

A Constructivist Approach to Rule-Bases

11 January 2015 - ICAART @ Lisbon

Giovanni Sileno (g.sileno@uva.nl), Alexander Boer, Tom van Engers

Leibniz Center for Law University of Amsterdam Samuel lives in a sunny country. He never checks the weather before going out.

- Samuel lives in a sunny country. He never checks the weather before going out.
- Raphael lives in a rainy country. He always checks the weather before going out.

- Samuel lives in a sunny country. He never checks the weather before going out.
- Raphael lives in a rainy country. He always checks the weather before going out.
- They both *take the umbrella if it rains*, however.

- Samuel lives in a sunny country. He never checks the weather before going out.
- Raphael lives in a rainy country. He always checks the weather before going out.
- They both *take the umbrella if it rains*, however.

 What do you expect if they switch country of residence?

Deliberation and Performance

- In everyday life, we do not deliberate at each moment *what to do next*.
- Our practical reasoning is mostly based on applying already structured behavioural *scripts*.
- Such scripts are constructed by education and experience, and refined by some adaptation process.

Deliberation and Performance in the legal system

- Structuration exemplified by
 - *Stare deciris* (binding precedent) principle
 - existence and maintenance of sources of law.
- Sources of law are artifacts which describe and prescribe the institutional powers and duties of the social components, including institutional agencies (e.g. public administrations)

Simplified target architecture regulatory regulated environment system system provides interacts, according rules to.. to the rules, with..

Simplified target architecture regulatory regulated environment system system provides interacts, according rules to.. to the rules, with..

Focus on *rule bases*

• When a new rule is introduced what happens to the rest of the rule base?

A simple* example

- On Sunday we eat outdoor.
 - r1: sunday -> eat_outdoor

* We are neglecting predication, deontic characterizations, intentionality, causation, etc..

A simple example

- On Sunday we eat outdoor.
 - r1: sunday -> eat_outdoor
- If it is raining, we never eat outdoor.
 - r2: raining -> -eat_outdoor

classic negation

A simple example

- On Sunday we eat outdoor.
 - r1: sunday -> eat_outdoor
- If it is raining, we never eat outdoor.
 r2: raining -> -eat outdoor
- What to do when it is Sunday and it is raining?

Priority-based representation

- On Sunday we eat outdoor.
 - r1: sunday -> eat_outdoor
- If it is raining, we never eat outdoor.
 - r2: raining -> -eat_outdoor
- A possible solution is defining the priority between rules. e.g. r2 > r1
- From a formal characterization, we are in the domain of *defeasible reasoning*.

Institutional mechanisms

- lex posterior derogat priori
 - \rightarrow the most recent law is stronger
- *lex specialis derogat generali* → the law with lower abstraction is stronger
- lex superior derogat inferiori
 → the hierachical order in the legal system counts

r1: you have to pay taxes at the end of the year.r2: if you are at loss with your activity, you don't have to pay taxes.

"natural" meta-rules

defining priorities

• Alternative solution: modify the premises of the relevant rules with less priority.

• Alternative solution: modify the premises of the relevant rules with less priority.

If it is raining, we never eat outdoor.
 r2: rain -> -eat outdoor

- Alternative solution: modify the premises of the relevant rules with less priority.
- On Sunday we eat outdoor, unless it is raining.
 r1': sunday and -rain -> eat_outdoor
- If it is raining, we never eat outdoor.
 r2: rain -> -eat outdoor

- Alternative solution: modify the premises of the relevant rules with less priority.
- On Sunday we eat outdoor, unless it is raining.
 r1': sunday and -rain -> eat_outdoor
- If it is raining, we never eat outdoor.
 - r2: rain -> -eat_outdoor

→ cf. "distinguishing" action in common law

Conversion algorithms

- Horty (2011) has analyzed the mechanisms of precedential reasoning, proposing an algorithm of conversion
 - from *priority-based* to *constraint-based*

Horty, J. F. (2011). Rules and Reasons in the Theory of Precedent. Legal Theory, 17(01):1–33.

