible to use the full
datasets, as continued pretraining would take multiple days on a
single Tesla V100.1° Instead, we limited the pre-training data to
50000 documents sampled randomly. The texts are divided into
paragraphs (1018033 paragraphs), and split into sentences by inter-
punction patterns (1965610 sentences).

4.1.2  Next Sentence Prediction. We create a dataset with three
features: sentence_a, sentence_b, and a binary next_sentence_label
(isNextSentence or notNextSentence in a 50/50 split). For NSP,
this dataset will contain successive and non-successive sentence
pairs. We create a new row in the dataset for all paragraphs with
multiple sentences and assign any but the paragraph’s last sentence

1We run the experiments on a single NVidia Tesla V100 or A100 (more GPU RAM is
required for the 512 sequence length experiments) GPU.
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Table 1: Table of model variations. Models marked with pt
use the task-adapted (pre-trained) version of BERTje. The FS
model uses all 50000 labeled documents for training.

ID TAPT S seq.len.
r-128 (Baseline) - Random 128
r-256 - Random 256
pt-r-256 pt Random 256
e-128 - Entropy 128
e-256 - Entropy 256
pt-e-128 pt Entropy 128
pt-e-256 pt Entropy 256
pt-e-512 pt Entropy 512
cal-128 - CAL 128
cal+256 - CAL 256
pt-cal+256 pt CAL 256
FS-256 - Full Supervision 256

to sentence_a. In half of the cases, we add the next sentence to
sentence_b and assign isNextSentence. In the other half, we assign
a random sentence from all sentences (excluding the successive
sentence) to sentence_b and set notNextSentence. Then we use
the BERTje tokenizer to tokenize the sentence columns of this
dataset with a sequence length of 512 tokens.

4.1.3 Masked Language Modelling. Following [9] we clone the
current inputs of the tokenized dataset as our labels, then we replace
15% of the tokens in the dataset with a [MASK] token. A random
float p € (0,1) is assigned to all inputs in the dataset, each non-
special token ([CLS], [SEP], padding) with p < 0.15 is replaced
with the mask token.

4.1.4 Training. Finally, we write a separate dataloader for the
TAPT dataset and run one epoch of continued pretraining through
NSP and MLM on the model. With the AdamW optimizer and a
learning rate of 5- 107°.

4.2 Active Learning Implementation

Following [22], we implement and adapt the Contrastive Active
Learning Framework. This allows us to run the experiments system-
atically with different parameters. We introduce new data loaders,
models, and minor optimizations. For the core NLP, we use BERT je
and TAPT-BERTje and attach a multi-class classification head spe-
cific to our dataset (through the HuggingFace Library [42]). Follow-
ing [10], the model is evaluated five times per training epoch on
the validation set, keeping the instance with the lowest validation
loss. The models are evaluated against the evaluation and test splits
described in section 3.

To ensure fairness and consistency between experiments, we per-
form each separate experiment (set of parameters) 5 times with the
same predefined seeds ({672, 2451, 5262, 7763, 9105} €g [0, 10000]).
The seed creates consistent pseudo-random sampled initial Dy,
training set, and initialization of the head’s feed-forward layer
between experiments.
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Figure 3: Loss Curve for Task-Adaptive Pre-Training.

We estimate a realistic labeling budget consisting of 3500 samples
while still showing the effects of training the models. To reduce
training times, we sample 50000 documents from the training pool.
With a max pool size of 50000, we set the SC as a labeling budget
to 7% of the Dy,o; (3500 samples). We handle an initial Dy, of 1%
of the D01 (500 samples) and then proceed to increase it by the
same amount each iteration until the full budget is used.

The dataset includes labels, allowing us to mock the presence of
an oracle. Instead of waiting for an expert to label the data manually,
we can instantly assign the correct labels to the selected batch and
continue the experiments.

The model variations used during our experiments are listed in
Table 1. For the query strategy S, we select random sampling as
the baseline, entropy sampling as it is frequently cited as the best
performing of the common strategies [1, 21, 22, 27] and contrastive
sampling (CAL) as a more complex strategy because of its promising
results in [22]. To establish a model performance “ceiling”, we train
a fully supervised model with the same basic parameters but using
100% of the data.

After running these experiments on only ORNL8, we compare
the model performances early. We select the best-performing lan-
guage model (BERTje or TAPT-BERT je) and run it on ORNL26 with
the AL strategies: random, entropy, and contrastive sampling. We
eliminate trials with subpar performance on the simpler task, as we
expect that their results will deteriorate further in more challenging
conditions.

