A Computational Model of Moral and Legal Responsibility via Simplicity Theory

Giovanni SILENO \(^{a,1}\), Antoine SAILLENFEST \(^b\) and Jean-Louis DESSALLES \(^a\)

\(^a\) LTCI, Télécom ParisTech, Université Paris-Saclay, 46 rue Barrault, Paris, France
\(^b\) Geronimo Agency, 33 rue d’Artois, Paris, France

giovanni.sileno@telecom-paristech.fr

15 December 2017, JURIX @ Luxembourg
with the (supposedly) near advent of autonomous artificial entities, or similar forms of distributed automatic decision making,

to define operationally the notion of responsibility becomes of primary importance.
How to compute responsibility?

- Traditional research track in AI & Law:
How to compute responsibility?

- Traditional research track in AI & Law:
 - **structural** (logical) approaches
 - focus on **reasoning constructs**: Ontologies [Lehmann et al., 2004], Inferences [Prakken, 2002] or Stories [Bex et al., 2000]
How to compute responsibility?

- Traditional research track in AI & Law:
 - **structural** (logical) approaches
 - focus on **reasoning constructs**: Ontologies [Lehmann et al., 2004], Inferences [Prakken, 2002] or Stories [Bex et al., 2000]
 - **quantitative** approaches
 - focus on **relative support of evidence**: Bayesian inference [Fenton et al., 2012], Causal Bayesian Networks [Halpern, 2015]
How to compute responsibility?

- Traditional research track in AI & Law:
 - **structural** (logical) approaches
 - focus on *reasoning constructs*: Ontologies [Lehmann et al., 2004], Inferences [Prakken, 2002] or Stories [Bex et al., 2000]
 - **quantitative** approaches
 - focus on *relative support of evidence*: Bayesian inference [Fenton et al., 2012], Causal Bayesian Networks [Halpern, 2015]
 - **hybrid** methods [Vlek et al., 2014], [Verheij, 2014]
How to compute responsibility?

- Traditional research track in AI & Law:
 - **structural** (logical) approaches
 - focus on **reasoning constructs**: Ontologies [Lehmann et al., 2004], Inferences [Prakken, 2002] or Stories [Bex et al., 2000]
 - **quantitative** approaches
 - focus on **relative support of evidence**: Bayesian inference [Fenton et al., 2012], Causal Bayesian Networks [Halpern, 2015]
 - **hybrid** methods [Vlek et al., 2014], [Verheij, 2014]

- Here we introduce an alternative research direction, building upon **cognitive models**.
Responsibility attribution for humans

- In human societies, responsibility attribution is a *spontaneous* and *seemingly universal* behaviour.
Responsibility attribution for humans

- In human societies, responsibility attribution is a *spontaneous* and *seemingly universal* behaviour.

- Non-related ancient legal systems bear much resemblance to modern law and seem perfectly sensible nowadays.
In human societies, responsibility attribution is a *spontaneous* and *seemingly universal* behaviour.

Non-related ancient legal systems bear much resemblance to modern law and seem perfectly sensible nowadays.

→ *responsibility attribution* may be controlled by fundamental cognitive mechanisms.
Responsibility attribution for humans

• In human societies, responsibility attribution is a *spontaneous* and *seemingly universal* behaviour.

• Non-related ancient legal systems bear much resemblance to modern law and seem perfectly sensible nowadays.

→ *responsibility attribution* may be controlled by fundamental cognitive mechanisms.

Working hypothesis: attributions of *moral* and *legal responsibility* share a similar cognitive architecture
Experiments show that people are more prone to blame an agent for an action:

flooded mine dilemma *(trolley problem variation)*

Experiments show that people are more prone to blame an agent for an action:
- the more the outcome is severe,
- the more they are closer to the victims,
- the more the outcome follows the action.

flooding mine dilemma (trolley problem variation)

Experiments show that people are more prone to blame an agent for an action:
- the more the outcome is severe,
- the more they are closer to the victims,
- the more the outcome follows the action.

The cognitive model of Simplicity Theory predicts these results.

Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to *situations that are simpler to describe than to explain*.
Simplicity theory

- Human individuals are highly sensitive to complexity drops: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness** \[U(s) = C_W(s) - C_D(s) \]
Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness**
 \[U(s) = C_W(s) - C_D(s) \]

 causal complexity
 concerning how the world generates the situation
Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness**

 \[U(s) = C_W(s) - C_D(s) \]

 - **causal complexity**
 - concerning how the world generates the situation
 - **description complexity**
 - concerning how to identify the situation
Simplicity theory

- Human individuals are highly sensitive to complexity drops: i.e. to situations that are simpler to describe than to explain.

