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with the (supposedly) near advent of autonomous artificial 
entities, or other forms of distributed automatic decision 
making,

– humans less and less in the loop 
– increasing concerns about unintended consequences
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Unintended consequences:
bad or limited design

● Wallet hacks, fraudulent actions and bugs in the in the 
blockchain sector during 2017: 

– CoinDash ICO Hack ($10 millions)
– Parity Wallet Breach ($105 millions)
– Enigma Project Scum
– Parity Wallet Freeze ($275 millions)
– Tether Token Hack ($30 millions)
– Bitcoin Gold Scam ($3 millions)
– NiceHash Market Breach ($80 millions)

Source: CoinDesk (2017), Hacks, Scams and Attacks: Blockchain's 2017 Disasters
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● Software used across the US 
predicting future crimes and 
criminals biased against African 
Americans (2016)

Angwin J. et al. ProPublica, May 23 (2016). Machine Bias: risk assessments in criminal sentencing 
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– Existing statistical bias (correct description)

– When used for prediction on an individual it 
is read as behavioural predisposition, i.e. 
it is interpreted as a mechanism.

– A biased judgment introduces here negative 
consequences in society. 

Angwin J. et al. ProPublica, May 23 (2016). Machine Bias: risk assessments in criminal sentencing 
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● Problem: role of circumstantial 
evidence, how to integrate 
statistical inference in judgment? 
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● Consider a diagnostic application 
predicting whether the patient has 
appendicitis: 

– We would accept a conclusion based on the 
presence of fever, abdominal pain, or an 
increased number of white blood cells, but not if 
based e.g. on the length of the little toe or the fact 
that outside it is raining!

 
an expert would reject the conclusion when no relevant 
mechanism can be imagined linking factor with conclusion.
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● Problems may also arise for the statistical inference by itself, 
as shown e.g. by Simpson’s paradox

Example: hired/applicants data

Unacceptable conclusions: 
improvident induction

mathematics dept. sociology dept.

university

1/1 vs 1/10 1/100 vs 0/1

2/101 vs 1/11

favours females favours females

favours males



  

Explainable AI
● Explainable AI has basically two drivers:

– reject unacceptable conclusions

– satisfy reasonable requirements of expertise

● But what qualifies a conclusion as “unacceptable”? And what 
might be used to define an expertise to be “reasonable”?

● claim: normware! 

i.e. computational artifacts specifying shared expectations 
(“norm” as in normality) 



  

Trustworthy AI
● Trustworthiness for artificial devices could be associated to the 

requirement of not falling into paperclip maximizer scenarios:

– of not taking “wrong” decisions, of performing “wrong” 
actions, wrong because having disastrous impact

● How to (attempt to) satisfy this requirement?

● claim: normware! 

i.e. computational artifacts specifying shared drivers 
(“norm” as in normativity)
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Impact at large

general approach used in problem-solving, machine learning, ...

environmentuser
interaction

device
increasing 
reward

● Traditionally, engineering is about the conception of devices to 
implement certain functions. Functions are always defined within 
a certain operational context to satisfy certain needs.

● optimization is made possible by specifying a reward function 
associated to certain goals
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Impact at large

goal: fishing,

reward: proportional to 
quantity of fish, inversely 
to effort.

individual solution to 
optimization problem: 

“fishing with bombs”

     acknowledgement of undesirable second-order effects.

by whom? for whom?
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● The process illustrated a two steps decision-making process, 
enabling “tactical” optimization and “strategic” control.
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● We might add also the 
operational layer

Planning with adaptations
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● This seems the root of our problems with ML. Can we repair it?
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● In evolutionary terms, we could consider a multitude of different 
non-adaptive black-boxes, covering several configurations of 
parameters, competing for computational resources. 
– For each learning step, the oracle sets the means to select the best performing 

black-box(es), for which access to computational resources for future predictions 
will be granted as a reward. [...]

● But who “pays” the oracle? 
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● In evolutionary terms, we could consider a multitude of different 
non-adaptive black-boxes, covering several configurations of 
parameters, competing for computational resources.  
– For each learning step, the oracle sets the means to select the best performing 

black-box(es), for which access to computational resources for future predictions 
will be granted as a reward. [...]

● The higher-level diagnostic feedback implies that also the 
system drivers should pass from a selection mechanism.
 

non-adaptive
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● Let’s use this architecture on a concrete example: IBM Watson 
(building upon a network of intelligent QA agents). 
– a question is given
– the system has to guess 

● what the question demands (~ oracles) 
● what is the answer (~ black-box), 

– correct response is given by the jury (~ second-order oracle)● Let’s apply it to our initial problems!



  

Example: neutrality constraint

training datablack box 2

black box 1

black box 3
a, b, c → class 1
a, b, d → class 2
a, c, e → class 1

neutrality 
w.r.t. d

pruned
training data

a, b, c → class 1
a, c, e → class 1

neutralized
training data

a, b, c → class 1
a, b, d → class 2
a, b, d → class 1
a, c, e → class 1
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unintended consequences

netting

angling

fishing 
with bombs

fish

avoid ecological
disruption

simulator

fish without
disrupting

plan
executor

tactical
driver

strategic
driver

world

intentional 
setup

action

plan check



  

Example: alignment to expert 
knowledge for explanation

“a → b. c.”

“a → b. a.”

“c → b. c.” explain b

justification 
tracer

a. c.

intentional 
setup

perceptual setup

align with 
expert 

a → b.

c → b.

explanation check
alignment
checking

explain b

explain b

explainers

a → b.
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Perspectives
● This position paper aims to highlight the crucial role of normware 

with respect to trustworthy and explainable AI 

– ML approaches usually do not consider this level of abstraction

– ethical/responsible AI studies target higher level constraints

● It makes clear two perspectives on normware: 

– computational artifacts specifying norms

– ecology of components guiding the system components 

● The ecological perspective has been overlooked in our field, but 
reminds of visionary ideas presented in the history of AI (Minsky’s 
society of minds, Brooks’ intelligent creatures). 

including sub-symbolic ones!
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A less tentative taxonomy

?
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