
3 July 2018, Workshop on Artificial Intelligence and Cognition (AIC) @ Palermo

Computing Contrast
on Conceptual Spaces
Giovanni Sileno, Isabelle Bloch, Jamal Atif, Jean-Louis Dessalles

giovanni.sileno@telecom­paristech.fr

mailto:giovanni.sileno@telecom-paristech.fr


“small” problem
The standard theory of conceptual spaces insists on lexical 
meaning: linguistic marks are associated to regions.
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why do we say “red dogs” even if they are actually brown?
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Alternative hypothesis [Dessalles2015]: 

Predicates are generated on the fly after an operation of contrast.
  

c = o – p ↝ “red”  
 

contrastor
object prototype
(target) (reference)

Predicates resulting from contrast

Dessalles, J.-L. (2015). From Conceptual Spaces to Predicates. Applications of Conceptual 
Spaces: The Case for Geometric Knowledge Representation, 17–31.

Predication follows principles of descriptive pertinence: 
objects are determined by distinctive features
  



Alternative hypothesis [Dessalles2015]: 

Predicates are generated on the fly after an operation of contrast.
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These dogs are “red dogs”: 
● not because their color is red (they are brown),
● because they are more red than the dog prototype

c = o – p ↝ “red”   

Predicates resulting from contrast
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Predicates resulting from contrast

In logic, usually: above(a, b) ↔ below(b, a)

However, people don't say

“the board is 
above the leg.”

“the table is 
below the apple.”

If the contrastive hypothesis is correct, c = a – b ↝ “above”

superior in strength to c' = b – a ↝ “below”



objects

Directional relationships
We considered an existing method [Bloch2006] used in image processing to compute
directional relative positions of visual entities (e.g. of biomedical images).

Bloch, I. (2006). Spatial reasoning under imprecision using fuzzy set theory, formal logics and 
mathematical morphology. International Journal of Approximate Reasoning, 41(2), 77–95.
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directional relative positions of visual entities (e.g. of biomedical images).
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“above b”
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We considered an existing method [Bloch2006] used in image processing to compute
directional relative positions of visual entities (e.g. of biomedical images).
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We considered an existing method [Bloch2006] used in image processing to compute
directional relative positions of visual entities (e.g. of biomedical images).

operation scheme: a  b + “above”↝
alignment as overlap

inverse operation to contrast: mergehow much a is 
“above b”

cf. with  o - p  “red”↝

Directional relationships

If we settle upon contrast, we can categorize its output for relations!



How does contrast work?



Computing contrast (1D)
● Consider coffees served in a bar. Intuitively, whether a 

coffee is qualified as being hot or cold depends mostly on 
what the speaker expects of coffees served at bars, rather 
than a specific absolute temperature.

c = o – p ↝ “hot”  

contrastor
object prototype
(target) (reference)



Computing contrast (1D)
● Consider coffees served in a bar. Intuitively, whether a 

coffee is qualified as being hot or cold depends mostly on 
what the speaker expects of coffees served at bars, rather 
than a specific absolute temperature.

● For simplicity, we represent objects on 1D (temperature) 
with real coordinates. 

c = o – p ↝ “hot”  
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● Because prototypes are defined together with a concept 
region, let us consider some regional information, for 
instance represented as an egg-yolk structure.

– internal boundary (yolk) p ± σ for typical elements of 
that category of objects (e.g. coffee served at bar).  
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Computing contrast (1D)

● Because prototypes are defined together with a concept 
region, let us consider some regional information, for 
instance represented as an egg-yolk structure.

– internal boundary (yolk) p ± σ for typical elements of 
that category of objects (e.g. coffee served at bar).  

– external boundary (egg) p ± ρ for all elements directly 
associated to that category of objects

c = o – p ↝ “hot”  

contrastor
object prototype
(target) (reference)

* For simplicity, we assume regions to be symmetric.

typicality
region

prototype

category
region



Computing contrast (1D)

● Two required functions:

– centering of target with respect to typical region

– scaling to neutralize effects of scale (e.g. “hot 
coffee” vs “hot planet”)

c = o – p ↝ “hot”  

contrastor
object prototype
(target) (reference)

typicality
region

prototype

category
region

* For simplicity, we assume regions to be symmetric.



Computing contrast (1D)
distinguishing abstraction 

of distinction

contrastor

c ↝ “hot”  



Computing contrast (1D)
● As contrastors are extended objects, they might be 

compared to model categories represented as 
regions by measuring their degree of overlap:

property label

contrastor model region of property
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contrastor model region of property

● Most distinctive property:



Computing contrast (1D)
● Applying the previous computation, we can easily derive 

the membership functions of some general relations 
with respect to the objects of that category.

● For instance, by dividing the representational container 
in 3 equal parts, we have: 

“ok”“cold” “hot”



Computing contrast (1D)
● Applying the previous computation, we can easily derive 

the membership functions of some general relations 
with respect to the objects of that category.

● For instance, by dividing the representational container 
in 3 equal parts, we have: 

“ok”“cold” “hot”

membership functions consequent to contrastive mechanisms



Adaptation of parameters
● Given a certain category of objects 

and a certain dimension, parameters 
are chosen such as that

– σ captures the most typical 
exemplars

– ρ covers all exemplars 
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Adaptation of parameters
● Given a certain category of objects 

and a certain dimension, parameters 
are chosen such as that

– σ captures the most typical 
exemplars

– ρ covers all exemplars 

typicality
region

prototype

category
region

● Expected adaptive effects:

– relativization: providing more contrastive exemplars, those 
which were highly contrastive before become less 
contrastive

– if pruning of exemplars holds, hardening: the concept 
region will recenter around the most recent elements.



