
  

Logic and Knowledge
Representation

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

Programming as problem-solving, First steps in Prolog
20 April 2018

mailto:gsileno@enst.fr


  

Logic and Knowledge
Representation

This course is an introduction to symbolic techniques in 
Artificial Intelligence (AI), following an homonym 
course held by Jean-Louis Dessalles. 

The course website: 
http://aicourse.r2.enst.fr:4242/SCIA

Frontal teacher:  Giovanni Sileno, gsileno@enst.fr
Do not hesitate to write me or ask questions in class!

http://www.dessalles.fr/
http://aicourse.r2.enst.fr:4242/SCIA
mailto:gsileno@enst.fr


  

Logic and Knowledge
Representation

Being a new course, we will plausibly tweak on the fly 
the content, the exercises, and the workload. 
 
In principle, your grade will be a weighted average of:

● weekly exercises proposed on the course webpages
● a final exam
● a programming project



“Mechanical” computing



  

Pascal: Pascaline ~ 1650

Blaise Pascal

Helping his father (tax accountant 
of Normandy, appointed by 
Richelieu), Pascal invented a 
machine for mechanic calculation,  
performing addition and 
subtraction.



  

Schickard: Calculating Clock ~1625

Wilhelm Schickard

Before him, Schickard had already 
invented an “artithmetic 
instrument”, but unfortunately he 
was not able to publicly present a 
full working copy.



  

Leibniz: Stepped Reckoner ~1680

Gottfried Wilhelm 
von Leibniz

Influenced by the Pascaline, 
Leibniz proposed a mechanic 
calculator performing all four 
operations: addition, subtraction, 
multiplication and division.



  

Leibniz: Calculemus! ~1686

Gottfried Wilhelm 
von Leibniz

Furthermore, Leibniz believed that 
calculation would be the key to 
settle all human conflicts and 
disagreements...

 → characteristics numbers 
instead of concepts.
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Gottfried Wilhelm 
von Leibniz

Furthermore, Leibniz believed that 
calculation would be the key to 
settle all human conflicts and 
disagreements...

 → characteristics numbers 
instead of concepts.

animal = 2
rational = 3
man = rational animal = 2*3 = 6



  

Leibniz: Calculemus! ~1686

Gottfried Wilhelm 
von Leibniz

Furthermore, Leibniz believed that 
calculation would be the key to 
settle all human conflicts and 
disagreements...

 → characteristics numbers 
instead of concepts.

animal = 2
rational = 3
man = rational animal = 2*3 = 6
Is every man rational? 
Yes, because 6 is divisible by 3. 



  

Machines as symbol handlers

Starting from the Pascaline, 
computing machines 
respond to the need to 
displace tedious, repetitive 
(symbolic) work.



  

 

A physical symbol system has the 
necessary and sufficient means for 
general intelligent action 

Allen Newell and Herbert A. Simon
Computer Science as Empirical Inquiry: Symbols and Search (1976) 



  

 

A physical symbol system has the 
necessary and sufficient means for 
general intelligent action 

Allen Newell and Herbert A. Simon
Computer Science as Empirical Inquiry: Symbols and Search (1976) 

...basis for Good Old Fashioned AI (GOFAI)



  

Machines as symbol handlers

Starting from the Pascaline, 
computing machines 
respond to the need to 
displace tedious, repetitive 
(symbolic) work.

but how to say to the 
machine what to do?



  



  

Machine code/instructions
Related to the physical structure of the computer.

+ poweful and fast

- long programs

- difficult to be written

- difficult to be revised 



  

Natural (human) language

It is the language we use in all our communications, 
learned since our childhood.

+ Expressively rich.

- Ambiguous, redundant.



  

Programming languages

A programming language is a language which is 
intermediary between machine code and natural 
language.



  

Programming languages

VanRoy 2009, 
Weinberg 1977



  

Programming languages

A programming language is a language which is 
intermediary between machine language and natural 
language.

– But what we have to tell to the machine?



Programming as problem-solving



  

Problem solving terms

● A well-defined problem is usually defined in terms of 
● an initial state or situation 
● a goal state, i.e. a desired 

outcome,
● certain resources (which put 

contraints on the possible paths 
towards the goal).



  

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and 
purchased a fox, a goose, and a bag of beans. On his 
way home, the farmer came to the bank of a river. In 
crossing the river by boat, the farmer could carry only 
himself and a single one of his purchases - the fox, the 
goose, or the bag of the beans.
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An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and 
purchased a fox, a goose, and a bag of beans. On his 
way home, the farmer came to the bank of a river. In 
crossing the river by boat, the farmer could carry only 
himself and a single one of his purchases - the fox, the 
goose, or the bag of the beans.



  

An ancient puzzle ~ 9th century

● If left together, the fox would eat the goose, or the 
goose would eat the beans.

● The farmer's challenge was to carry himself and his 
purchases to the far bank of the river, leaving each 
purchase intact. How did he do it?



