Similarity and Contrast on Conceptual Spaces for Pertinent Description Generation

Giovanni Sileno1,2, Isabelle Bloch1, Jamal Atif2, and Jean-Louis Dessalles1

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
2 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, 75016 Paris, France

giovanni.sileno@telecom-paristech.fr
Similarity is crucial to cognition

General (often implicit) hypothesis:

similar stimulus in *similar context* ➔ *similar response*
Similarity is crucial to cognition

General (often implicit) hypothesis:

similar stimulus in *similar* context \rightarrow *similar* response

\uparrow

\sim fixing the task
Similarity is crucial to cognition

General (often implicit) hypothesis:

similar stimulus in *similar context* → *similar response*

~ fixing the task

Practical uses: *description generation*

proximate elements can be used as *reference* to identify a certain *target* (*object*, *situation*, etc.)
Similarity is crucial to cognition

General (often implicit) hypothesis:

\[
\text{similar stimulus in similar context} \rightarrow \text{similar response}
\]

\[\sim \text{fixing the task}\]

Practical uses: \textit{description generation}

\textit{proximate elements} can be used as \textit{reference} to identify a certain \textit{target} (\textit{object}, \textit{situation}, etc.)

the caudate nucleus is an \textit{internal brain structure} which is very close to the lateral ventricles
Similarity is crucial to cognition

General (often implicit) hypothesis:

similar stimulus *in similar* context \Rightarrow *similar* response

\uparrow

\sim fixing the task

but how two stimuli are defined *similar* ?
Similarity is crucial to cognition

General (often implicit) hypothesis:

\[\text{similar stimulus in similar context} \rightarrow \text{similar response} \]

\[\sim \text{fixing the task} \]

but how two stimuli are defined similar?

psychology

- similarity is a function of a mental \textit{distance} between conceptualizations [Shepard1962]

\[\text{“psychological space” hypothesis} \]
Similarity is crucial to cognition

General (often implicit) hypothesis:

similar stimulus *in similar* context ➔ *similar* response

~ fixing the task

but how two stimuli are defined *similar*?

psychology

- similarity is a function of a mental *distance* between conceptualizations [Shepard1962]

 "psychological space" hypothesis

machine learning

- relies on some *metric* to compare inputs

- offers *pseudo-metric* learning methods
Similarity is crucial to cognition

General (often implicit) hypothesis:

\(\text{similar stimulus in similar context} \rightarrow \text{similar response} \)

\(\sim \) fixing the task

but how two stimuli are defined \textit{similar}?

psychology

- similarity is a function of a mental \textit{distance} between conceptualizations [Shepard1962]
 “\textit{psychological space}” hypothesis

machine learning

- relies on some \textit{metric} to compare inputs
- offers \textit{pseudo-metric} learning methods

geometrical model of cognition
Problems:

geometry model of cognition
Problems:

- similarity in human judgments does not satisfy fundamental geometric axioms [Tversky77]

 basis of feature-based models
Problems:

- similarity in human judgments does not satisfy fundamental geometric axioms [Tversky77]

 basis of feature-based models

 but.. feature selection?
Problems:

- similarity in human judgments does not satisfy **fundamental geometric axioms** [Tversky77]

 basis of feature-based models

 but.. feature selection?

- reasoning via artificial devices (still?) relies on **symbolic** processing

 e.g. through ontologies
Problems:

- similarity in human judgments does not satisfy **fundamental geometric axioms** [Tversky77]

 basis of feature-based models

 but.. feature selection?

- reasoning via artificial devices (still?) relies on **symbolic** processing

 e.g. through ontologies

 but.. symbol grounding? predicate selection?
Problems:

- similarity in human judgments does not satisfy fundamental geometric axioms [Tversky77]

 basis of feature-based models

 * but.. feature selection?

Proposed solutions:

- enriching the metric model with additional elements (e.g. density [Krumhansl78])

 * reasoning via artificial devices (still?) relies on symbolic processing

 e.g. through ontologies

 * but.. symbol grounding?

 predicate selection?
Problems:

- Similarity in human judgments does not satisfy fundamental geometric axioms [Tversky77]

 basis of feature-based models

 but.. feature selection?

- Reasoning via artificial devices (still?) relies on *symbolic* processing

 e.g. through ontologies

 but.. symbol grounding? predicate selection?