- Core notion: Unexpectedness

\[U(s) = C_W(s) - C_D(s) \]

- Causal complexity concerning how the world generates the situation

- Description complexity concerning how to identify the situation

The two complexities are defined following Kolmogorov complexity.
Kolmogorov complexity

length in bits of the *shortest* program generating a string description of an object
Kolmogorov complexity

length in bits of the *shortest* program generating a string description of an object

<table>
<thead>
<tr>
<th>string</th>
<th>equivalent programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>“2222222222222222222222222”</td>
<td>“2” + “2” + … + “2”</td>
</tr>
<tr>
<td></td>
<td>“2” * 25</td>
</tr>
<tr>
<td></td>
<td>“2” * 5^2</td>
</tr>
</tbody>
</table>
Kolmogorov complexity

\[\text{length in bits of the shortest program generating a string description of an object} \]

\[
\begin{align*}
\text{string} & \quad \text{equivalent programs} \\
\text{“222222222222222222222222222222222222222”} & \quad \text{“2” + “2” + … + “2”} \\
& \quad \text{“2” * 25} \\
& \quad \text{“2” * 5^2}
\end{align*}
\]

\textit{depends on the available operators!!}
Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness**

\[U(s) = C_W(s) - C_D(s) \]

- **Causal complexity** about how the world generates the situation
- **Description complexity** about how to identify the situation
- Length of shortest program determining the situation
- Length of shortest program creating the situation
Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness**

\[U(s) = C_W(s) - C_D(s) \]

- **causal complexity**
 about how the world generates the situation
 length of shortest program
 creating the situation
 instructions = **causal operators**

- **description complexity**
 about how to identify the situation
 length of shortest program
determining the situation
instructions = **mental operators**
Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness**

\[U(s) = C_W(s) - C_D(s) \]

causal complexity
about how the world generates the situation
length of shortest program
creating the situation
instructions = **causal operators**

description complexity
about how to identify the situation
length of shortest program
determining the situation
instructions = **mental operators**
Simplicity theory

- Human individuals are highly sensitive to **complexity drops**: i.e. to situations that are simpler to describe than to explain.

- Core notion: **Unexpectedness**

 \[U(s) = C_W(s) - C_D(s) \]

 - **causal complexity** about how the world generates the situation
 - **description complexity** about how to identify the situation
 - length of shortest program creating the situation
 - instructions = **causal operators**
 - length of shortest program determining the situation
 - instructions = **mental operators**

SIMULATION: for the agent!!!

REPRESENTATION: for the agent!!!
\[U(s) = C_W(s) - C_D(s) \]

(in a fair extraction)

22222222222222 is more unexpected than 21658367193445
\[U(s) = C_W(s) - C_D(s) \]

(in a fair extraction)

22222222222222

is more unexpected than

21658367193445

meeting Obama

(or any other famous person)

meeting Dupont

(or any other unknown person)

meeting an old of friend of mine

(or any other known person)

Unexpectedness captures *plausibility*
Simplicity Theory: Intention

- Focusing on intensity, we can capture anticipation as:

\[E_h(s) = E(s) - U(s) \]

- unexpectedness
- emotion
 what the situation induces to the agent
- reward inverse model
Simplicity Theory: Intention

- Focusing on intensity, we can capture anticipation as:
 \[E_h(s) = E(s) - U(s) \]
 \[\text{unexpectedness} \]
 \[\text{emotion} \]
 \[\text{what the situation induces to the agent} \]
 \[\text{reward inverse model} \]

- If the agent A expects that the best way to bring about s is via a:
 \[U^A(s) = U^A(a) + U^A(s|a) \]
Simplicity Theory: Intention

- Focusing on intensity, we can capture anticipation as:
 \[E_h(s) = E(s) - U(s) \]

- If the agent \(A \) expects that the best way to bring about \(s \) is via \(a \):
 \[U^A(s) = U^A(a) + U^A(s||a) \]

 intention as driven by anticipated emotional effects
Simplicity Theory: Intention

- Focusing on intensity, we can capture anticipation as:

\[E_h(s) = E(s) - U(s) \]

- If the agent \(A \) expects that the best way to bring about \(s \) is via \(a \):

\[U^A(s) = U^A(a) + U^A(s||a) \]

\[I(a) = E^A(s) - U^A(s||a) - U^A(a) \]

intention as driven by anticipated emotional effects
Simplicity Theory: Moral responsibility

