

# A Systems Perspective on Organizations and People

integrating micro and macro motives

29 October 2014,

Presentation to Business Information Systems

Giovanni Sileno g.sileno@uva.nl

*Leibniz Center for Law* University of Amsterdam

## Preliminary statement

• In this lecture we will present, introduce and work with *models*.

# NO ORGANIZATIONS WERE HARMED **DURING THE MAKING OF THIS** LECTURE.

# Why Modeling? (1)

- Modeling can guide exploration:
  - figure out what questions to ask
  - reveal key design decisions
  - uncover problems
  - e.g. physical models





# Why Modeling? (1)

- Modeling can guide exploration:
  - figure out what questions to ask
  - reveal key design decisions
  - uncover problems
  - e.g. conceptual models





Doherty, William J.; Edward F. Kouneski, and Martha Farrell Erickson. "Responsible Fathering: An Overview and Conceptual Framework," September 1996.



mbp: http://localhost:8890/proxy/rdf/http://musicbrainz.org/ mo: http://purl.org.ontology/mo/ dc: http://purl.org/dc/elements/1.1/ rdfs: http://www.w3.org/2000/01/rdf-schema# foaf: http://xmins.com/foaf/0.1/

 $\begin{array}{l} \mbox{Artist ID: } xxx = 72c090b6\mbox{-}a68e\mbox{-}4cb9\mbox{-}b30\mbox{-}85278681a714b330b \\ \mbox{Release ID: } yyy = 9d0cadc4\mbox{-}69cd\mbox{-}69cd\mbox{-}4692\mbox{-}b6c4\mbox{-}9458522733e1 \\ \mbox{Track ID: } zzz = 94cd2383\mbox{-}c828\mbox{-}4835\mbox{-}9c83\mbox{-}645148379136 \\ \end{array}$ 

# Why Modeling? (1)

- Modeling can guide exploration:
  - figure out what questions to ask
  - reveal key design decisions
  - uncover problems

#### e.g. design models







# Why Modeling? (2)

- Modeling can be used to check understanding
  - reasoning about the model to understand its consequences
  - checking expectations
  - animating the model to help us visualize/validate behaviour (simulation)

## Market Arena – an experiment



## Market Arena – an experiment



- 15 groups of BIS students
- Each group had a buyer and a seller
- Three prizes: best buyer, best seller, best trader.
- All moves possible (non compliance, informational passing, etc.)!!

## Market Arena – last year experiment



There were also NPC:

- Zero Intelligence(ZI): random pricing
- Zero Intelligence
  Plus (ZIP): basic
  pricing rationality

e.g. buyer, -1 for each offer received higher than desired price, +1 for less

- Enforcer

## Market Arena – last year experiment



### The results?

## Market Arena – last year experiment

| TOP10 | Top buyer   |             | Top seller   |              | Top trader |        |
|-------|-------------|-------------|--------------|--------------|------------|--------|
|       | @5000       | @10000      | @5000        | @10000       | @5000      | @10000 |
| 1     | buyer_3B    | buyer_3B    | seller_2F    | seller_2F    | _2G        | _3D    |
| 2     | buyer_3C    | buyer_3C    | seller_1E    | seller_1E    | _3D        | zi_4   |
| 3     | buyer_2B    | buyer_2B    | seller_1F    | seller_1F    | _2F        | _2F    |
| 4     | buyer_2A    | buyer_2A    | zip_seller3  | zip_seller3  | zi_4       | _1E    |
| 5     | buyer_2F    | zip_buyer9  | zip_seller2  | zip_seller2  | _1E        | _1F    |
| 6     | zip_buyer9  | buyer_2F    | zip_seller12 | zip_seller12 | zip_9      | zip_9  |
| 7     | zip_buyer8  | zip_buyer8  | zip_seller9  | zip_seller9  | zip_4      | zip_4  |
| 8     | zip_buyer6  | zip_buyer6  | seller_1D    | seller_1D    | _1F        | zip_2  |
| 9     | buyer_1E    | buyer_1E    | zip_seller5  | seller_3E    | zip_2      | _2G    |
| 10    | zip_buyer10 | zip_buyer10 | zip_seller1  | zip_seller5  | zip_3      | zip_3  |

# Why Modeling? (2)

- Modeling can be used to check understanding
  - reasoning about the model helps us to understand its consequences
  - checking expectations
  - animating the model helps us to visualize/validate behaviour (simulation)
- Modeling can be used as prescription:
  - Model actualization
    (execution/implementation)

# Why Modeling? (3)

- Modeling can help in communication
  - requires abstractions with the right focus
  - neglects unnecessary details



# Types of *formal* models used in organizations

Business process models

#### Knowledge models



#### Accounting models



#### Statistical models



# Types of *informal* models used in organizations

#### experts' conceptualizations and knowledge

- prototypical cases
- failure modes
- best and bad practices
- non compliance scenarios

# M for modeling





source: http://caminao.wordpress.com

# M for modeling





source: http://caminao.wordpress.com







## Systems

• A system is a set of interacting or interdependent components forming an integrated whole.

