

Introduction to
Programming paradigms

Giovanni Sileno g.sileno@uva.nl
Leibniz Center for Law
University of Amsterdam

15 September 2014,
Introduction to Information Systems

different perspectives (to try) to solve problems

mailto:g.sileno@uva.nl

“Mechanical” computing

Pascal: Pascaline ~ 1650

Blaise Pascal

Helping his father (tax
accountant of Normandy,
appointed by Richelieu), Pascal
invented a machine for mechanic
calculation, performing
addition and subtraction.

Schickard: Calculating Clock ~1625

Wilhelm Schickard

Before him, Schickard had
already invented an “artithmetic
instrument”, but unfortunately
he was not able to publicly
present a full working copy.

Leibniz: Stepped Reckoner ~1680

Gottfried Wilhelm
von Leibniz

Influenced by the Pascaline,
Leibniz proposed a mechanic
calculator performing all four
operations: addition,
subtraction, multiplication
and division.

Babbage: Analytical Machine ~1840

Charles Babbage

Extending a project for a
difference engine to calculate
polynomial functions, Babbage
proposed a general purpose
calculator, using punched cards.

Ada Lovelace ~1840

Collaborating with Babbage, Ada
Lovelace is said to be the first
programmer and pioneer of
computer science

“[..] developping and tabulating
any function whatever [..] the
engine [is] the material
expression of any indefinite
function of any degree of
generality and complexity [..]”

Ada Byron Lovelace

Turing: The Turing Machine ~1936

Alan Turing

The formal proof of her intuition
arrives only one century later,
using an hypothetical device
consisting of:

– a tape
– a head, which can

● read/write the tape
● move along the tape

– a state register
– an action table

… | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

… | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

[reading instruction]

… | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALTWrite 1...

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALTWrite 1...

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register C

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALTMove R...

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

C

Move R...

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

C

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

 → B... C

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register B

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

 → B...

[executing instruction 0, C]

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register B

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register B

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

[reading instruction] etc. etc.

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register B

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

external
memory

internal
memory

program

I/O
peripheral

… | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | ...

tape

head

state register B

action table

A B C

0 Write 1
Move R

 → B

Write 0
Move L

 → C

Write 1
Move R

 → B

1 Write 0
Move L

 → A

Write 1
Move R

 → B

Write 1
Move N
HALT

external
memory

internal
memory

program

I/O
peripheral

+ something which
is operating!

CPU

Memory
(e.g. RAM) I/O devices

registers

Central Processing Unit

A modern computer (roughly)

~ Von Neumann architecture

CPU

Memory
(e.g. RAM) I/O devices

registers

Central Processing Unit

A modern computer (roughly)

Instructions & Data

~ Von Neumann architecture

CPU

Memory
(e.g. RAM) I/O devices

registers

Central Processing Unit

A modern computer (roughly)

~ Von Neumann architecture

leveraging the
Theory of

Communication
of Shannon!!!

Instructions & Data

Programming computers

Machines as symbol handlers

Starting from the
Pascaline, computing
machines respond to the
need to displace tedious,
repetitive (symbolic) work.

Machines as symbol handlers

Starting from the
Pascaline, computing
machines respond to the
need to displace tedious,
repetitive (symbolic) work.

PS. “A physical symbol system has the necessary and sufficient
means for general intelligent action” Allen Newell and Herbert
A. Simon, Computer Science as Empirical Inquiry: Symbols and
Search (1976) (G.O.F.) → Artificial Intelligence

Machines as symbol handlers

Starting from the
Pascaline, computing
machines respond to the
need to displace tedious,
repetitive (symbolic) work.

but how to say to the
machine what to do?

Machine code/instructions
Related to the physical structure of the computer.

+ poweful and fast

- long programs

- difficult to be written

- difficult to be revised

Natural (human) language

It is the language we use in all our
communications, learned since our childhood.

+ Expressively rich.

- Ambiguous, redundant.