5 RESULTS
5.1 Task-Adaptive Pretraining

Figure 3 shows the cross-entropy loss during continued pre-training
for task adaption. The curve is noisy, but the moving average has
a downward trend and converges. A single round of evaluation
of the NSP task on the ORNL test set shows that the No further
Pre-Training (NPT) BERTje obtains 53.4% accuracy, and the Task
Adapted Pre-Training (TAPT) BERTje obtains 90.3% accuracy, suc-
cessfully improving on NSP.

5.2 ORNLS8 Results

Figure 4 summarizes the experimental results of models trained
on the ORNL8 dataset compared to the total quantity of documents
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Figure 4: Accuracy, F1 and Loss for all models trained on ORNL8, excluding 128 sequence length models (dashed lines represent

models without TAPT)
Accuracy F1 Precision Recall Entropy
Model mean std min  max mean std min  max mean std mean std mean std
E-256 9672 0048 9615 9723 .9448 .0080 9359 .9536 .9578 .0063 .9373 .0080 .6436 .1166
pt-E-256 19590 .0065 9517 .9665 9300 .0127 .9162 .9452 9453 .0084 .9208 .0148 .6074 .1234
pt-E-512 9857 .0004 .9850 .9863 .9763 .0008 .9754 .9776 .9763 .0013 .9763 .0008 .2252 .0250
R-256 9662 .0027 .9622 9687 9444 .0047 .9383 9487 .9537 .0056 .9373 .0053 3664 .1686
pt-R-256 9580 .0060 .9481 .9634 9314 .0122 9107 .9419 .9354 .0067 .9290 .0156 .2962 .1386
CAL-256 9677 .0065 9581 .9732 9428 .0127 9234 .9536 .9601 .0054 9323 .0152 .6094 .1578
pt-CAL-256  .9426 .0089 9282 .9522 8850 .0284 .8373 9131 .9402 .0083 .8737 .0249 .6558 .1900
FS-256* 9870 .0004 9864 9874 9793 .0007 .9783 9799 9786 .0010 .9799 .0007 .0295 .0107

Table 2: Accuracy Metrics at 3500 Annotations on ORNLS. Per column best in bold, second best in bold-italic, Fully Supervised

model (*) excluded.

annotated. All models perform very similarly on accuracy, except
for the 512 token sequence length model. Table 2 details the ac-
curacy and F1 scores after the labeling budget is exhausted: 3500
annotations.

5.2.1 Mean Accuracy. Model pt-E-512 outperforms the 256 token
models by ~ +15% at the start, reduced to a  +1.5% at the end of the
budget. It ends on par with the Fully Supervised 256-token model.
Until around 1500 annotations, all TAPT models marginally outper-
form their NPT counterparts. Past 2000 annotations, all NPT models
outperform their TAPT counterparts. All NPT active learning mod-
els beat their random counterparts by a fraction of a percent.

5.2.2 Mean F1. Again, pt-E-512 achieves better scores than the
other models. Starting with a ~ +16% higher F1, reduced to ~ +4%
as the entire budget is consumed. It ends on the same level as the
FS model. The 256 token models end on a similar mean F1 score,
except for pt-CAL-256’s mean and standard deviation, the only
outliers, to a negative extent.

5.2.3 Recall, Precision & Entropy. We observe that the models con-
verge faster for precision than recall by about two iterations (a 1000

label difference). They all consistently achieve higher precision
than recall. Surprisingly, CAL-256 performs highest on precision.

5.24  Accuracy vs. F1. At the first iteration, all models have substan-
tially lower F1 scores than accuracies (= —24%), but as the models
acquire more annotations, the difference decreases (to ~ —1.5%). In
Figure 5 we highlight this accuracy and F1 performance difference
on the test set for pt-E-256 and pt-E-512.

5.3 ORNL26 Results

For ORNL 26 Figure 6 shows the results of training the E-256, CAL-256
and R-256 models, as well as a fully supervised model (on a sin-
gle seed) on the more imbalanced ORNL26 dataset. Table 3 shows
the results at the full budget. We observe a far lower and more
linear convergence rate in the models’ performances here. The
models approach the accuracy of FS-256 at a very similar rate but
do not reach the score ceilings it sets. At budget, the F1 score of en-
tropy sits at (= —20.6%) under full supervision. The entropy model
has a higher mean F1 score (~ +4.6%) but a lower mean accuracy
(» —1.2%) than the random model. The models converge faster for
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Accuracy F1 Precision Recall Entropy
Model mean std min max mean std min max mean std mean std mean std
E-256 8812 .0088 .8734 .8906 .4450 .0110 .4324 .4520 .4886 .0194 .4498 .0042 1988 0.6353
R-256 8978 .0117 .8846 .9071 .4094 .0188 .3902 4279 4260 .0258 .4226 .0190 1.155 1.2317
CAL-256 .8766 .0235 .8624 .9038 .3440 .0440 .3062 .3923 3875 .0472 .3488 .0543 1.634 1.2683
FS-256* 9581 - 9581 .9581 .6496 - 6496 .6496  .6679 - .6496 - 0172  0.1540

