

Introduction to
Programming paradigms

Giovanni Sileno g.sileno@uva.nl
Leibniz Center for Law
University of Amsterdam

17 September 2014,
Introduction to Information Systems – Practical class

different perspectives (to try) to solve problems

mailto:g.sileno@uva.nl

Problem Analysis

● The puzzle of the farmer with goose, fox and beans.
● How much is 2 * 2 + 4 ?
● Prepare a dish of spaghetti.
● Manage your collection of books.
● Given f(a, b) = a2 - b2, how much is f(2, 3)?
● Schedule your weekly physical exercises, considering

your personal and professional appointments.
● Find the max of 1, 5, 2, 9, 4, 6, 3, 8, 7.
● Order the same sequence.
● Calculate the taxes you have to pay.

Problem/Paradigm association?

Programming

Control flow operators

● The control flow basically
describes the sequential
order in which instructions
are evaluated.

● Control flow operators
modifies such order.

“Dangerous” control flow operators

● Certain operators disrupt the sequence, in the sense
that do not allow you to return to the stream you
were before.

“Dangerous” control flow operators

● Certain operators disrupt the sequence, in the sense
that do not allow you to return to the stream you
were before.

– Jumps (GOTO)

“Dangerous” control flow operators

● Certain operators disrupt the sequence, in the sense
that do not allow you to return to the stream you
were before.

– Jumps (GOTO)
– Exceptions

“Dangerous” control flow operators

● Certain operators disrupt the sequence, in the sense
that do not allow you to return to the stream you
were before.

– Jumps (GOTO)
– Exceptions
– Threads

“Dangerous” control flow operators

● As long as you know your code well, this is not
necessarily a problem.

● However, when the program is not yours, or it
grows in complexity with the development,
unstructured control flow operators become
difficult to follow.

“Dangerous” control flow operators

● As long as you know your code well, this is not
necessarily a problem.

● However, when the program is not yours, or it
grows in complexity with the development,
unstructured control flow operators become
difficult to follow.

● Worst scenario

– complex program
– modified by many people
– with a long life cycle

Does anyone enjoy spaghetti code?

Structured programming

Structured programming

● Structured programming was born to extend
imperative programming with control flow
operators, while avoiding the use of unconditional
branchs (e.g. GOTO).

● It leverages visual diagramming techniques as flow
charts or Nassi-Shneiderman diagrams.

Sequential execution

● Normally execution occurs sequentially.

Nassi-Shneiderman
(NS) diagrams

Flow charts

Conditional (IF .. THEN .. ELSE)

● Used for binary evaluations (true or false).
● IF a certain condition is true THEN perform

something, ELSE perform something else

Conditional (SWITCH/CHOICE)

● This conditional is used for multiple choices. Default
is the “other”, not explicitly defined case.

Loop (WHILE .. DO ..)

● This loop repeats its code as much as the condition
is true.

Loop (DO .. UNTIL ..)

● This loop repeats its code until the condition
becomes true.

Draw a Nassi-Shneiderman diagram of
the cooking of a dish of spaghetti.

● If there are sieved tomatoes, you cook the tomato
sauce, with salt and basilic. Add a bit of sugar if the
tomatoes are acid.

● Otherwise you do a carbonara. You fry sliced bacon in
the pan, and when the pasta is ready, break the eggs
adding parmisan and a bit of pepper in the pasta pot.

● The pasta is cooked letting the water to boil in a pot,
adding salt, and then the pasta. Wait the suggested
cooking time.

IF .. THEN .. SWITCH/CASE .. WHILE .. DO .. DO .. UNTIL..

Decomposition

Decomposition (or factoring)

● Decomposition is a strategy for organizing a
program as a number of parts.

● The objective of decomposition is to increase
modularity of the program and its maintainability.

Decomposition (or factoring)

● Decomposition is a strategy for organizing a
program as a number of parts.

● The objective of decomposition is to increase
modularity of the program and its maintainability.

● We can decompose both data (the logic) and
procedures/functions (the control).

Divide et impera (divide and conquer)

● Decomposition allows to take a
strategic algorithmic approach

● Rather than facing the
complete problem, we tackle it
down to smaller (and simpler)
independent components.