Proposed solutions:

- Enriching the metric model with additional elements (e.g. density [Krumhansl78])

 but.. holistic distance?
Problems:

- similarity in human judgments does not satisfy **fundamental geometric axioms** [Tversky77]

 basis of feature-based models

 but: feature selection?

- reasoning via artificial devices (still?) relies on **symbolic** processing

 e.g. through ontologies

 but: symbol grounding?

 predicate selection?

Proposed solutions:

- enriching the metric model with additional elements (e.g. density [Krumhansl78])

 but: holistic distance?

- approaching logical structures through geometric methods (e.g. [Distel2014])
Towards an alternative solution...

- conceptual spaces
- associationistic methods
- symbolic methods
Overview on conceptual spaces

- Conceptual spaces stem from (continuous) perceptive spaces.

- Natural properties emerge as convex regions over integral domains (e.g. color).

- Concepts are combinations of properties

- Prototypes can be seen as centroids of convex regions (properties or concepts).

 → convex regions can be seen as resulting from the competition between prototypes (forming a Voronoi Tessellation).
Overview on conceptual spaces

- Conceptual spaces stem from (continuous) **perceptive spaces**.

- Natural **properties** emerge as convex regions over **integral domains** (e.g. color).

- **Concepts** are combinations of properties

- **Prototypes** can be seen as centroids of convex regions (properties or concepts).

 → convex regions can be seen as resulting from the competition between prototypes (forming a *Voronoi Tessellation*).

*The standard theory refers to **lexical meaning**: linguistic marks are associated to regions. → extensional as the standard symbolic approach.*
A first problem

The standard theory refers to lexical meaning: linguistic marks are associated to regions. → extensional as the standard symbolic approach.

If red, or green, or brown correspond to regions in the color space...
A first problem

The standard theory refers to lexical meaning: linguistic marks are associated to regions. → extensional as the standard symbolic approach.

If red, or green, or brown correspond to regions in the color space...

Why do we say “red dogs” even if they are actually brown?
Predicates resulting from contrast

Alternative hypothesis [Dessalles2015]:
predicates are generated *on the fly* after an operation of *contrast*.

\[C = O - P \]

- **contrastor**
- **object** *(target)*
- **prototype** *(reference)*
Predicates resulting from contrast

Alternative hypothesis [Dessalles2015]:
predicates are generated on the fly after an operation of contrast.

These dogs are “red dogs”:

- not because their color is red (they are brown),
- because they are more red with respect to the dog prototype

\[C = O - P \]
Predicates resulting from contrast

Alternative hypothesis [Dessalles2015]: predicates are generated on the fly after an operation of contrast.

These dogs are “red dogs”:

- not because their color is red (they are brown),
- because they are more red with respect to the dog prototype

Test:

- Colors of 9 common dog furs on the internet

<table>
<thead>
<tr>
<th>Hue</th>
<th>Luminance</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean:</td>
<td>[0.10,</td>
<td>0.52,</td>
</tr>
<tr>
<td>std dev:</td>
<td>[0.02,</td>
<td>0.22,</td>
</tr>
</tbody>
</table>
Predicates resulting from contrast

Alternative hypothesis [Dessalles2015]: predicates are generated on the fly after an operation of contrast.

These dogs are “red dogs”:

- not because their color is red (they are brown),
- because they are more red with respect to the dog prototype

Test:

- Colors of 9 common dog furs on the internet

<table>
<thead>
<tr>
<th>Hue</th>
<th>Luminance</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean:</td>
<td>[0.10, 0.52, 0.46]</td>
<td>std dev: [0.02, 0.22, 0.27]</td>
</tr>
</tbody>
</table>

0.29 is the std dev of a uniform distribution on [0, 1]! we neglect the dimensions approaching it.
Predicates resulting from contrast

Alternative hypothesis [Dessalles2015]:

predicates are generated **on the fly** after an operation of *contrast*.

These dogs are “red dogs”:

- not because their color is red (they are brown),
- because they are **more red** with respect to the dog prototype

Test:

- Colors of 9 common dog furs on the internet

<table>
<thead>
<tr>
<th></th>
<th>Hue</th>
<th>Luminance</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>[0.10,</td>
<td>0.52,</td>
<td>0.46</td>
</tr>
<tr>
<td>std dev</td>
<td>0.02,</td>
<td>0.22,</td>
<td>0.27</td>
</tr>
<tr>
<td>O</td>
<td>[0.07,</td>
<td>0.24,</td>
<td>0.92</td>
</tr>
<tr>
<td>P</td>
<td>[0.10,</td>
<td>*,</td>
<td>*</td>
</tr>
<tr>
<td>C</td>
<td>[-0.16,</td>
<td>0.24,</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Predicates resulting from contrast

Alternative hypothesis [Dessalles2015]:
predicates are generated on the fly after an operation of contrast.

