Testing Modelling Fitness of Normative
Specification Languages for LLMs

Giovanni Sileno' and Andrea Marino!
Informatics Institute, University of Amsterdam, The Netherlands
{g.sileno, a.marino}@uva.nl

Abstract. Several works propose to leverage LLMs to facilitate the
translation from natural language into formal notations. The number of
distinct formal notations proposed in the literature for normative spec-
ifications calls for dedicated comparative evaluations. In this paper, we
elaborate on the notion of “modelling fitness” as a way to assess a given
notation, which depends on the modeller’s interpretation capacity and
proficiency with the notation. We draft a methodology to experimentally
test dimensions of modelling fitness for LLMs, introducing a “mirroring”
pipeline for notations centred primarily on informational models, and
reporting the results of preliminary experiments.

Keywords: Normative specifications - Representation of Norms - Mod-
elling fitness - LLMs - Natural language - Formal notations

1 Problem setting

The number of domain-specific languages (DSLs), programming languages, and
informational models for normative specifications continues to grow in the lit-
erature.! Comparing these proposals, and, even more, formally evaluating their
expressivity, is a challenging task.? Yet, all these solutions share a fundamental
common ground: normative requirements originate from human sources and as
such they are initially formulated in natural language.

With the rise of initiatives aimed at integrating normative specifications into
LLM-enhanced modelling pipelines, a significant, complementary question has to
be addressed: Which formal notation provides the most appropriate mapping for
natural language sources? For this aim, we introduce the notion of “modelling
fitness”. Modelling fitness describes the accessibility of a notation for a given
modelling task, assessed relatively to the conceptual model held by the modeller
(intertwining lexical, syntactic and semantic dimensions). Operationalizing mod-
elling fitness for humans is difficult because its expression heavily depends on

! Focusing only on norm/contract representation frameworks with a stronger com-
putational orientation represented in the last decade, we have: Defeasible Deontic
Logic/SPINdle [11, 7], LegalRuleML [16, 12], NPL/NPL(s) [8, 25], PROLEG [19], In-
stAL [15], ODRL [9, 5], Symboleo [20], FLINT /eFLINT [23, 22|, Logical English [10],
Catala [13], Blawx [14], Stipula [4], and DCPL [21].

% For a wider socio-technical view see [1], in the main JURIX conference.

G. Sileno and A. Marino

the modeller’s background. Consider an analogy with programming languages: a
Java programmer finds Scala or Kotlin much more familiar than Rust, while a C
programmer experiences the opposite.® Similarly, an Italian speaker would find
French easier to learn than Dutch, but the reverse would be true for a German
speaker. Extending these examples from language learning to modelling tasks,
we find that modelling fitness primarily depends on two components:

(i) the capacity of forming a correct interpretation of the scenario at stake, re-
lying on the modeller’s natural language proficiency and domain knowledge;

(ii) the proficiency with the modelling notation, depending on how easily the
notation can be leveraged by the modeller’s existing conceptual resources.

In the case of LLMs performing the modelling task, their “conceptual model”
results from the texts used training texts. We formed a few working hypotheses
of the performance of LLMs with respect to modelling fitness. The model’s in-
terpretation accuracy is highest for common scenarios (i). The accuracy of the
output in the target modelling notation is enhanced if the formal language (ii-a)
and its transportation layer (ii-b) are more commonly present in the training
data, and if the notation allows for a more direct mapping from word to concept
(ii-c). The present paper does not aim to provide exhaustive benchmarking, nor
to validate these hypotheses. Instead, its purpose is to draft a methodology for
starting testing them and to offer a reflection on an initial experimental iteration.

2 Methodology

Assessing a translation The most common way in the literature (see e.g. [17])
to assess the accuracy of a translation from natural to formal language (or sym-
bolic specifications broadly) is through question-answering (Q/A) relative to a
given scenario (S). In what we will call the reasoning pipeline, both the ques-
tion (Q) and the scenario (S) must first be translated into a formally equivalent
specification. A reasoning engine or solver then provides the final answer (A).
The simplest type of questions are those that require a Yes or No answer. For
LLM-enhanced modelling processes, directly querying the LLM with the ques-
tion (Q) establishes a baseline performance against which to measure whether
the symbolic pipeline actually improves accuracy. Note that a self-refinement
step may be necessary to correct syntactic errors that would prevent execution.