Conversion algorithms

- Our work presents algorithms and a computational implementation for the full cycle of conversions:
 - from *priority-based* (PB) to *constraint-based* (CB)
 - from CB to *full-tabular* CB
 - from *full-tabular* CB to *minimal* CB
 - from *full-tabular* CB to PB (given the priority)

http://justinian.leibnizcenter.org/rulebaseconverter

remove the domain already evaluated

full-tabular CB(intermediate) CBPB
$$a \land \neg b \Rightarrow p$$
 $a \land \neg b \Rightarrow p$ $a \Rightarrow p$ $a \land b \Rightarrow \neg p$ $b \Rightarrow \neg p$ $b \Rightarrow \neg p$ $\neg a \land b \Rightarrow \neg p$ $\neg a \land \neg b \Rightarrow ?$

expand the premises to all relevant factors

to reduce to the minimal canonical form

Quine-McCluskey et similar algorithms are commonly used for *logic ports* synthesis

Constraint-based

$$\begin{array}{c} a \wedge \neg b \rightarrow p \\ b \rightarrow \neg p \end{array}$$

priority	Con
2	a
1	
	relev

onstraint-based

$$\begin{array}{c} a \wedge \neg b \rightarrow p \\ b \rightarrow \neg p \end{array}$$

elevant situations $a \wedge b$ $a \wedge \neg b$ $\neg a \wedge b$ $\neg a \wedge \neg b$ full-tabular CB $a \land \neg b \rightarrow p$ $a \land b \rightarrow \neg p$ $\neg a \land b \rightarrow \neg p$

	for each rule, check if it applies to situations yet to be evaluated		
oriority	Constraint-based	<i>full-tabular</i> CB	
2	$a \wedge \neg b \rightarrow p$	$a \wedge \neg b \rightarrow p$	
1	$b \rightarrow \neg p$	$a \wedge b \rightarrow \neg p$	
		$\neg a \wedge b \rightarrow \neg p$	
	relevant situations		
	$a \wedge b$		
	$a \wedge \neg b$		
	$\neg a \wedge b$		
	$\neg a \land \neg b$		
		Center for Law	

. . . .

priority	Constraint-based	<i>full-tabular</i> CE
2	$a \wedge \neg b \rightarrow p$	$a \wedge \neg b \rightarrow p$
1	$b \rightarrow \neg p$	$a \wedge b \rightarrow \neg p$
		$\neg a \wedge b \rightarrow \neg p$
	relevant situations	
	$-a \wedge b$	
<i>remove</i> $a \land \neg b$		
evalu	<i>iated</i> <u>¬a∧b</u>	
situa	tions $\neg a \land \neg b$	

$$full-tabular CB$$
$$a \land \neg b \rightarrow p$$
$$a \land b \rightarrow \neg p$$
$$\neg a \land b \rightarrow \neg p$$

Leibniz Center for Law

Adaptation

Second problem: Adaptation

How an existing rule-base is "adapted" to a certain environment?

Two perspectives on adaptation

top-down, *design*

optimization theory : adaptation comes from the agent's efforts to obtain a better overall pay-off.

bottom-up, *emergence*

e.g. theory of predictable behaviour (Heiner 1983): behavioural regularities arise in the presence of *uncertainty* about the "right" course of action

Heiner, R. (1983). The origin of predictable behavior. The American economic review, 73(4):560–595.

Payoff analysis

$E[payoff] = p(success) \cdot E[payoff of success] + p(failure) \cdot E[payoff of failure]$

Investigation payoff analysis

 $E[payoff] = p(success) \cdot E[payoff of concluding C]$ $+ p(failure) \cdot E[payoff of not concluding C]$

Externalizing costs...

 $E[payoff] = p(success) \cdot E[payoff of concluding C]$ $+ p(failure) \cdot E[payoff of not concluding C]$ - cost

Rule application payoff analysis

- $E[payoff] = p(success) \cdot E[payoff of concluding C]$ $+ p(failure) \cdot E[payoff of not concluding C]$ - cost
 - A rule may be seen as an investigation about a conclusion C.

$$r:c_1 \wedge c_2 \wedge \dots \wedge c_n \rightarrow C$$

$$p(success) = p(c_1 \wedge c_2 \wedge \dots \wedge c_n)$$

Rule application payoff analysis

 $E[payoff] = p(success) \cdot E[payoff of concluding C]$ $+ p(failure) \cdot E[payoff of not concluding C]$ -cost

 Furthermore, we assume that the *not*applicability of a certain rule does not entail other consequences beside the cost.