These dogs are “red dogs”:
- not because their color is red (they are brown),
- because they are more red with respect to the dog prototype

Test:
- Colors of 9 common dog furs on the internet

<table>
<thead>
<tr>
<th>Hue</th>
<th>Luminance</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean:</td>
<td>[0.10,</td>
<td>0.52,</td>
</tr>
<tr>
<td>std dev:</td>
<td>0.02,</td>
<td>0.22,</td>
</tr>
</tbody>
</table>

\[
O = [0.07, 0.24, 0.92] \quad P = [0.10, *, *]
\]

\[
C = O - P = [-0.16, 0.24, 0.92] \sim \text{“red”}
\]

Still in the gravitation of red, but not brown!
Predicates resulting from contrast

In logic, usually: $above(a, b) \leftrightarrow below(b, a)$
Predicates resulting from contrast

In logic, usually: $above(a, b) \iff below(b, a)$

However, we don't say
“the table is below the apple.”
“the trunk is below the crown.”
etc..
Predicates resulting from contrast

In logic, usually: \(\text{above}(a, b) \leftrightarrow \text{below}(b, a)\)

However, we don't say
“the table is below the apple.”
“the trunk is below the crown.”
etc..

If our hypothesis is correct, \(C = A - B \sim \text{“above”}\)

Before we handled points, here we have extended objects.
→ mathematical morphology methods
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

![Diagram showing objects a and b with coordinates](image-url)
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

models of relations
for a point centered in the origin
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

“below a” “above b”
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

"below a" "above b" how much a is (in) "above b" how much b is (in) "below a"
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

\[
\text{operation scheme: } a \sim b + \text{“above”}
\]
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

Inverse operation to contrast: *merge*

Operation scheme: $a \sim b + \text{"above"}$
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

Operation scheme:

- $a \sim b + \text{“above”}$

 how much a is “above b”

Inverse operation to contrast: merge

Alignment as overlap
Predicates are generated on the fly

We considered an existing method [Bloch2006] used in image processing to compute directional relative positions of visual entities (e.g. of biomedical images).

Operation scheme:

\[a \bowtie b + \text{“above”} \]

Inverse operation to contrast: **merge**

Alignment as overlap

How much a is “above b”

cf. with \(o - p \bowtie \text{“red”} \)
From contrast to concept similarity

- Up to now, for calculating contrast, we have used distances inherent to the integral dimensions. These distances may be interpreted as related to (local)
 dissimilarity. *(no holistic distance)*
From contrast to concept similarity

- Up to now, for calculating contrast, we have used distances inherent to the integral dimensions. These distances may be interpreted as related to (local) dissimilarity. *(no holistic distance)*

- *But what about concept (i.e. multi-dimensional) similarity?*
From contrast to concept similarity

“she is strong.”

this person − prototype person \sim “strong”
From contrast to concept similarity

“she is strong.”

this person − prototype person \sim “strong”

(metaphor as conceptual analogy)

“she is (like) a lion.”
From contrast to concept similarity

“she is strong.”

this person − prototype person \(\sim\) “strong”

“she is (like) a lion.”

double contrast

\textit{target}

this person − prototype person \(\sim\) “strong”, etc.

\textit{comparison ground}

\textit{reference}

prototype lion − prototype animal \(\sim\) “strong”, etc.
From contrast to concept similarity

“she is strong.”

double contrast

target
this person – prototype person \(\sim\) “strong”, etc.

reference
prototype lion – prototype animal \(\sim\) “strong”, etc.

(metaphor as conceptual analogy)

The reference activates certain **discriminating features**.
From contrast to concept similarity

“she is strong.”

this person – prototype person \(\sim \) “strong”

“she is (like) a lion.”

target

this person – prototype person \(\sim \) “strong”, etc.

double contrast

reference

prototype lion – prototype animal \(\sim \) “strong”, etc.

comparison ground

The reference activates certain discriminating features.