- Difference between intention and moral responsibility is one of point of views.

\[I(a) = E^A(s) - U^A(s|a) - U^A(a) \]

computed by A
Simplicity Theory: Moral responsibility

- Difference between intention and moral responsibility is one of point of views.

\[
I(a) = E^A(s) - U^A(s|a) - U^A(a)
\]

\[
M(a) = E(s) - U_{\downarrow}^A(s|a) - U_{\downarrow}^A(a)
\]

computed by A

computed by an observer O

computed by a model of A
Simplicity Theory: Moral responsibility

- Difference between intention and moral responsibility is one of **point of views**.

\[
I(a) = E^A(s) - U^A(s\|a) - U^A(a)
\]

computed by A

\[
M(a) = E(s) - U^{\downarrow A}(s\|a) - U^{\downarrow A}(a)
\]

computed by an observer O

reward inverse model

computed by a model of A

prescribed role, reasonable standard
Simplicity Theory: Moral responsibility

- Difference between intention and moral responsibility is one of point of views.

\[I(a) = E^A(s) - U^A(s|a) - U^A(a) \]

\[M(a) = E(s) - U^{\downarrow A}(s|a) - U^{\downarrow A}(a) \]

- Introducing causal responsibility

\[R^{\downarrow A}(a,s) = C_W(s) - C_W^{\downarrow A}(s|a) \]

\[M(a) \approx E_h(s) + R^{\downarrow A}(a,s) - C_D(s) - U^{\downarrow A}(a) \]
Simplicity Theory: Moral responsibility

\[M(a) \approx E_h(s) + R^A(a, s) - C_D(s) - U^A(a) \]

- Actualized emotion for observer O
- Causal responsibility attributed to A
- Conceptual remoteness for observer O
- Inadvertence attributed to A
Simplicity Theory: Moral responsibility

\[M(a) \approx E_h(s) + R_{\downarrow^A}(a, s) - C_D(s) - U_{\downarrow^A}(a) \]

- actualized emotion for observer O
- causal responsibility attributed to A
- conceptual remoteness for observer O
- inadvertence attributed to A

- From moral to legal responsibility:
 - equity before the law (e.g. the “death of a star” case)
Simplicity Theory: Moral responsibility

\[M(a) \approx E_h(s) + R_A(a, s) - C_D(s) - U_A(a) \]

- actualized emotion for observer O
- causal responsibility attributed to A
- conceptual remoteness for observer O
- inadverrence attributed to A

- From moral to legal responsibility:
 - equity before the law (e.g. the “death of a star” case)
 - law, as a reward system, defines emotion
Example 1: Negligent hunters

Summers v. Tice (1948), 33 Cal.2d 80, 199 P.2d 1

Two hunters shot at the same time harming their guide.
Example 1: Negligent hunters

Summers v. Tice (1948), 33 Cal.2d 80, 199 P.2d 1

Two hunters shot at the same time harming their guide.

$$C^A_W(s||a_1) = C^A_W(s||a_2) \gg 0$$

they thought the harm was impossible
Example 1: Negligent hunters

Summers v. Tice (1948), 33 Cal.2d 80, 199 P.2d 1

Two hunters shot at the same time harming their guide.

\[
C^A_1(s||a_1) = C^A_2(s||a_2) \gg 0
\]

they thought the harm was impossible

\[
C^W_1(s||a_1) = C^W_2(s||a_2) > 0
\]

but it was reasonable to consider the danger
Example 1: Negligent hunters

Summers v. Tice (1948), 33 Cal.2d 80, 199 P.2d 1

Two hunters shot at the same time harming their guide.

\[
C_W^{A_1} (s||a_1) = C_W^{A_2} (s||a_2) \gg 0 \\
C_W^{\downarrow A_1} (s||a_1) = C_W^{\downarrow A_2} (s||a_2) > 0 \\
R^{\downarrow A_1} (a_1, s) = R^{\downarrow A_2} (a_2, s) > 0
\]

they thought the harm was impossible

but it was reasonable to consider the danger

therefore they're (morally) equally responsible.
Example 1: Negligent hunters

Summers v. Tice (1948), 33 Cal.2d 80, 199 P.2d 1

Two hunters shot at the same time harming their guide.

\[C_W^{A_1} (s || a_1) = C_W^{A_2} (s || a_2) \gg 0 \]
\[C_W^\downarrow A_1 (s || a_1) = C_W^\downarrow A_2 (s || a_2) > 0 \]
\[R^\downarrow A_1 (a_1, s) = R^\downarrow A_2 (a_2, s) > 0 \]

they thought the harm was impossible

but it was reasonable to consider the danger

therefore they're (morally) equally responsible.

\[N^A (a, s) = C_W^A (s || a) - C_W^\downarrow A (s || a) \]

negligence
Example 2: Navigating oil

At a landing stage oil was spilled for days in the sea.
Example 2: Navigating oil

At a landing stage
oil was spilled for
days in the sea.