Computing contrast (1D)

● The previous formulation might be extended to consider 
contrast between two regions, by utilizing discretization 
(    denotes the approximation to the nearest integer):



Computing contrast (1D)

● The previous formulation might be extended to consider 
contrast between two regions, by utilizing discretization 
(    denotes the approximation to the nearest integer):

● Simplification possible if the target region much smaller 
than the reference region... 

● but in the other cases?

– possible solution: aggregation of contrastors obtained by 
point-wise contrast



Computing contrast (>1D)

● Let us consider two 2D visual objects A and B (the two 
dimensions form a Cartesian space, and they are not 
perceptually independent).

● We can apply contrast iteratively for each point of A with 
respect to B, and then aggregate the resulting contrastors.
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accumulation set

● Let us consider two 2D visual objects A and B (the two 
dimensions form a Cartesian space, and they are not 
perceptually independent).

● We can apply contrast iteratively for each point of A with 
respect to B, and then aggregate the resulting contrastors.

 

point-wise distinguishing
based on vectorial difference



Computing contrast (>1D)

accumulation set

normalization

counting

● Let us consider two 2D visual objects A and B (the two 
dimensions form a Cartesian space, and they are not 
perceptually independent).

● We can apply contrast iteratively for each point of A with 
respect to B, and then aggregate the resulting contrastors.

 



Computing contrast (>1D)

accumulation set

normalization

counting

● Let us consider two 2D visual objects A and B (the two 
dimensions form a Cartesian space, and they are not 
perceptually independent).

● We can apply contrast iteratively for each point of A with 
respect to B, and then aggregate the resulting contrastors.

 



Computing contrast (>1D)

● Let us consider two 2D visual objects A and B (the two 
dimensions form a Cartesian space, and they are not 
perceptually independent).

● We can apply contrast iteratively for each point of A with 
respect to B, and then aggregate the resulting contrastors.

 

accumulation set

normalization

counting

Work in progress: use of erosion to compute contrast!



Computing contrast (>1D)

● If dimensions are perceptually independent, we can 
apply contrast on each dimension separately:

 



Computing contrast (>1D)

● If dimensions are perceptually independent, we can 
apply contrast on each dimension separately:

● The result can be used to create a contrastive description 
of the object, i.e. its most distinguishing features.

● e.g. apples (as fruits):

red, spherical, quite sugared 

 



Computing contrast (>1D)
● Example: fruit domain from [Bechberger2017]:

Bechberger, L., Kuhnberger, K.U.: Measuring relations between concepts in conceptual spaces. 
Proceedings of SGAI 2017 LNAI 10630, pp. 87–100 (2017)
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● Example: fruit domain from [Bechberger2017]:

Bechberger, L., Kuhnberger, K.U.: Measuring relations between concepts in conceptual spaces. 
Proceedings of SGAI 2017 LNAI 10630, pp. 87–100 (2017)Container regions can be used as basis to extract distinctive features

Computing contrast (>1D)



● For instance, by contrasting each fruit concept with the 
aggregate “fruit” concept (using discretization, taking σ = 0.5ρ), 
we obtain the following contrastors (centers):
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● For instance, by contrasting each fruit concept with the 
aggregate “fruit” concept (using discretization, taking σ = 0.5ρ), 
we obtain the following contrastors (centers):

Bechberger, L., Kuhnberger, K.U.: Measuring relations between concepts in conceptual spaces. 
Proceedings of SGAI 2017 LNAI 10630, pp. 87–100 (2017)

Computing contrast (>1D)

In principle, a similar output could provide the weights of features in 
forming a certain concept →basis for object categorization



Individuation and concept formation
● We believe discriminatory aspects might be crucial not only 

for individuation, but also for the formation of concepts.

– this is aligned with recent empirical experiences [Ben-
Yosef2018] showing the fundamental role of the spatial 
organization of visual elements in object recognition tasks.

Ben-Yosef, G., Assif, L., Ullman, S.: Full interpretation of minimal images. 
Cognition 171, pp. 65–84 (2018)



Conclusion
● By referring to a contrast mechanism:

– membership functions become derived objects,

– references and frames provide a natural contextualization,

– modifier-head concept combinations are directly 
implemented (no need of contrast classes).

space of 
dog colors

space of 
colors

adapted from Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. MIT Press.



Conclusion
● By referring to a contrast mechanism:

– membership functions become derived objects,

– references and frames provide a natural contextualization,

– modifier-head concept combinations are directly 
implemented (no need of contrast classes),

– problems with geometric axioms in relation to similarity 
judgments (symmetry, triangle inequality, minimality, 
diagnosticity effect) are easily explained [Sileno2017]

Sileno, G., Bloch, I., Atif, J., & Dessalles, J.-L. (2017). Similarity and Contrast on Conceptual Spaces for Pertinent 
Description Generation. Proceedings of the 2017 KI conference, 10505 LNAI.



Conclusion
● By referring to a contrast mechanism:

– membership functions become derived objects,

– references and frames provide a natural contextualization,

– modifier-head concept combinations are directly 
implemented (no need of contrast classes),

● Future research track:

– contrast is defined in duality with merge,

– merge produces order relations between concepts

– the resulting lattice is a space of concepts

Do conceptual spaces emerge 
from contrastive functions?
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