Table 3: Accuracy Metrics at 3500 Annotations on the More Imbalanced ORNL26. Per column best model in bold, Fully Supervised

model (*) excluded.
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Figure 5: Comparison of Accuracy and F1. A bigger token
input size increased both counts of performance, accuracy
converges faster than F1.

precision than recall by about two iterations (or 1000 additional

labels). They all consistently achieve higher precision than recall.

In ORNL26 the E-256 outperforms both R-256 on both precision
(> 14.6%) and recall (=~ 8.4%), while CAL-256 lags behind.

5.4 Training Time

Training times were dependent on the GPU used. The NVidia A100
would achieve up to 7 + 0.8 iterations per second during training,
whereas the NVidia Tesla V100 would run about 1.6 + 0.5 seconds
per iteration. Most experiments were performed on the V100 and
would take to train one model, on average, 1 hour and 42 minutes
with random sampling, 2 hours for Entropy active learning, and
2 hours and 36 minutes for Contrastive active learning. We focus
now on three distinct phases of the active learning loop.

5.4.1 Training time. All models take the same time for training; it
does not depend on the batch of samples selected as long as it is of
the same size.

5.4.2 Inference time. This is the time spent on running the current
model against the unlabeled D,,4,;. The Random strategy needs no
inference; Entropy and Contrastive S both make predictions for
~ 309.8 + 6.5 seconds per iteration. Both inference and selection
time correlate with the size of D).

5.4.3  Selection time. This is the time S(Dy001) spends selecting
the next batch. In Random and Entropy, this is almost instantaneous

(random sample from D, and top k samples from the inference
phase, respectively). Contrastive selection needs to compute for
samples, taking = 156.9 + 35.9 seconds per iteration.

6 DISCUSSION
6.1 Task Adaption

The TAPT language model shows a significant improvement in
next sentence prediction in the target domain compared to the orig-
inal BERTje (subsection 5.1), and Figure 3 shows improvement in
masked language modeling in the target domain. TAPT models have
consistently lower entropy and loss scores than their counterparts.

In spite of these scores, the general performance of the TAPT
model was worse. Although convergence rates (F1, accuracy, pre-
cision and recall) are marginally steeper (or the same) in the first
two to three iterations of all TAPT variations of the models, the
base PTLM consistently outperforms the TAPT model when there
is more training data.

The results demonstrate that the language model was adapting
to the new domain. BERTje’s original training data does not include
a large volume of legal text [7]. However, the comparable perfor-
mance of the two versions on the downstream task may indicate
that further training caused overfitting, that there was noise in
the training data messing with the weights, or that the lower-level
structures of the original training corpora and our legal texts are too
similar. The best strategy to port BERT to different domains varies
[3], especially in downstream tasks like classification. There might
be no added value in TAPT before fine-tuning in our domain. It is
possible that the PTLM will learn higher-level structures specific
to our corpora from CPT, but the relatively small available dataset
may lead to catastrophic forgetting [21, 23].

6.2 The ORNLS8 Task

Performance on this task was generally good; at budget, all but
two models scored between 95.9 — 96.7% accuracy and 93.0 — 94.5%
F1 after labeling 3500 samples. The two exceptions: pt-CAL-256,
which underperformed, and pt-E-512 which outperformed the
rest, ending at 98.6% + 0.04 accuracy (~ +1.8% over the 2"? best)
and 97.7% + 0.08 F1 (~ +3.3% over the 2" best).

With a doubling sequence length, pt-E-512 gets more informa-
tion per document. The model stabilizes at the scores of the fully
supervised FS-256, which has only 256 token inputs. This raises
questions of whether more tokens lead only to a higher conver-
gence rate if they also lead to a higher performance ceiling, and if
performance degrades like in [26]. We expect this effect is caused
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Figure 6: Accuracy, F1 and Loss for Models Trained on the imbalanced dataset ORNL26.

by how information that separates documents between categories
is distributed in the text. Not all documents may give it their class
away up front. The short content placed in front of a document is
missing in about 8% of the texts.