 → Different teams may work
on different sub-problems.

Decomposition (or factoring)

● Intuitively the breaking down should be made in
order to:

– minimize the static dependencies among the
parts → low coupling between modules

– maximise the cohesion (how much the
elements belong together) within each part.

 → modular high cohesion

MVC design pattern

Controller

Model

View

User

Application

manipulates

uses

updates

Following the principle of
separation of concerns, an
application can be
specified distinguishing:

shows itself to

MVC design pattern

Controller

Model

View

User

Application

manipulates

uses

updates

Following the principle of
separation of concerns, an
application can be
specified distinguishing:

MODEL: the
knowledge, i.e. data
structures as e.g.
objects, or more
often structures of
them (e.g. databases)

shows itself to

MVC design pattern

Controller

Model

View

User

Application

manipulates

uses

updates

Following the principle of
separation of concerns, an
application can be
specified distinguishing:

● VIEW: a visual
representation of the
model (there may be
multiple views!)

shows itself to

MVC design pattern

Controller

Model

View

User

Application

manipulates

uses

updates

Following the principle of
separation of concerns, an
application can be
specified distinguishing:

● CONTROLLER: the
operational logic of
the application,
serves as a interface
between the user and
the model

shows itself to

MVC design pattern (variations)

Controller

Model

View

User

Application

manipulates

interactsshows itself to

commands

manipulates

You can encounter some
variations of the pattern:

● The user interacts with
the view to command the
controller (e.g. buttons)

● The controller modifies
the view

● The view actively reads
the model

reads

Exercise

Transform the given code following this pattern:

Controller

Model

View

Application

manipulates

manipulates

Class

Application

Exercise Code
class Student {
 String number
 String name

 void show() {
 println("-- Student --")
 println("Name: " + name)
 println("Number: " + number)
 }

 void setName(String studentName){
 name = studentName
 }

 String getName() {
 return name
 }

 void setNumber(String studentNumber){
 number = studentNumber
 }

 String getNumber() {
 return number
 }
}

student = new Student()
student.setName("Jahn")
student.setNumber("143AB")

// print the student information
student.show()

// correct the name
student.setName("John")

// print the student information
student.show()

Application

Class

To download the code: http://justinian.leibnizcenter.org/noMVC.groovy
To run it: https://groovyconsole.appspot.com/

http://justinian.leibnizcenter.org/noMVC.groovy
https://groovyconsole.appspot.com/

Exercise Code
class Student {
 String number
 String name

 void show() {
 println("-- Student --")
 println("Name: " + name)
 println("Number: " + number)
 }

 void setName(String studentName){
 name = studentName
 }

 String getName() {
 return name
 }

 void setNumber(String studentNumber){
 number = studentNumber
 }

 String getNumber() {
 return number
 }
}

student = new Student()
student.setName("Jahn")
student.setNumber("143AB")

// print the student information
student.show()

// correct the name
student.setName("John")

// print the student information
student.show()

?

output

Application

Class

To download the code: http://justinian.leibnizcenter.org/noMVC.groovy
To run it: https://groovyconsole.appspot.com/

http://justinian.leibnizcenter.org/noMVC.groovy
https://groovyconsole.appspot.com/

Exercise Code
class Student {
 String number
 String name

 void show() {
 println("-- Student --")
 println("Name: " + name)
 println("Number: " + number)
 }

 void setName(String studentName){
 name = studentName
 }

 String getName() {
 return name
 }

 void setNumber(String studentNumber){
 number = studentNumber
 }

 String getNumber() {
 return number
 }
}

student = new Student()
student.setName("Jahn")
student.setNumber("143AB")

// print the student information
student.show()

// correct the name
student.setName("John")

// print the student information
student.show()

-- Student --
Name: Jahn
Number: 143AB
-- Student --
Name: John
Number: 143AB

output

Application

Class

To download the code: http://justinian.leibnizcenter.org/noMVC.groovy
To run it: https://groovyconsole.appspot.com/

http://justinian.leibnizcenter.org/noMVC.groovy
https://groovyconsole.appspot.com/