Programming languages

A programming language is a language which is
intermediary between machine code and natural
language.

Programming languages

VanRoy 2009,
Weinberg 1977

Programming languages

A programming language is a language which is
intermediary between machine language and natural
language.

– But what we have to tell to the machine?

Computing

Computing is no more about
computers than astronomy is
about telescopes.

Edsger Dijkstra

Problem solving terms

● A well-defined problem is usually defined in terms of
● an initial state or situation
● a goal state, i.e. a desired

outcome,
● certain resources (which put

contraints on the possible
paths towards the goal).

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and
purchased a fox, a goose, and a bag of beans. On
his way home, the farmer came to the bank of a river.
In crossing the river by boat, the farmer could carry
only himself and a single one of his purchases - the
fox, the goose, or the bag of the beans.

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and
purchased a fox, a goose, and a bag of beans. On
his way home, the farmer came to the bank of a river.
In crossing the river by boat, the farmer could carry
only himself and a single one of his purchases - the
fox, the goose, or the bag of the beans.

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and
purchased a fox, a goose, and a bag of beans. On
his way home, the farmer came to the bank of a river.
In crossing the river by boat, the farmer could carry
only himself and a single one of his purchases - the
fox, the goose, or the bag of the beans.

An ancient puzzle ~ 9th century

● If left together, the fox would eat the goose, or the
goose would eat the beans.

● The farmer's challenge was to carry himself and his
purchases to the far bank of the river, leaving each
purchase intact. How did he do it?

An ancient puzzle ~ 9th century

● What is the goal?
● What is the initial situation?
● Which are the resources/constraints?

Other problems

● How much is 2 * 2 + 4 ?
● Prepare a dish of spaghetti.
● Manage your collection of books.
● Given f(a, b) = a2 - b2, how much is f(2, 3)?
● Schedule your weekly physical exercises, considering

your personal and professional appointments.
● Find the max of 1, 5, 2, 9, 4, 6, 3, 8, 7.
● Order the same sequence.
● Calculate the taxes you have to pay.

From problems to solvers

Problem

Analysis

Problem solving method

Planning

Problem solving task

Execution

Solution

Problem

Analysis

Algorithm

Programming

Program

Execution

Outcome

Problem

Analysis

Problem solving method

Planning

Problem solving task

Execution

Solution

Problem

Analysis

Algorithm

Programming

Program

Execution

Outcome

The “real” problem is not programming
but finding the path toward the solution.

From problems to solvers

Programming paradigms

Paradigms
● In general, a paradigm is a theoretical framework

that guides and aggregates a number of theories,
generalizations, and experiences performed within a
certain discipline or school.

cf. Thomas Kuhn, The Structure of Scientific Revolutions (1970)

Programming paradigms & co.

● Programming paradigm
– a conceptual framework that serves as visualization, guideline of

thoughts and practice for the programming of computers

● Programming technique
– related to an algorithmic idea for solving a particular class of

problems, e.g. divide et impera (divide and conquer) or
development by stepwise refinement

● Programming style
– the way we express ourselves in a computer program, usually

related to elegance or lack of elegance

4 “axis” for paradigms

● Imperative vs Declarative
● Procedural vs Object-Oriented
● Sequential vs Concurrent (vs Parallel)
● Static vs Dynamic

Imperative vs Declarative

Imperative vs Declarative

● Imperative:

– programming focusing on the sequence of
operations necessary to solve the problem (which
in turn usually stays implicit)

● Declarative

– programming focusing on describing the problem
(while the sequence of operations to be performed
is left implicit)

Imperative programming

Imperative programming

Focus: how to compute

Based on instructions, correspondent to actions
commanded to the machine.

– It assumes that the computer can maintain the
changes (the side-effects) caused by the
computation process.

(states etc...

States, Constants and Variables

● State is the ability to maintain information, or
better, to store value which may change in time.

● A state can be named/labelled. If the referred state
does not change, the entity is called constant,
otherwise it is called variable.