  

An ancient puzzle ~ 9th century

● What is the goal? 
● What is the initial situation?
● Which are the resources/constraints?



  

From problems to solvers

Problem 
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Problem solving method

Planning

Problem solving task

Execution
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Problem 

Analysis

Problem solving method

Planning

Problem solving task

Execution

Solution

Problem 

Analysis

Algorithm 

Programming

Program 

Execution

Outcome

The “real” problem is not programming 
but finding the path toward the solution. 

From problems to solvers



Imperative vs Declarative



  

Imperative vs Declarative

● Imperative: 

– programming focusing on the sequence of 
operations necessary to solve the problem (which in 
turn usually stays implicit)

● Declarative

– programming focusing on describing the problem 
(while the sequence of operations to be performed is 
left implicit)



  

Imperative programming

Focus: how to compute

Based on instructions, correspondent to actions 
commanded to the machine.

– It assumes that the computer can maintain the 
changes (the side-effects) caused by the 
computation process.



  

Imperative programming

Focus: how to compute
● Most popular programming languages implement the 

imperative paradigm:

– it most closely resembles the actual machine itself, 
so the programmer thinks in a much closer way to 
the machine;

– because of such closeness, it was until recently the 
only one efficient enough for widespread use.



  

Imperative programming
● Advantages

– efficient as close to the machine
– popular
– familiar

● Disadvantages
– a program can be complex to understand, because 

the referential transparency does not hold (due to 
side effects)

– abstraction is more limited 
– order is crucial, which is not suited in certain 

problems



  

Declarative programming

Focus: what to compute (as desired outcome)
● It is not concerned about how to do things, but what 

should be obtained.

– Languages: domain specific (e.g. HTML), query 
(SQL), logic (Prolog).



  

Declarative/Logic programming

Focus: what to compute (as desired outcome)
● Various logical assertions about a situation are made, 

describing all known facts and rules about the 
modeled world. Then queries are made. 

● The role of the computer is to maintain data and to 
perform inferences.



  

Algorithm = Logic + Control

“An algorithm can be regarded as consisting of 

– a logic component, which specifies the knowledge 
to be used in solving problems, and 

– a control component, which determines the 
problem-solving strategies by means of which that 
knowledge is used. 

The logic component determines the meaning of the 
algorithm whereas the control component only affects 
its efficency.” 

Robert Kowalsky, Algorithm = Logic + Control (1979)



  

Imperative vs Declarative

● Imperative: 

– inside-to-outside approach: all execution 
alternatives are explicitly specified and new 
alternatives must be explicitly added

● Declarative

– outside-to-inside approach: constraints implicitly 
specify execution alternatives as all alternatives that 
satisfy the constraints; adding new constraints 
usually means discarding some execution alternatives



  

Imperative: 
you command 
the directions



  

Imperative: 
you command 
the directions



  

Imperative: 
you command 
the directions

● What if the 
labyinth 
changes?



  

Declarative: you 
give just the 
labyrinth. The 
computer finds the 
way. 
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Declarative: you 
give just the 
labyrinth. The 
computer finds the 
way. 

● For instance, via 
trial, error and 
backtracking 



First steps in Prolog



  

Histrory of Prolog

1965 Resolution algorithm by J. A. Robinson
followed by SLD resolution by R. Kowalski

1972 PROgrammation en LOGique  created by A. 
Colmerauer and P. Roussel in Luminy, Marseille

1980 Prolog acknowledged as a major A.I. language
…

now various versions, used in Constraint
Programming, or basis/reference for 
alternative techniques, as DataLog, Anwser 
Set Programming (ASP), etc.



  

First program
parent(marge, lisa). 
parent(marge, bart). 
parent(marge, maggie). 
parent(homer, lisa). 
parent(homer, bart). 
parent(homer, maggie). 
parent(abraham, homer). 
parent(abraham, herb). 
parent(mona, homer). 
parent(jackie, marge). 
parent(clancy, marge). 
parent(jackie, patty). 
parent(clancy, patty). 
parent(jackie, selma). 
parent(clancy, selma). 
parent(selma, ling). 



  

First program
parent(marge, lisa). 
parent(marge, bart). 
parent(marge, maggie). 
parent(homer, lisa). 
parent(homer, bart). 
parent(homer, maggie). 
parent(abraham, homer). 
parent(abraham, herb). 
parent(mona, homer). 
parent(jackie, marge). 
parent(clancy, marge). 
parent(jackie, patty). 
parent(clancy, patty). 
parent(jackie, selma). 
parent(clancy, selma). 
parent(selma, ling).

child(X,Y) :­
    parent(Y,X).



  

Prolog clauses

● Fact
female(marge).



  

Prolog clauses

● Fact
female(marge).

● Rule
child(X,Y) :­ parent(Y,X).



  

Prolog clauses

● Fact
female(marge).

● Rule
child(X,Y) :­ parent(Y,X).