Since some of the target notations we are considering are primarily informa-
tional models (e.g. ODRL [9, 5], DCPL [21]), they cannot be directly connected
to a reasoning engine. Consequently, these notations cannot be used with a rea-
soning pipeline. We introduced therefore an alternative method, inspired by the
auto-encoder architecture, that we will call the mirroring pipeline (Fig. 1).
This pipeline involves translating the natural language for S and Q into a formal
specification, and subsequently translating it back to natural language. The core

3 Since these are general-purpose languages, they can still create functionally equiva-
lent programs; therefore, the issue here is not expressiveness in absolute terms.

Testing Modelling Fitness for LLMs

A,
$'in
LLM LLM
encoder | fwm?' decoder
notation
translation translation

to FL T to NL

' evaluation

mirrored
source (MS)

MS'in
1 formal
notation

evaluation

Fig. 1. The “mirroring” experimental pipeline, evaluating the system both on natural
and formal language artefacts, by reconstructing the original source.

test is whether the initial and final natural linguistic artefacts maintain semantic
equivalence, indicating that no significant informational loss occurred during the
process. However, because the textual output may be different from the initial
source, an additional step is needed to further automate the semantic equivalence
test. A traditional way is to use some technique based on sentence embeddings;
yet, the selection of proper embeddings adds complexity. A complementary way
is to pass the mirrored text through the translation process again. The more the
formal notation acts as a normalized representation, the more we should expect
the formal representation to be equivalent, if the translation step is correct.

Translating via LLMs In both “reasoning* and “mirroring* pipelines, we need
to settle upon a reproducible method for prompting the LLMs to perform the
translation step from natural to formal language. However, as some of the target
notations may not be present in the training dataset used to build the LLM, it
is necessary to provide adequate relevant information about the notation syntax
and semantics in the prompt. The syntax of DSLs and formal notations is gen-
erally described by BNF specifications, whereas the structure of informational
models and knowledge-centred representational artifacts is described through
frames, schemas, or ontologies. Some contribution may have both. These inputs
are given to the LLM with the prompt. Note that the lexical choice of keywords
of the language, as well as the transportation form (XML, JSON, RDF, ...)
may influence the response of the LLM. Furthermore, to expose the LLMs to
the notation semantics, we consider including representative examples (few-shot
learning), possibly formal axioms, or plain-text descriptions of the language’s
core concepts and relationships directly within the prompt’s context. A pri-
ori, it is unclear which of these components may play a more relevant role in
improving the translation performance. We hypothesize that BNFs will likely
improve syntactic forms of alignment [24], whereas use cases of the target lan-
guage with their explanation in natural language will likely improve semantic
alignment. Knowledge-centred notations, if expressed in commonly used means
such as JSON, would likely already improve with just the examples.

G. Sileno and A. Marino
3 Experimental setup

Testbench For our longer term experiments, we aim to collect a wide range
of scenarios relevant for normative reasoning. These scenarios need to be cho-
sen for plausibility (scenarios informed by statutory law, private law, contracts,
agreements, technical regulations, and technical policies, including access and
usage control), as well as for specificity (normative primitives and minimalistic
compositions). Instances for the second group will be selected from literature on
normative systems, as well as by generating a synthetic dataset.

Selection of target notations Before proceeding into the benchmarking, tar-
get languages for normative specifications need to be scrutinized. By examining
academic and technical documentation, we will look for several different ele-
ments: (i) (for the reasoning pipeline) a reasoning engine that allows querying;
(ii) formal specifications of the language (such as BNF grammars, schemas); (iii)
relevant examples for few-shot learning; (iv) (optional) additional information
such as formal axioms or plain-text descriptions which may improve semantic
alignment. These elements should be maintained in a public repository to ensure
reproducibility and allow for iterative improvements.