→ an object/process with state is
an object/process with memory

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

0

1

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

● Ex. 0

 0

1

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

● Ex. 0, 1

1

0

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

● Ex. 0, 1, 0

1

0

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

● The dual view is the
transition space which
formulates the distinct events
which may change its location.

● Ex.

1

0

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

● The dual view is the
transition space which
formulates the distinct events
which may change its location.

● Ex. ↑

1

0

States and Transitions

● The life of any object can be
described in terms of its state
space by formulating the
possible locations of the
object.

● The dual view is the
transition space which
formulates the distinct events
which may change its location.

● Ex. ,↑ ↓

1

0

State spaces and data types
● The elementary data components in the computer are

bits (or boolean values), but we usually program
referring to other data types as well.

State spaces and data types
● Types serve to describe what kind of data is stored.
● Even though all data is represented using 0 and 1, it is

not interpreted in the same way in the program.

State spaces and data types
● Types serve to describe what kind of data is stored.
● Even though all data is represented using 0 and 1, it is

not interpreted in the same way in the program.
● Usually records occupy different amounts of

memory according to their type:

– Boolean ~ 1 bit (virtually) 2 symbols available →
– Char ~ 1 byte
– Int ~ 2 byte

State spaces and data types
● Types serve to describe what kind of data is stored.
● Even though all data is represented using 0 and 1, it is

not interpreted in the same way in the program.
● Usually records occupy different amounts of

memory according to their type:

– Boolean ~ 1 bit (virtually) 2 symbols available →
– Char ~ 1 byte = 8 bit 2→ 8 = 256 symbols
– Int ~ 2 byte = 16 bit 2→ 16 = 65536 symbols

State spaces and data types
● Common data types:

– Boolean true, false
– Char 'a', 'b', 'z', '3', 'A'
– Integer 3, 525, -2643
– Float 0.253, 655.34

● and compositions of those:

– Array, List, Map, ..
e.g. String as composition of Chars

...states etc.)

Imperative programming

Focus: how to compute
● Most popular programming languages implement

the imperative paradigm:

– it most closely resembles the actual machine
itself, so the programmer thinks in a much closer
way to the machine;

– because of such closeness, it was until recently
the only one efficient enough for widespread use.

Imperative programming
● Advantages

– efficient as close to the machine
– popular
– familiar

● Disadvantages
– a program can be complex to understand, because

the referential transparency does not hold (due to
side effects)

– abstraction is more limited
– order is crucial, which is not suited

in certain problems

Control flow

● The control flow basically describes the sequential
order in which instructions are evaluated.

● The most common control flow operators are:

– jumps or unconditional branchs (GO TO)
– conditional branchs and loops (IF .. THEN,

WHILE .. DO)
– subroutine/procedure/function calls, used to pass

the computation to external modules and then to
continue from the outcome (CALL … PARAMS ...)

subroutines/procedures.. closures!

A closure is a “packet of work”, defined together
with certain input parameters.

● Any group of instructions in a program can be
transformed into a closure with certain inputs.

● The program can call such callable units and the
result of their execution is the same as if the
instructions were put at the place of the call.

● The use of subroutine however imposes some
computational overhead in the call mechanism (the
call stack).

● Disadvantage

– The use of subroutine imposes some overhead in
the call mechanism (the call stack).

● Advantages

– Decomposition
– Reducing duplicate code within the program
– Enabling reuse of code across multiple programs
– Separation of concerns
– Hiding implementation
– Improving traceability (debugging)

subroutines/procedures.. closures!

Divide et impera (divide and conquer)

● Decomposition allows to take a
strategic algorithmic approach

● Rather than facing the
complete problem, we tackle it
down to smaller (and simpler)
independent components.

 → Different teams may work
on different sub-problems.

Declarative programming

Declarative programming

Focus: what to compute (as desired outcome)
● It is not concerned about how to do things, but

what should be obtained.

– Languages: domain specific (e.g. HTML), query
(SQL), logic (Prolog).