The 128 token sequence length models served as an initial test
and tuning of the system. However, they could not capture enough
information in the texts, resulting in uninformative behavior. We
replaced them with 256 token models early on.

6.3 The ORNL26 Task

The ORNL26 classification task (imbalanced datasets) is far more
challenging for the models; the fully supervised model only man-
ages a 64.9% F1, and the previous models perform significantly
worse on this task. With 26 classes, of which 14 have less than a 1%
presence, it is challenging to learn good representations of these
classes without help. Entropy-based AL outperformed random sam-
pling consistently, and Contrastive AL performed worse than the
other two models.

Our investigation shows that entropy sampling acquires far more
samples from the under-represented classes than random sampling.
Figure 6, Table 3 reflect the impact of selecting a more balanced
sample; while accuracies are similar, the convergence rates and
mean scores for F1, recall, and precision of E-256 are best (~ +3.6%,
6.3%, and 2.7% better than random respectively).

6.4 Added Value of Active Learning

Related literature shows that AL can improve model performance
in the right scenario [22, 24], especially in less balanced settings;
we observe a similar effect. In the imbalanced ORNL26, the best
AL method (E-256) caused a faster convergence rate as well as a
significant increase in the accuracy metrics at budget. Considering
the relative homogeneity of the data, these scores may be seen as a
lower bound for the benefit AL can provide.

However, previous works also show that not all datasets can ben-
efit from AL [11, 22], and our experimental results imply that ORNL8
belongs to that category. Although we see marginal improvements
with AL strategies in the dataset, they are not significant. This is
likely because random sampling will deliver results as good as AL

methods in tasks where the content is representative and noiseless
enough [11]. In this task, Entropy sampling could select samples
more effectively than random.

Figures 4, 6 show models had a higher loss during training than
other models, likely because they sample documents that have
uncertain predictions. Although the intention is to provide more
information, the language model must be robust enough to capture
the patterns that distinguish the “difficult” documents.

Compared to [22], contrastive AL underperformed in our task;
perhaps the parameters were inadequately tuned to the problem.
Verifying this requires further experimentation. Similar to [22], no
approach consistently beats the others.

In this scenario, AL (especially entropy) had a small positive
influence. Yet, depending on how expensive it is to label data, having
to label 1% fewer data may be worth it. As soon as the model
starts performing to the desired standard, it can aid the oracle with
labeling by suggesting “easy” documents or providing assistive
predictions.

Training a model takes computational time, and the AL loop
takes additional time (see subsection 5.4). The scalability of AL
depends on the size of the unlabeled dataset and the complexity
of the acquisition function. Contrastive AL would take up to 8
additional minutes per iteration. The trade-off between more time
spent training and faster labeling assistance is unique to the context
of the problem.

It is far more valuable to employ AL in a niche with few labels
available, where labeling is expensive. However, if labels come
cheap or are already abundant, it is likely not worth it. Of course,
setting up AL and running proxy tasks beforehand is also a time-
consuming endeavor. Nevertheless, running a proxy experiment as
close as possible to the real problem helps build an understanding
of the real problem and what steps should be taken in the actual
setting.

6.5 Limitations

6.5.1 No Comparisson. We observe decent scores on the ORNL8
task and successful AL on ORNL26. However, since this dataset has
no precedent, we cannot compare the scores directly to other works.
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6.5.2 Labels Live Longer. A set of labeled documents lasts longer
than a trained model. Lowell et al. [20] demonstrate that documents
sampled for the model’s highest predicted information gain do not
naturally generalize well to a new model. In some cases, they even
lead to worse than randomly sampled scores. Suppose models are
replaced every few years and labels stay valid. In that case, verifying
that the actively sampled datasets provide more information to a
new model than a randomly sampled dataset is crucial to the efficacy
of the AL approach.

6.5.3 Pool Limit. Capping the training pool at 50k samples (section
4.2) led to “impossible classes” in the ORNL26 task. Because we set
out to run many experiments in a limited time frame, we chose not
to use the entire dataset; although this saved time, we sabotaged
the model’s training. This limitation had little influence in ORNLS.
But, due to the imbalance in ORNL26, some experiment seeds led to
a Dy With very few or no documents from the extremely scarce
classes (e.g., volkenrecht, burgerlijkbestuursrecht). This sam-
pling makes learning these classes very difficult or even impossible
without a good zero/few-shot approach (section 7). In a focused
investigation or real-world setting, we recommend not limiting the
size of the Do

6.5.4 Not the Perfect Model. We did not try to optimize for the
most accurate model for the task; only a few (AL) hyperparameters
were tested and tuned. We ran a limited set of experiments designed
to investigate the value of AL. We can confidently say that model
performance can be improved in both datasets. For example, we
recommend comparing PTLMs first and then continuing with the
most promising. Late in the experimental phase, we became aware
of RobBERT [8], a robustly trained Dutch PTLM that outperforms
BERTje on many Dutch benchmarks, especially in smaller datasets.