Evaluation The reasoning pipeline greatly simplifies the evaluation by center-
ing on Yes/No questions; however, more complex questions can also be imag-
ined. The mirroring pipeline evaluation involves instead two natural language
texts (the source scenario and the reconstructed scenario) and two formal no-
tation texts (the encodings of the above, generated independently by the same
LLM module). Natural language texts can be compared using text-edit distances
(Hamming, Levenshtein) or by comparing their embeddings, applying language
models dedicated to this task. Formal language texts, however, allow for more
structured comparisons. Several proposals exist for instance for schema/ontology
alignment and matching (e.g. [2]). These methods typically rely on a mixture
of methods (e.g. [6]), including graph-based embeddings (e.g. [3]) constructed
on training data independent of the target language. However, their opacity
makes them a suboptimal choice to identifying where the translation fails. On
the opposite end of the spectrum, there exists methods to compare programs by
means of abstract syntactic trees (ASTs), although these may be vulnerable to
functional equivalence of distinct language compositions. As in these preliminary
experiments we focus simple normative directives, this should be less relevant.

To simplify, let us assume the symbolic output is a list of associative arrays
or key-value mappings (which may be nested, similarly to Python dictionaries),
resulting in a JSON-like computational object. Given two such outputs, four
comparison measures can be defined:

(a) matching: the number of dicts in the two lists that can be mutually matched
with an adequate score, normalized on the total number of elements;

(b) structural: the degree to which two dicts share the same keys, across the
overall structure;

Testing Modelling Fitness for LLMs

(¢) type-matching: the degree to which two dicts share the same data type in
positions where they are structurally identical;

(d) content: the degree to which two dicts share the exact same content (values)
in positions where their value types are the same.

The product of these four measures provides a measure of deep equality.

Preliminary experiments For our first experiments, we have collected from
literature examples of normative primitives as the ones given in [18], education
material, and simple scenarios from online sources, summing up to 48 simple
scenarios. We will focus only on ODRL* and DCPL ®, both presented primarily
as informational models, and provided with a JSON-schema. Even if no dedicated
solver is available, we can still apply the mirroring pipeline.

To have a better picture of how the two languages perform in both en-
code/decode directions, we consider four different variations for an ablation
analysis: (i) the prompt contains the JSON schema of the target language; (ii)
the prompt uses a few-shot approach to provide examples of symbolic formula-
tion in the given language; (iii) the prompt contains both schemas and few-shot
examples; (iv) the prompt contains neither of the two (baseline). We generate
embeddings of both natural language texts and compare their semantic simi-
larity (using all-MinilM-L6-v2 from HuggingFace). The formal artefacts are
instead compared based on the measures (matching, structural, type-matching,
content) defined above. We performed the experiments on several models, both
remote (gpt-5-mini, gpt-4.1, gpt-4.1-mini) and local (gpt-oss). The code,
scenarios, prompts, output data, and scripts of analysis are available online.%

4 Preliminary results

In Table 1, we report the average performance of the different models when both
schemas and few-shot examples are provided in the input. Regarding the seman-
tic score, the performance of DCPL is consistent across the four models, whereas
ODRL shows a relevant drop with both gpt-oss and gpt5-mini. The opposite
trend occurs in the comparison of the symbolic artifacts: ODRL is rather con-
sistent in its performance, whereas DCPL exhibits both the best performance
(with gpt5-mini) and the worst performance (with gpt4.1-mini). This sug-
gests that modelling fitness does vary. In Table 2, we report the average increase
in gpt5-mini’s performance relative to the baseline (no additional input). This
increase is measured in the presence or absence of the schema of the notation
(as syntactic knowledge support) and few-shot examples (as semantic knowledge
support) in the prompt. Interestingly, for ODRL, any additional information de-
creases the semantic score. Exposure to the schema has a negative impact for
both ODRL and DCPL, although the few-shot examples balance it out in the

4 https://www.w3.org/TR/odrl-model/
® https://github.com/uva-cci/DCPLschema
5 https://github.com/uva-cci/nl12fr-2025-neurosymbolic