Declarative/Logic programming

Focus: what to compute (as desired outcome)
● Various logical assertions about a situation are

made, describing all known facts and rules about
the modeled world. Then queries are made.

● The role of the computer is to maintain data and to
perform logical deduction.

Algorithm = Logic + Control

“An algorithm can be regarded as consisting of

– a logic component, which specifies the
knowledge to be used in solving problems, and

– a control component, which determines the
problem-solving strategies by means of which
that knowledge is used.

The logic component determines the meaning of the
algorithm whereas the control component only
affects its efficency.”

Robert Kowalsky, Algorithm = Logic + Control (1979)

Imperative vs Declarative

● Imperative:

– inside-to-outside approach: all execution
alternatives are explicitly specified and new
alternatives must be explicitly added

● Declarative

– outside-to-inside approach: constraints
implicitly specify execution alternatives as all
alternatives that satisfy the constraints; adding
new constraints usually means discarding some
execution alternatives

Imperative:
you command
the directions

Imperative:
you command
the directions

Imperative:
you command
the directions

● What if the
labyinth
changes?

Declarative:
you give just the
labyrinth. The
computer finds the
way.

Declarative:
you give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Declarative:
you give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Declarative:
you give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Declarative:
you give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Functional programming

Focus: computation as mathematical function
● While functional languages typically do appear to

specify how, a compiler for a purely functional
programming language is free to rewrite the
operational behavior of a function, so long as the
same result (the what) is returned for the same
inputs.

Ex. (a2 – b2) can be rewritten as (a – b) * (a + b)

Functional programming

Focus: computation as mathematical function
● While functional languages typically do appear to

specify how, a compiler for a purely functional
programming language is free to rewrite the
operational behavior of a function, so long as the
same result (the what) is returned for the same
inputs.

Ex. (a2 – b2) can be rewritten as (a – b) * (a + b)
● As declarative programming, it should be

transparent in respect to side-effects.

Procedural vs Object-oriented

Procedural vs Object-oriented

● Procedural

– programming focused on procedures: blocks of
instructions/portions of code related to specific
tasks

● Object-oriented

– programming focused on the (data) objects which
are manipulated during the computation

Data types and objects

● The idea of objects grows from associating to data
structures the description of possible actions to be
performed with, and the description of conceptual
relations with other objects (encapsulation).

Object-oriented programming

Focus: the object of computation
● (real-world) objects are modeled as seperate

entities having their own state (i.e. internal
variables or attributes),

● which is modified only by built-in procedures,
called methods.

 → what I can do on a object is intrinsic to the object!

Object-oriented programming

Focus: the object of computation
● Objects are organized into classes, from which

they inherit methods and internal variables.
● Objects can integrate other objects, thus enabling

composition.
● The object-oriented paradigm provides key benefits

of reusable code and code extensibility.

Agent-based programming

Focus: computing entities described as concurrent,
possibly intentional entities.

● Ideally, it completes the progression of an imaginary
evolution starting from the instructions, passing by
objects and arriving up to agents.

physical stance
interpreting using
the physical laws

physical stance

design stance
interpretation related to
what the entity is
supposed to do (i.e. has
been designed to do)

physical stance

design stance

sometimes it breaks!

interpretation related to
what the entity is
supposed to do (i.e. has
been designed to do)

physical stance

design stance

intentional stance
interpreting an entity
as an agent, ascribing
him beliefs, desires,
intents and enough
rationality to do what
he ought to do given
those beliefs and
desires

cf. Daniel Dennett, The Intentional Stance (1987)

physical stance

design stance

intentional stance
interpreting an entity
as an agent, ascribing
him beliefs, desires,
intents and enough
rationality to do what
he ought to do given
those beliefs and
desires

cf. Daniel Dennett, The Intentional Stance (1987)

physical stance

design stance

intentional stance

cf. Daniel Dennett, The Intentional Stance (1987)

interpreting an entity
as an agent, ascribing
him beliefs, desires,
intents and enough
rationality to do what
he ought to do given
those beliefs and
desires

physical stance

design stance

intentional stance

cf. Daniel Dennett, The Intentional Stance (1987)

interpreting an entity
as an agent, ascribing
him beliefs, desires,
intents and enough
rationality to do what
he ought to do given
those beliefs and
desires

The intentional stance can be
used as reference for the
creation of a user interface.