6.5.5 Oracle. The experiments assume a “perfect oracle” that will
get the label right every time, and we do not account for oracle
imperfections during the labeling phases. Furthermore, AL methods
select uncertain samples for labeling. These samples are likely more
challenging to label for a “human oracle”, possibly resulting in
more frequent mislabeling under uncertainty sampling than under
random sampling. Qualitatively testing with a human oracle or a
simulated imperfect labeling agent could lead to insights.

6.5.6 Sequence Length. Sequence length has a definite influence
on performance. However, the maximum realistic sequence length
depends on the available GPU RAM and the base PTLM training
approach. It is possible to train in smaller batches, but this adversely
affects training time. In our task, the 256 token input size, on aver-
age, covers roughly the first 10% of the document, which includes
the very information-rich short content. In-document information
distribution should be considered when selecting the tokenization
approach.

6.5.7 Cold Start. The experiments all start with an initial batch of
randomly sampled labeled documents. A cold start is not ideal; the
first batch is not sampled for maximum information gain and has
a large potential to be suboptimal. A better approach would be to
perform unsupervised clustering first [31], or follow [34, 45], which
approach the first batch dynamically and achieve good results.
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7 CONCLUSION

In this paper, we have presented datasets and various methods
relevant for a multi-class document classification task in Dutch
language and legal domain (low-resource setting) at two levels of
imbalance: light (ORNL8), and severe (ORNL26). Using random sam-
pling and full supervision, we set an initial benchmark performance.

We conducted a series of experiments to evaluate the perfor-
mance of various active learning strategies. Our empirical results
and reflection show that active learning strategies provide no tan-
gible benefit in the lightly imbalanced dataset. We significantly im-
proved performance over the baseline by increasing the model’s to-
ken sequence length (acc: & —0.03%, f1: = +3.6%, precision: = +6.3%,
recall: & +2.7%). In the severely imbalanced dataset, entropy-based
active learning performs significantly better as an acquisition strat-
egy, where it boosted the convergence rates and final score over
the baseline at the budget (acc: » +0.9%, f1: ~ +3.2%, precision:
~ +2.3%, recall: & +3.9%).

In addition to comparing active learning strategies, we observed
that, contrary to the literature, and regardless of the promising MLM
and NSP training results, task-adaptive pre-training of the PTLM
was unable to improve results in the downstream classification
task, as it resulted in similar or slightly worse performances. We
consider that the PTLM training set and our dataset’s lower-level
language structures are almost identical [9], but more investigation
is required.

We show that an active learning approach positively and signifi-
cantly affects the performance and convergence rate of PTLMs in a
low-resource imbalanced dataset, but we also noted that there is
room for improvement on our tasks.

Future Work. These experiments set the first steps for multi-
class imbalanced text classification in non-English languages. In
the legal domain, a pertinent next step is involving experts for appli-
cation and evaluation. Practically, there is much room to experiment
with and fine-tune different active learning strategies (e.g., [1, 47])
and other (multi) language models on the task; A unified active
learning framework for NLP. Research with public repositories like
[16, 22] and Python packages like ModAL have started laying the
groundwork but still lack ease of use, abstraction, or modern NLP
capabilities.

There was no capacity in this work to evaluate the labeled
datasets in other models; we urge researchers of active learning to
test the robustness of the acquired datasets following [20].

Due to the observed effects of input sequence size, we propose
investigating the accuracy of PTLMs in downstream tasks as a
function of input sequence size, as [41] did for common neural
networks before the popularization of PTLMs. Since most BERT-
based models are trained with 512 input tokens, going past 512
tokens requires choosing a model with a larger feature space or
training one from scratch.

Our findings, as well as those of [1, 11], are promising for the
application of active learning for strongly imbalanced data. To fur-
ther improve in imbalanced settings, we see a high potential in the
fusion of active learning with classical zero- and few-shot learn-
ing and point to [4, 35, 44] as a starting point for using matching
(e.g., on class descriptors) to improve learning for underrepresented
classes.
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