Concept similarity is a sequential, multi-layered computation
Problems:

- similarity in human judgments does not satisfy **fundamental geometric axioms** [Tversky77]

 basis of feature-based models

 but.. feature selection?

Proposed solutions:

- enriching the metric model with additional elements (e.g. density [Krumhansl78])

 but.. holistic distance?

- approaching logical structures through geometric methods (e.g. [Distel2014])

- reasoning via artificial devices (still?) relies on **symbolic** processing

 e.g. through ontologies

 but.. symbol grounding? predicate selection?
1. Problems with symmetry

\[d(a, b) = d(b, a) \]

- Distance between two points should be the same when inverting the terms of comparison.
1. Problems with symmetry

\[d(a, b) = d(b, a) \]

- *Distance between two points should be the same when inverting the terms of comparison.*

However,

Tel Aviv is like New York

has a different meaning than:

New York is like Tel Aviv
1. Problems with symmetry

\[d(a, b) = d(b, a) \]

- *Distance between two points should be the same when inverting the terms of comparison.*

However,

Tel Aviv is like New York

has a different meaning than:

New York is like Tel Aviv

Our explanation: **changing of reference activates different features**
2. Problems with triangle inequality

\[d(a, b) + d(b, c) \geq d(a, c) \]
2. Problems with triangle inequality

\[d(a, b) + d(b, c) \geq d(a, c) \]

However,

Jamaica is similar to Cuba
Cuba is similar to Russia
Jamaica is *not* similar to Russia.
2. Problems with triangle inequality

\[d(a, b) + d(b, c) \geq d(a, c) \]

However,

Jamaica is similar to Cuba
Cuba is similar to Russia
Jamaica is not similar to Russia.

Our explanation: different/no comparison grounds after contrast
3. Problems with minimality

\[d(a, b) \geq d(a, a) = 0. \]

- Distance with a distinct point should be greater than with the point itself.
3. Problems with minimality

\[d(a, b) \geq d(a, a) = 0. \]

- Distance with a distinct point should be greater than with the point itself.

However,

- when people were asked to find the most similar Morse code within a list, including the original one, they did not always return the object itself.
3. Problems with minimality

\[d(a, b) \geq d(a, a) = 0. \]

- Distance with a distinct point should be greater than with the point itself.

However,

- when people were asked to find the most similar Morse code within a list, including the original one, they did not always return the object itself.

Our explanation: *sequential nature of similarity assessment.*
4. **Diagnosticity effect**

- *The distance between two points in a set should not change when changing the set.*
4. Diagnosticity effect

- The distance between two points in a set should not change when changing the set.

However,

- when people were asked for the country most similar to a reference amongst a given group of countries, they changed answers depending on the group.
4. Diagnosticity effect

- The distance between two points in a set should not change when changing the set.

However,

- when people were asked for the country most similar to a reference amongst a given group of countries, they changed answers depending on the group.
4. Diagnosticity effect

- The distance between two points in a set should not change when changing the set.

However,

- when people were asked for the country most similar to a reference amongst a given group of countries, they changed answers depending on the group.

Our explanation: effect due to the change of group prototype.
Conclusions

- We propose a fundamental distinction between:
 - *perceptual* similarity
 - *contrastively analogical* similarity
Conclusions

• We propose a fundamental distinction between:
 – perceptual similarity
 – contrastively analogical similarity

• The two are commonly conflated:
 – by using MDS on people’s similarity judgments to elicit dimensions of psychological (conceptual) spaces
 – in similar dimensional reduction techniques used in ML
Conclusions

- We propose a fundamental distinction between:
 - perceptual similarity
 - contrastively analogical similarity

- The two are commonly conflated:
 - by using MDS on people’s similarity judgments to elicit dimensions of psychological (conceptual) spaces
 - in similar dimensional reduction techniques used in ML

- This hypothesis provides simple explanations to empirical experiences manifesting non-metrical properties, yet maintaining a geometric infrastructure.
Conclusions

- We propose a fundamental distinction between:
 - perceptual similarity
 - contrastively analogical similarity

- The two are commonly conflated:
 - by using MDS on people’s similarity judgments to elicit dimensions of psychological (conceptual) spaces
 - in similar dimensional reduction techniques used in ML

- This hypothesis provides simple explanations to empirical experiences manifesting non-metrical properties, yet maintaining a geometric infrastructure.

- Future investigations: normalizing effects, contrast with regions, non-descriptive pertinence.