The intentional stance can be
used as reference for the
creation of a user interface.

But also as an internal
application architecture, via
agent-based programming!

The entity is defined by
desires and knowledge, and
generates intents and
performs actions accordingly.

Sequential vs Concurrent + (Parallel)

concurrentsequential
behaviour
(processes)

concurrentsequential
behaviour
(processes)

concurrentsequential
behaviour
(processes)

parallel

serial

concurrentsequential
behaviour
(processes)

structure
(components)

parallel

serial

concurrentsequential
behaviour
(processes)

structure
(components)

parallel

serial

concurrentsequential
behaviour
(processes)

structure
(components)

parallel

concurrentsequential

serial

structure
(components)

behaviour
(processes)

Sequential, Concurrent, Parallel
● Sequential

– instructions are executed step by step
● Concurrent

– execution occurs concurrently, and if it has side-
effect over the same components (race condition),
it produces non-determinism

● Parallel

– determinism is guaranteed if concurrency occurs in
separate components (e.g. multicore processors)

Sequential vs Concurrent

● Sequential is the traditional, easier approach.
● It’s fundamentally more difficult to express

algorithms in a concurrent/parallel way, but there is
the potential of a great increase of performance,
exploiting parallel architectures.

Data-flow programming

Focus: how to connect computing devices
● Rather than how and what to compute, we are

concerned about what kind and how data is passed
between entities.

Data-flow programming

Focus: how to connect computing devices
● Typical use: electronics, infrastructure design,

networks and business modeling, and spreadsheets!

Event-driven programming

Focus: computation is asynchronously triggered by
events

Dispatcher/Scheduler

Event A
Handler

Event C
Handler

Event A Event CEvent B

Event B
Handler

● Based on architectures
accounting a dispatcher
for events, received as
messages.

Event-driven programming

Focus: computation is asynchronously triggered by
events

Dispatcher/Scheduler

Event A
Handler

Event C
Handler

Event A Event CEvent B

Event B
Handler

● Based on architectures
accounting a dispatcher
for events, received as
messages.

● Typical use: user
interfaces, rule engines,
reactive systems

Static vs Dynamic

Static vs Dynamic

● Static

– Properties are fixed when the program is compiled:
● types of variables
● definitions of types
● code

● Dynamic

– The same properties can be changed at run-time

Static programming in a metaphor..

Dynamic programming in a metaphor..

i.e. some sort of deliberation may change
the rules (cf. the game Nomic)

Conclusion

4 “axis” for paradigms

● Imperative vs Declarative
● Procedural vs Object-Oriented
● Sequential vs Concurrent (vs Parallel)
● Static vs Dynamic

4 “axis” for paradigms

● Imperative vs Declarative
● Procedural vs Object-Oriented
● Sequential vs Concurrent (vs Parallel)
● Static vs Dynamic

However, whatever programming choice
we make, there is an ultimate truth!

At the end, everything will be
always executed as machine code,

so why bother?

– Practically
speaking, all
these navigates
in waters...

– Practically
speaking, all
these navigates
in waters...

– But depending
of what we
need to do,
one is better
than the other!

● understand the problem
● reflect about the right representation
● choose the best suited paradigm for the

development of the solver

● only then, start programming!

Building Information Systems

Homework

Read the article on BB, mainly sections 2, 4, 5.

Programming Paradigms for Dummies: What Every
Programmer Should Know, Peter Van Roy (2009)

● Analyze the ancient puzzle and the other problems in
slide 45 with your group and argue which paradigm is
the most/less suited, for each of them.

● Consider the Python language. Recognize on which
paradigms it is based, providing examples of code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