Exercise Code
class Student {
 String number
 String name

 void show() {
 println("-- Student --")
 println("Name: " + name)
 println("Number: " + number)
 }

 void setName(String studentName){
 name = studentName
 }

 String getName() {
 return name
 }

 void setNumber(String studentNumber){
 number = studentNumber
 }

 String getNumber() {
 return number
 }
}

student = new Student()
student.setName("Jahn")
student.setNumber("143AB")

// print the student information
student.show()

// correct the name
student.setName("John")

// print the student information
student.show()

?
student = new Student()
student.setName("Jahn")
student.setNumber("143AB")

view = new StudentView()
controller

= new StudentController(model, view)

controller.updateView()
controller.setStudentName("John")
controller.updateView()

Contr.

Model

View

manip.

manip.

Application

To download the code: http://justinian.leibnizcenter.org/noMVC.groovy
To run it: https://groovyconsole.appspot.com/

http://justinian.leibnizcenter.org/noMVC.groovy
https://groovyconsole.appspot.com/

“Composition”

Top-down and bottom-up
programming

● Top-down is a programming style in which design
begins by specifying complex pieces and then
dividing them into successively smaller pieces
(generally associated to procedural languages).

● Bottom-up approach starts from detailing the
smaller pieces and work by composing them to
create the intended program (sometimes with
Object-Oriented languages).

Bottom-up programming
● It is usual in LISP to start by defining new primitive

operators. The resulting program is usually shorter.
● Sometimes in Object Oriented languages you start

by defining the “smaller” element, i.e. the one with
no dependencies, and then you build up the others.

– e.g. rather then starting from the document and
filling it with words, you start from the word, and
define the document as filled with words.

Bottom-up programming
● It is usual in LISP to start by defining new primitive

operators. The resulting program is usually shorter.
● Sometimes in Object Oriented languages you start

by defining the “smaller” element, i.e. the one with
no dependencies, and then you build up the others.

– e.g. rather then starting from the document and
filling it with words, you start from the word, and
define the document as filled with words.

● Programmers usually work with both techniques.

Hierarchy and individuals

Individuals (IS-INSTANCE-OF)
● The concept of class intuitively refers to some entity

that belongs to that class.

● This entity or
object is said to
an instance of
that class.

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

describe properties
of the system

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

actually allocate
(memory) space for

the object

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

apply the required
method to the object

Hierarchy as Taxonomy (IS-A)
● Things and concepts are usually hierarchically

classified both in common and expert knowledge.

Hierarchy as Taxonomy (IS-A)
● Things and concepts are usually hierarchically

classified both in common and expert knowledge.
● Given a certan class, a subclass or derived class

inherits certain properties (as attributes and
methods) from the first.

● From the perspective of the second class, the first is
called superclass.

● Some derivation may be overridden.

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A.")
 }
}

a = new A()
a.show()

?
output

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A.")
 }
}

a = new A()
a.show()

Ciao! My type is A.

output

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A")
 }
}

class B extends A {}

b = new B()
b.show()

?
output

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A")
 }
}

class B extends A {}

b = new B()
b.show()

Ciao! My type is A.

output

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A")
 }
}

class B extends A {
 @Override
 void show() {
 print(salutation + "! My type is B")
 }
}

b = new B()
b.show()

?
output

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A")
 }
}

class B extends A {
 @Override
 void show() {
 print(salutation + "! My type is B")
 }
}

b = new B()
b.show()

Ciao! My type is B.

output

Hierarchy as partonomy (HAS-A)
● Given an object of a certain class, if it is composed

by other objects, the second ones belong to the
first.

Hierarchy as partonomy (HAS-A)
● Given an object of a certain class, if it is composed

by other objects, the second ones belong to the
first.

– The car has four wheels.
– Those wheels belongs to the car.

Hierarchy as partonomy (HAS-A)
● Given an object of a certain class, if it is composed

by other objects, the second ones belong to the
first.

– The car has four wheels.
– Those wheels belongs to the car.

