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~ fixing the task

General (often implicit) hypothesis:

proximate elements can be used as reference to identify a 
certain target (object, situation, etc.)

Practical uses: description generation

the caudate nucleus 
is an internal brain 
structure which is 
very close to the 
lateral ventricles
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psychologypsychology machine learning

Problems:
● similarity in human judgments does 

not satisfy fundamental 
geometric axioms [Tversky77]

basis of feature-based models

● reasoning via artificial devices (still?) 
relies on symbolic processing

e.g. through ontologies

Proposed solutions:
● enriching the metric model with additional 

elements (e.g. density [Krumhansl78])

● approaching logical structures through 
geometric methods (e.g. [Distel2014])

but.. feature selection? but.. symbol grounding?
  predicate selection?

but.. holistic distance?



Towards an alternative solution..

conceptual spaces

associationistic methods

symbolic methods
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A first problem
The standard theory refers to lexical meaning: linguistic marks are associated to regions.
→ extensional as the standard symbolic approach.

If red, or green, or brown correspond to 
regions in the color space...

Why do we say “red dogs” even if they are actually brown?

images after Google
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Predicates resulting from contrast
Alternative hypothesis [Dessalles2015]: 

predicates are generated on the fly after an operation of contrast.

These dogs are “red dogs”: 

● not because their color is red (they are brown),
● because they are more red with respect to the dog prototype  

Test:

● Colors of 9 common dog furs on the internet

                Hue Luminance Saturation
mean: [ 0.10, 0.52, 0.46 ]
std dev: [ 0.02, 0.22, 0.27 ]

O = [ 0.07, 0.24, 0.92 ]     
P = [ 0.10, *, *  ]

C = [ -0.16, 0.24, 0.92 ]        “red”

C = O – P 

Still in the gravitation of red, but not brown!

↝

categorization
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Predicates resulting from contrast

In logic, usually: above(a, b) ↔ below(b, a)

However,
we don't say
“the table is below the apple.”
“the trunk is below the crown.”
etc..

If our hypothesis is correct, C = A – B ↝ “above”

Before we handled points, here we have extended objects.
→ mathematical morphology methods
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Predicates are generated on the fly
We considered an existing method [Bloch2006] used in image processing to compute
directional relative positions of visual entities (e.g. of biomedical images).

operation scheme: a  b + “above”↝
alignment as overlap

inverse operation to contrast: mergehow much a is 
“above b”

cf. with  o - p  “red”↝
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From contrast to concept similarity

● Up to now, for calculating contrast, we have used 
distances inherent to the integral dimensions. These 
distances may be interpreted as related to (local) 
dissimilarity. (no holistic distance)

● But what about concept (i.e. multi-dimensional) similarity?
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“she is (like) a lion.”    

this person − prototype person  ↝ “strong”, etc.
prototype lion − prototype animal  ↝ “strong”, etc.

“she is strong.”    

this person − prototype person ↝ “strong”

(metaphor as conceptual analogy)

comparison ground

d
o

u
b

le
 c

o
n

tr
as

t

Concept similarity is a sequential, multi-layered computation

reference

target

The reference activates certain discriminating features.
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Problems:
● similarity in human judgments does 

not satisfy fundamental 
geometric axioms [Tversky77]

basis of feature-based models

● reasoning via artificial devices (still?) 
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e.g. through ontologies

Proposed solutions:
● enriching the metric model with additional 

elements (e.g. density [Krumhansl78])
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  predicate selection?
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1. Problems with symmetry

However,

Tel Aviv is like New York
has a different meaning than:

New York is like Tel Aviv

Our explanation: changing of reference activates different features

● Distance between two points should be the same when inverting the terms of 
comparison.
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2. Problems with triangle inequality

However, 

Jamaica is similar to Cuba
Cuba is similar to Russia
Jamaica is not similar to Russia.

Our explanation: different/no comparison grounds after contrast

a c

b
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3. Problems with minimality

● Distance with a distinct point should be greater than with the point itself.

However,

– when people were asked to find the most similar Morse 

code within a list, including the original one, they did not 

always return the object itself.

Our explanation: sequential nature of similarity assessment.
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4. Diagnosticity effect
● The distance between two points in a set should not change when changing the set.

However, 
– when people were asked for the country most similar to a reference amongst a 

given group of countries, they changed answers depending on the group.

Austria Hungary

Poland

Sweden

Norway

most 
similar to

Our explanation: effect due to the change of group prototype
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Conclusions
● We propose a fundamental distinction between:

– perceptual similarity 

– contrastively analogical similarity

● The two are commonly conflated:
– by using MDS on people’s similarity judgments to elicit 

dimensions of psychological (conceptual) spaces 
– in similar dimensional reduction techniques used in ML

● This hypothesis provides simple explanations to empirical 
experiences manifesting non-metrical properties, yet maintaining 
a geometric infrastructure.

● Future investigations: normalizing effects, contrast with regions, 
non-descriptive pertinence. 
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