It was then ignited
during works on a
ship nearby.
Example 2: Navigating oil

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

\[C_W^{\downarrow a}(s_1 | a) \sim 0 \]

with poor maintenance, sea contamination by oil leakage predictable
Example 2: Navigating oil

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

\[C_W^{|a|} (s_1|a) \sim 0 \]
\[C_W^{|s_2|s_1} \gg 0 \]

with poor maintenance, sea contamination by oil leakage predictable fire after oil leakage in sea difficult to occur
Example 2: Navigating oil

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

\[C_W(\Delta s_1 | a) \sim 0 \]
\[C_W(\Delta s_2 | s_1) \gg 0 \]
\[R_A(a, s_2) \sim 0 \]

With poor maintenance, sea contamination by oil leakage predictable

Fire after oil leakage in sea difficult to occur

Therefore, defendant is not responsible
Example 2: Navigating oil

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

\[
C_W^{\downarrow A}(s_1||a) \sim 0
\]

with poor maintenance, sea contamination by oil leakage predictable

\[
C_W^{\downarrow A}(s_2||s_1) \gg 0
\]

fire after oil leakage in sea difficult to occur

\[
R^{\downarrow A}(a,s_2) \sim 0
\]

therefore, defendant is not responsible

\[
F^A(a,s) = -U^A(s||a)
\]

foreseeability
Example 3: Navigating oil, continued

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby. NEW EVIDENCE: flammable objects in the water.
Example 3: Navigating oil, continued

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

NEW EVIDENCE: flammable objects in the water.

1st argument: foreseeability

\[C_W(s_1|a) \sim 0 \]

with poor maintenance, sea contamination by oil leakage predictable

\[C_W(s_2|s_1) > 0 \]

fire after oil leakage possible, because of flammable objects

\[R(a, s_2) > 0 \]

therefore, defendant is responsible
Example 3: Navigating oil, continued

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

NEW EVIDENCE: flammable objects in the water.

2nd argument: weighting of risks (anticipations)
Example 3: Navigating oil, continued

At a landing stage oil was spilled for days in the sea. It was then ignited during works on a ship nearby.

NEW EVIDENCE: flammable objects in the water.

\[M(a) = E(s) - U^A(s||a) - U^A(a) \]

\[\text{risk} \quad \rightarrow \quad K^A(a, s) = E(s) - U^A(s||a) = E(s) + F^A(a, s) \]
Example 3: Navigating oil, continued

At a landing stage oil was spilled for days in the sea.
It was then ignited during works on a ship nearby.

NEW EVIDENCE: flammable objects in the water.

\[M(a) = E(s) - U^A(s|a) - U^A(a) \]

2nd argument: weighting of risks (anticipations)

\[\text{risk} \quad K^A(a,s) = E(s) - U^A(s|a) = E(s) + F^A(a,s) \]

risk as generalization of foreseeability: Hart and Honoré’s view!
Conclusions

- Our contribution attempts to open an alternative research track for the computation of responsibility in AI & Law.
Conclusions

● Our contribution attempts to open an alternative research track for the computation of responsibility in AI & Law.

● Underlying model *derived* from general cognitive functions (SIMULATION, REPRESENTATION, REWARD INVERSE MODEL)
Conclusions

- Our contribution attempts to open an alternative research track for the computation of responsibility in AI & Law.

- Underlying model derived from general cognitive functions (SIMULATION, REPRESENTATION, REWARD INVERSE MODEL)

- It enables a smoother transition from moral to legal reasoning, and provides grounds to quantify legal concepts.
Conclusions

- Our contribution attempts to open an alternative research track for the computation of responsibility in AI & Law.
- Underlying model *derived* from general cognitive functions (SIMULATION, REPRESENTATION, REWARD INVERSE MODEL)
- It enables a smoother transition from moral to legal reasoning, and provides grounds to quantify legal concepts.
- Computation integrates quantitative and structural aspects: potential ground for unifying other approaches, e.g. exploiting explicit knowledge and probabilistic information.
 - further work is needed for a complete operationalization and for detailed comparisons