G. Sileno and A. Marino

Model Language Semantic score (a) (b) (c) (d) a-b-c a-b-c-d
. DCPL 0.82 &+ 0.12 0.92 £ 0.25 0.76 + 0.26 0.86 + 0.27 0.83 + 0.27 0.68 + 0.27 0.60 *+ 0.28
gpt5-mini P
ODRL 0.64 £+ 0.20 1.0 £+ 0.0 1.0 £+ 0.0 1.0 £ 0.0 0.49 £ 0.35 1.0 £ 0.0 0.49 £ 0.35
4.1 DCPL 0.83 + 0.14 0.74 044 0.62 £040 0.67£0.42 0.67 =042 0.56 & 0.38 0.50 £ 0.36
Bpes ODRL 0.75 £ 0.17 097 £0.16 094 £0.18 097 +£0.16 0.51 +£0.29 0.94+0.18 049+ 0.29
£4.1-mini DCPL 0.78 &+ 0.13 0.53 +£0.49 047 + 043 0.50 +0.47 044 +£0.44 041 £ 0.40 0.34 £+ 0.37
gpes ODRL 0.72 &+ 0.19 0.96 = 0.20 0.95+£0.20 0.96 +£0.20 044 +£0.24 0.95 £ 0.20 0.44 + 0.23
oss DCPL 0.81 &+ 0.14 0.69 & 045 0.63 £0.42 0.65£0.43 0.60 = 0.44 0.56 & 0.41 0.47 £ 0.38
&P ODRL 0.58 £ 0.25 0.96 = 0.20 096 £0.20 0.96 +£0.20 0.36 = 0.29 0.96 & 0.20 0.36 &= 0.29

Table 1. Performance across different models on the mirroring experimental pipeline,
aggregated over the 48 scenarios using both schema/syntax and few-shot examples.
The semantic score is calculated between two natural language texts (S and MS in
Figure 1). The values a, b, ¢, d are ratios (defined respectively on matching items,
structure, type, and content—see Section 3) computed between two JSON artifacts (S’
and MS’ in Figure 1). The final column represents a measure of deep equality.

Syntax Few shot Semantic score (a) (b) (c) (d) a-b-c a-b-c-d
present absent -0.04 £ 0.11 0.22 +£0.54 0.23 + 0.44 0.24 £+ 0.52 0.30 + 0.47 0.25 + 0.41 0.30 + 0.35
absent present 0.05 + 0.10 -0.56 + 0.59 -0.43 £ 0.51 -0.49 + 0.57 -0.44 £0.53 -0.38 = 0.45 -0.30 &+ 0.40
present present 0.05 £ 0.09 0.23 £+ 0.50 0.22 + 0.42 0.23 £ 0.46 0.28 £ 0.44 0.20 £ 0.34 0.23 £ 0.30
present absent -0.20 + 0.16 0.08 £+ 0.34 0.13 £ 0.34 0.08 £+ 0.34 0.35 + 0.50 0.13 +0.34 0.41 + 0.46
absent present -0.01 £ 0.19 0.10 + 0.30 0.14 £ 0.34 0.10 + 0.30 0.14 £ 0.40 0.14 £ 0.34 0.18 + 0.34
present present -0.06 + 0.18 0.10 + 0.30 0.16 + 0.34 0.10 + 0.30 0.27 + 0.48 0.16 + 0.34 0.32 + 0.40

Table 2. Performance change of gpt5-mini on the mirroring experimental pipeline for
different configurations (syntax and few-shot examples present or absent), compared
to the baseline of no added input. Data is aggregated across the 48 scenarios.

case of DCPL, and less so for ODRL. Conversely, looking at the comparison mea-
sures between the symbolic artifacts, we see an opposite trend, particularly for
DCPL. Exposure to syntax greatly improves the model’s performance, whereas
the presence of only few-shot examples greatly degrades it. The best deep equal-
ity scores for the two languages are found when only the schema is given in the
input. In short, our data suggests the existence of a trade-off between formal
consistency and domain coherence: best performance on deep equality coincides
with the worst performance on the semantic score, and vice-versa.