(NB: things are a bit more complicated!
aggregation vs composition)

“Strict” Composition
class Car {
 Wheel frontLeftWheel
 Wheel frontRightWheel
 Wheel rearLeftWheel
 Wheel rearRightWheel

 Car {
 frontLeftWheel = new Wheel()
 frontRightWheel = new Wheel()
 rearLeftWheel = new Wheel()
 rearRightWheel = new Wheel()
 }
}

car = new Car()

The lifetime of the
components
depends on the
composed object.

Aggregation
class Car {
 Wheel frontLeftWheel
 Wheel frontRightWheel
 Wheel rearLeftWheel
 Wheel rearRightWheel

 Car { }

 void mountWheels(fLW, fRW, rLW, rRW) {
 frontLeftWheel = fLW
 frontRightWheel = fRW
 rearLeftWheel = rLW
 rearLeftWheel = rRW
 }
}

car = new Car()
car.mountWheels(...)

The lifetime of the
components can
differ of that of the
composed object.

Aggregation

Composition is
“strong” aggregation!

The lifetime of the
components can
differ of that of the
composed object.

class Car {
 Wheel frontLeftWheel
 Wheel frontRightWheel
 Wheel rearLeftWheel
 Wheel rearRightWheel

 Car { }

 void mountWheels(fLW, fRW, rLW, rRW) {
 frontLeftWheel = fLW
 frontRightWheel = fRW
 rearLeftWheel = rLW
 rearLeftWheel = rRW
 }
}

car = new Car()
car.mountWheels(...)

Exercise
● Represent

– people (accounting their name)
– and students (considering their student ID and

their university)
– the chairs that are in this room
– people being able to sit on chairs which are in the

same place
– you as a student sitting in this room

Parallel algorithms

parallel algorithms/concurrent tasks

● Divide et impera often leads quite nicely to
algorithms which may be computed in parallel, via
concurrent processes.

(short) Exercise
● Consider the exercise of structured programming

with cooking spaghetti. What we could have done
concurrently?

(short) Exercise
● Consider the exercise of structured programming

with cooking spaghetti. What we could have done
concurrently?

parallel algorithms/concurrent tasks

● A synchronization is necessary when the concurrent
components are:

– communicating (message-passing
concurrency), at the base for instance of the
Actor model;

– referring to the same resource (shared-state
concurrency); faster, but it requires primitives
(e.g. semaphores) to avoid race conditions

– ...

(short) Exercise

● How concurrency is handled

– during auctions?
– when airplanes are landing?
– with trains?

(short) Exercise

● How concurrency is handled

– during auctions?
– when airplanes are landing?
– with trains?

Summary of the 4 axis

Imperative vs Declarative

● Imperative:

– programming focused on the sequence of
operations necessary to solve the problem (which
in turn usually stays implicit)

● Declarative

– programming focused on describing the problem
(while the sequence of operations to be performed
is left implicit)

Procedural vs Object-oriented

● Procedural

– programming focused on procedures: blocks of
instructions/portions of code related to specific
tasks

● Object-oriented

– programming focused on the (data) objects which
are manipulated during the computation

Sequential, Concurrent, Parallel
● Sequential

– instructions are executed step by step
● Concurrent

– execution occurs concurrently, and if it has side-
effect over the same components (race condition),
it produces non-determinism

● Parallel

– determinism is guaranteed if concurrency occurs in
separate components (e.g. multicore processors)

Static vs Dynamic

● Static

– Properties (types of variables, definitions of types,
code) are fixed when the program is compiled

● Dynamic

– The same properties can be changed at run-time

Some additional links
● Understanding Association, Aggregation and

Composition
http://www.codeproject.com/Articles/330447/Understanding-Association-Aggregation-and-Composit

For your moments of pause:
● brief-incomplete-and-mostly-wrong story of

programming
http://james-iry.blogspot.nl/2009/05/brief-incomplete-and-mostly-wrong.html

● If programming languages were <T>
http://lambda-the-ultimate.org/node/3133

http://www.codeproject.com/Articles/330447/Understanding-Association-Aggregation-and-Composit
http://james-iry.blogspot.nl/2009/05/brief-incomplete-and-mostly-wrong.html
http://lambda-the-ultimate.org/node/3133