Examples:

- operating systems
- biological organisms (e.g. the body)
- theoretical systems (paradigms)
- organizations...



## Cybernetic view on Organizations



- Cybernetics is the study of *control* and *communication* in the **animal** and the **machine** (Norbert Wiener)
- The word cybernetics comes from Greek κυβερνητική, meaning *governance*, or the *art of steering*.



## Focus on: Viable Systems

Viable means that the system aims to continue to **exist**.

In case of an artefact, at least until the time when its purpose has been achieved.









## Viable System Model

- Three main components:
  - Operation: responsible of the primary activities.
  - Metasystem: hold the whole thing together.
  - *Environment*, the outside world which is of direct relevance to the system.





cf. Stafford Beer, Brain of the Firm, 1981



### System 1: **Operations**

Primary activities, operations, project teams, quasiautonomous









System 4 Intelligence Forward planning, strategy, innovation





## **BIS:** B as Business

# A practical example: call center

 "A manager of one of the world's largest banking operations told me that if he could reduce the average handling time in his call centres by 30 seconds he could deliver millions to the bottom line."



John Seddon, Systems Thinking in the Public Sector (2011)

# A practical example: call center

 "A manager of one of the world's largest banking operations told me that if he could reduce the average handling time in his call centres by 30 seconds he could deliver millions to the bottom line."

• Common managerial thinking focuses on **cost**!



John Seddon, Systems Thinking in the Public Sector (2011)



 consequence of the position in which
 management is placed!



# Profit = Income – Cost



# Cost covers only half of the picture! Profit = Income – Cost





 what happens at the system boundaries?



# A practical example: call center

- "A manager of one of the world's largest banking operations told me that if he could reduce the average handling time in his call centres by 30 seconds he could deliver millions to the bottom line."
- Type of *value demand* questions:
  - Can I have a loan?
  - Can you help me pay the bill?



John Seddon, Systems Thinking in the Public Sector (2011)






































Business "haunted" by *failure demand*



#### misalignment with expectations of the consumers



Business "haunted" by *failure demand*



#### misalignment with expectations of the consumers









• Business "haunted" by *failure demand* 



#### misalignment with legal requirements



• Business "haunted" by *failure demand* 



#### misalignment with legal requirements



# A practical example: call center

- "A manager of one of the world's largest banking operations told me that if he could reduce the average handling time in his call centres by 30 seconds he could deliver millions to the bottom line."
- Type of *failure demand* questions:
  - I don't understand this charge.
  - Why haven't you paid my direct debit?



John Seddon, Systems Thinking in the Public Sector (2011)

# Is failure demand only a cost?

- "A manager of one of the world's largest banking operations told me that if he could reduce the average handling time in his call centres by 30 seconds he could deliver millions to the bottom line."
- Type of *failure demand* questions:
  - I don't understand this charge.
  - Why haven't you paid my direct debit?



John Seddon, Systems Thinking in the Public Sector (2011)



Market research and marketing practices necessarily take a higher level perspective!





Missing something: knowledge of people at operations level.



# Three spheres of activities view



Missing something: knowledge of people at operations level.



# Something is missing...

# Systems conceptualizations: *Totality* vs *Assemblage*



- organicist metaphor
- components defined by relations of interiority
- connections logically necessary
- world of necessity



- **symbiosis** metaphor
- components defined by relations of exteriority
- connections contextually obligatory
- world of possibility

# Basic assemblage



- If we take a simple grain of sand..
- it has a certain structure (mass/volume), forming its individual shape
- which is subjected to certain physical laws (among which the law of gravity)

• Imagine now to drop grains of sand from the same fixed position...



# Basic assemblage

- A pile of sand is a whole, composed by interacting grains.
- Its macro-characteristics are a consequence of the microcharacteristics of the components



 Landslides occur in critical points, when the system attempts to go beyond the maximum threshold of the structure



# Assemblage: a characterization

- Organization from individual to collective entity requires coordination capacities (ex. the piling up of the grain of sands)
- Maintenance of the collective entity requires
  reparation capacities (ex. the strengthening after landslides)



# Social (human) systems

Human communities can be seen as systems of interacting components (subsystems or system aggregates) defined by structure and behaviour  $\rightarrow$  e.g. organizations



# Social (human) systems

Human communities can be seen as systems of interacting components (subsystems or system aggregates) defined by structure and behaviour  $\rightarrow$  e.g. organizations



#### Aggregate behaviour

 A collective behaviour emerges from the interactions of the parts





cf. John H. Holland, Complex Adaptive Systems (1992)

#### Evolution

 The parts evolve in a Darwinian fashion: there is a *selection*, and in general they improve the ability to survive in their interactions with the surrounding parts.