Optimization constraint

 $E[payoff] = p(success) \cdot E[payoff of concluding C]$ -cost

 The use of a rule is worth if E[payoff]>0 or, equivalently:

$$\begin{split} E[payoff of concluding C] > \frac{cost}{p(success)} &= \frac{cost}{p(c_1 \land .. \land c_n)} \\ p(c_1 \land .. \land c_n) > \frac{cost}{E[payoff of concluding C]} \end{split}$$

• If it rains, take the umbrella.

r: rain -> umbrella

• If it rains, take the umbrella.

```
r: rain -> umbrella
```

The payoff of applying *r* is : $E[payoff] = p(rain) \cdot G - cost(\{rain\}, K)$

- G is the payoff of deciding to take the umbrella (indipendent from the rule used).
- cost({rain}, K) is the cost of inferring the fact rain, given the knowledge base K.

• If it rains, take the umbrella.

```
r: rain -> umbrella
```

```
The payoff of applying r is :

E[payoff] = p(rain) \cdot G - cost(\{rain\}, K)
```

Imagine the agent has no clue about rain

- Raphael (rainy country): p(rain) significant $\rightarrow E > 0$

• If it rains, take the umbrella.

```
r: rain -> umbrella
```

```
The payoff of applying r is :

E[payoff] = p(rain) \cdot G - cost(\{rain\}, K)
```

- Imagine the agent has no clue about rain
 - Raphael (rainy country): p(rain) significant $\rightarrow E > 0$
 - Samuel (sunny country): p(rain) ~ 0 → E < 0!

Default assumptions (ASP syntax)

- When the payoff may be negative (e.g. Samuel), we may introduce a default rule which overrides the investigation.
- If it rains, take the umbrella.

```
rain -> umbrella
```

If you don't know if it rains, than it doesn't rain.
 not rain -> -rain.
 default negation classic negation (negation as failure)

Better payoff \rightarrow higher priority

- The analysis of evaluation payoffs provides an optimal order of investigation: choose the *r* which maximises payoff!
- To be used for CB to PB optimal conversions.

Construction and reconstruction

 incremental modifications, determining a partial reconfiguration of the operational knowledge used by the agent.

- incremental modifications, determining a partial reconfiguration of the operational knowledge used by the agent.
 - because of *distinguishing* actions, the new rules brings to the foreground factors left implicit in the previous rules.

- incremental modifications, determining a partial reconfiguration of the operational knowledge used by the agent.
 - because of *distinguishing* actions, the new rules brings to the foreground factors left implicit in the previous rules.
- **ad-hoc reorganizations**, aiming for better adaptation.

- incremental modifications, determining a partial reconfiguration of the operational knowledge used by the agent.
 - because of *distinguishing* actions, the new rules brings to the foreground factors left implicit in the previous rules.
- **ad-hoc reorganizations**, aiming for better adaptation.
 - When a rule base is "compiled" to a more efficient priority-based form, we lose the reasons motivating that structure (e.g. probabilistic assumptions)

• To rewrite the rule base again, the agent has to *reflect* over the rule base.

- To rewrite the rule base again, the agent has to *reflect* over the rule base.
- He has to unveil the underlying constraint-based representation, removing all default assumptions and recompute the priority indexes.

- To rewrite the rule base again, the agent has to *reflect* over the rule base.
- He has to unveil the underlying constraint-based representation, removing all default assumptions and recompute the priority indexes.
- Why the agent should do that?

- To rewrite the rule base again, the agent has to *reflect* over the rule base.
- He has to unveil the underlying constraint-based representation, removing all default assumptions and recompute the priority indexes.
- Why the agent should do that?
 - e.g. because of a number of *practical failures* exceeding a certain threshold.

Holistic view

Conclusion

- Our analysis has not targeted beliefs, as in *belief revision*.
- We have not used a model of theory revision accounting both facts and rules, as in *machine learning*.
- Our work focuses "just" on *rules*, already defined at symbolic level, and on rule-based systems.
 - affinity with *expert systems* literature

Conclusion

- The paper started with the intention of completing Horty's work on the conversion between CB and PB representations.
- The additional adaption analysis grew up from our experience with default assumptions in ASP.

Conclusion

- The paper started with the intention of completing Horty's work on the conversion between CB and PB representations.
- The additional adaption analysis grew up from our experience with default assumptions in ASP.
- Obviously, many research directions remain:
 - formal analysis, computational complexity
 - bottom-up adaptation
 - interactions with other theoretical frameworks
 - considering "real" rule-bases