References

1. Ali; S., Sileno, G., Van Engers, T.: A systematic approach to assess languages
proposed for rules as code. JURIX 2025 (2025)

2. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with COMA++. ACM SIGMOD 2005 pp. 906-908 (2005)

3. Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.:
OWL2Vec*: embedding of owl ontologies. Machine Learning 110(7) (2021)

4. Crafa, S., Laneve, C., Sartor, G.: Stipula: a domain specific language for legal
contracts. Workshop on Prog. Languages and the Law (ProLaLa 2022) (2022)

5. De Vos, M., Kirrane, S., Padget, J., Satoh, K.: ODRL policy modelling and com-
pliance checking. Int. Joint Conf. on Rules and Reasoning pp. 36-51 (2019)

6. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The
agreementmakerlight ontology matching system. OTM pp. 527-541 (2013)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Testing Modelling Fitness for LLMs

Governatori, G.: An asp implementation of defeasible deontic logic. KI - Kiinstliche
Intelligenz 38(1), 79-88 (Aug 2024)

Hiibner, J.F., Boissier, O., Bordini, R.H.: A normative programming language for
multi-agent organisations. Annals of Mathematics and AI 62(1), 27-53 (2011)
Iannella, R., Villata, S.: ODRL information model 2.2. W3C Recomm. (2018)

. Kowalski, R., Datoo, A.: Logical English meets legal English for swaps and deriva-

tives. Artificial Intelligence and Law pp. 1-35 (2021)

Lam, H.P., Governatori, G.: The making of spindle. Rule Interchange and Appli-
cations pp. 315-322 (2009)

Lam, H.P., Hashmi, M.: Enabling reasoning with LegalRuleML. Theory and Prac-
tice of Logic Programming 19(1), 1-26 (2019)

Merigoux, D., Chataing, N., Protzenko, J.: Catala: A programming language for
the law. Proc. ACM Program. Lang. 5(ICFP) (aug 2021)

Morris, J.: Blawx: Web-based user-friendly rules as code. Workshops co-located
with (ICLP 2022) 3193 (2022)

Padget, J., Elakehal, E.E., Li, T., Vos, M.D.: InstAL: An Institutional Action
Language, Law, Governance and Technology Series, vol. 30 (2016)

Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
LegalRuleML: XML-based rules and norms. Rule-Based Modeling and Computing
on the Semantic Web pp. 298-312 (2011)

Pan, L., Albalak, A., Wang, X., Wang, W.: Logic-LM: Empowering large language
models with symbolic solvers for faithful logical reasoning. EMNLP 2023 pp. 3806—
3824 (2023)

Sartor, G.: Fundamental legal concepts: A formal and teleological characterisation.
Artificial Intelligence and Law 14(1), 101-142 (2006)

Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shi-
rakawa, K., Takano, C.: PROLEG: An implementation of the presupposed ultimate
fact theory of Japanese civil code by PROLOG technology. New Frontiers in Arti-
ficial Intelligence pp. 153-164 (2011)

Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo:
Towards a specification language for legal contracts. 2020 IEEE 28th Int. Require-
ments Engineering Conf. (RE) pp. 364-369 (2020)

Sileno, G., van Binsbergen, T., Pascucci, M., van Engers, T.: DPCL: a language
template for normative specifications. Workshop on Prog. Languages and the Law
(ProLaLa 2022) (2022)

Van Binsbergen, L.T., Liu, L.C., van Doesburg, R., van Engers, T.: eFLINT: a
domain-specific language for executable norm specifications. ACM SIGPLAN Gen-
erative Programming: Concepts and Experiences pp. 124-136 (2020)

Van Doesburg, R., Van Der Storm, T., Van Engers, T.: Calculemus: towards a
formal language for the interpretation of normative systems. AI4J 1, 73 (2016)
Wang, B., Wang, Z., Wang, X., Cao, Y., Saurous, R.A., Kim, Y.: Grammar prompt-
ing for domain-specific language generation with large language models (2023)
Yan, E., Nardin, L.G., Hiibner, J.F., Boissier, O.: An agent-centric perspective
on norm enforcement and sanctions. Coordination, Organizations, Institutions,
Norms, and Ethics for Governance of Multi-Agent Systems XVII pp. 79-99 (2025)