#### Anticipation

- The parts develops
  rules that anticipate the
  consequences of
  certain responses
  - e.g. Pavlov's studies





cf. John H. Holland, Complex Adaptive Systems (1992)

- Anticipation
  - The parts develops
    rules that anticipate the
    consequences of
    certain responses
    - e.g. Pavlov's studies
    - e.g. Oil, water shortage





cf. John H. Holland, Complex Adaptive Systems (1992)

# Anticipation and *teleological* thinking: how we model that?



#### physical stance

#### interpreting using the physical laws





design stance

physical stance

interpretation related to what the entity is supposed to do (i.e. has been designed to do)





design stance

physical stance

interpretation related to what the entity is supposed to do (i.e. has been designed to do)



intentional stance

design stance

physical stance

interpreting an entity as an *agent*, ascribing him **beliefs**, desires, intents and *enough rationality* to do what he *ought to do* given those beliefs and

desires



cf. Daniel Dennett, The Intentional Stance (1987)



intentional stance

design stance

physical stance

interpreting an entity as an *agent*, ascribing him **beliefs**, desires, intents and *enough rationality* to do what he *ought to do* given those beliefs and

desires



cf. Daniel Dennett, The Intentional Stance (1987)




#### intentional stance

design stance

physical stance

interpreting an entity as an *agent*, ascribing him **beliefs**, desires, intents and *enough rationality* to do what he *ought to do* given those beliefs and

desires



cf. Daniel Dennett, The Intentional Stance (1987)







#### intentional stance

design stance

physical stance

interpreting an entity as an *agent*, ascribing him **beliefs**, **desires**, **intents** and *enough rationality* to do what he *ought to do* given those beliefs and

desires



cf. Daniel Dennett, The Intentional Stance (1987)

#### institutional stance

intentional stance

design stance

physical stance

interpreting an entity as a member of a social collective entity, and ascribing him **institutional powers, duties** and **prohibitions**.



#### Agency

As humans, we tend to think of groups, organizations, countries, cultures and other entities as agents.



## Agentic characterization

Therefore, an agentic characterization (intentional and institutional) provide the key for **models of social behaviour** 



## Agentic characterization

Therefore, an agentic characterization (intentional and institutional) provide the key for **models of social behaviour** → *stories, user cases, hyp. scenarios!* 



|     | agents have | agents usually | agents should |
|-----|-------------|----------------|---------------|
|     | behaved     | behave         | behave        |
| How | occurrence  | pattern        | normative     |
|     | description | description    | specification |
| Why | occurrence  | behavioural    | norm-creating |
|     | explanation | mechanism      | mechanism     |



|     | agents have | agents usually | agents should |
|-----|-------------|----------------|---------------|
|     | behaved     | behave         | behave        |
| How | occurrence  | pattern        | normative     |
|     | description | description    | specification |
| Why | occurrence  | behavioural    | norm-creating |
|     | explanation | mechanism      | mechanism     |

Our current research concerns a representational *alignment* of these views.



## Example: occurrence description



# Example: pattern description



## Example: normative specification



#### Example: agent-role script



|     | agents have | agents usually | agents should |
|-----|-------------|----------------|---------------|
|     | behaved     | behave         | behave        |
| How | occurrence  | pattern        | normative     |
|     | description | description    | specification |
| Why | occurrence  | behavioural    | norm-creating |
|     | explanation | mechanism      | mechanism     |

Our current research concerns a representational *alignment* of these views. Why?



|     | agents have | agents usually | agents should |
|-----|-------------|----------------|---------------|
|     | behaved     | behave         | behave        |
| How | occurrence  | pattern        | normative     |
|     | description | description    | specification |
| Why | occurrence  | behavioural    | norm-creating |
|     | explanation | mechanism      | mechanism     |

• Occurrence intepretation, Model-based diagnosis



|     | agents have | agents usually | agents should |
|-----|-------------|----------------|---------------|
|     | behaved     | behave         | behave        |
| How | occurrence  | pattern        | normative     |
|     | description | description 🔶  | specification |
| Why | occurrence  | behavioural    | norm-creating |
|     | explanation | mechanism      | mechanism     |

- Occurrence intepretation, Model-based diagnosis
- Validation of design against environmental models



|     | agents have | agents usually | agents should |
|-----|-------------|----------------|---------------|
|     | behaved     | behave         | behave        |
| How | occurrence  | pattern        | normative     |
|     | description | description    | specification |
| Why | occurrence  | behavioural 🖌  | norm-creating |
|     | explanation | mechanism      | mechanism     |

- Occurrence intepretation, Model-based diagnosis
- Validation of design against environmental models
- Verification of compliance



An adequate computational framework should support an organization in:

- responding to a problem, testing the case available data against a database of known scenarios
- adapting to a problem/opportunity, transmitting to the designer/policy maker prototypical scenarios not yet accounted



Most of the economic, decision-making theoretical models starts from **closed-world assumption**.

The *closure* of the system comes by design or as strict assumption  $\rightarrow$  basis for all analytical tools.

Similarly, business process practices tend to consider the human factor an *accident* rather than of an essential operational characteristic of the system.



However

# guidance != control

as institutions/organizations influence agents, agents influence institutions/organizations

→ we need a *constructivist* approach toward organizations, i.e. considering that the components and the environment are adapting as well