Exercise: write 

mother(X,Y) grandparent(X,Y) 
ancestor(X,Y) cousin(X,Y)



Prolog syntax and bonuses 



  

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower 
case letters.

marge lisa x25 x_25 alpha_beta



  

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower 
case letters.

marge lisa x25 x_25 alpha_beta

Numbers
1.001 2 3.03



  

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower 
case letters.

marge lisa x25 x_25 alpha_beta

Numbers
1.001 2 3.03

Strings enclosed in single quotes
'Mary' '.01' 'string'

Note that, because of the enclosing, strings can start with upper case letter, or 
can be a number now treated as a string.



  

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower 
case letters.

marge lisa x25 x_25 alpha_beta

Numbers
1.001 2 3.03

● Variables strings of letters, digits or underscore that start with an upper 
case letter or the underscore

_x, Anna, Successor_State,
Note: undescore by itself (“_”) is a special anonymous variable.



  

Prolog syntax: Terms

● Structures 
<identifier>(Term1, ..., Termk)

recursive definition: each term can itself be a structure

date(1, may, 1983)

point(X, Y, Z)

date(+(0,1), may, +(1900,­(183,100)))



  

Prolog syntax: Terms

Structures can be thought as trees!
date(+(0,1), may, +(1900,­(183,100)))

 



  

Prolog syntax: Predicates

● Predicates are syntaxically the same as structures.
<identifier>(Term1, ..., Termk)

parent(marge, bart)

female(marge)

 



  

Prolog syntax: Predicates

● Predicates are syntaxically the same as structures.
<identifier>(Term1, ..., Termk)

parent(marge, bart)

female(marge)

.. but they are not terms!

 → predicate identifiers  structure identifiers≠

 



  

Prolog syntax: Predicates

 
 

 

 

 → predicate identifiers  structure identifiers≠

 

objects

things said
about objects



  

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Facts are predicates terminated by a period “.”
<identifier>(Term1, ..., Termk).



  

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Facts are predicates terminated by a period “.”
<identifier>(Term1, ..., Termk).

Facts encode assertions, things that are declared certain!

female(marge).
parent(homer, bart).



  

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Rules are in the form:
predicateH :­ predicate1, .., predicatek.

the left of “:­” is named head, the right body.



  

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Rules are in the form:
predicateH :­ predicate1, .., predicatek.

● Rules encode ways of deriving or computing a new fact.

animal(X) :­ elephant(X).
We can show that X is an animal if we can show that it is an elephant.



  

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Rules are in the form:
predicateH :­ predicate1, .., predicatek.

● Rules encode ways of deriving or computing a new fact.

animal(X) :­ elephant(X).
We can show that X is an animal if we can show that it is an elephant.

father(X,Y) :­ parent(X,Y), male(X).
We can show that X is a father of Y if we can show that X is a parent of Y 
and that X is male.



  

Prolog's main operation

● A query is a sequence of predicates
predicate1, predicate2, ..., predicatek

– using the facts and rules in the Prolog program, the 
solver tries to prove that this sequence of predicates 
is true.

– in proving the sequence it (should) perform the 
computation you want.



  

Prolog's main operation

● A query is a sequence of predicates
predicate1, predicate2, ..., predicatek

– using the facts and rules in the Prolog program, the 
solver tries to prove that this sequence of predicates 
is true.

– in proving the sequence it (should) perform the 
computation you want.

delicate point: procedural computation might be 
mixed with declarative computation



Prolog's resolution strategy 



  

Horn clauses

● Facts and rules falls under the definition of Horn clauses, 
the structures on which SLD resolution was proven:

General form :  F :­ F1, F2,…, Fn.
● To prove F, one must successively prove F1, …, Fn. 



  

Horn clauses

● Facts and rules falls under the definition of Horn clauses, 
the structures on which SLD resolution was proven:

General form :  F :­ F1, F2,…, Fn.
● To prove F, one must successively prove F1, …, Fn. 

● F is the clause’s head.
● F1, F2, …, Fn constitute the clause’s tail or body.
● A fact is a clause with an empty tail.



  

Prolog's strategy

● To answer the question, Prolog builds a search tree :
– set of possibilities (clauses matching the question) 

represented as a tree
– each choice is a node of the search tree
– trial and error sequential search, following the order 

of declaration



  

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).
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Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).



  

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
b(1) :­ d(3).
e(1).
d(3).

● Query: ?­ p(1).

with backtracking we can get more answers by using “;”



  

Prolog's strategy

● The solver follows a depth-first strategy
– success node: solution found! the 

solver displays it and stops.
– failure node: the solver backtracks up in 

the tree, until it finds a choice point with 
unexplored branches.



  

Prolog's strategy

● If backtracking encounters no choice point 
left, Prolog stops. No further solution. 

● NOTE: Some branches are infinite! So 
search may not stop… 

Take care of:

– The order of goals in clause tails
– The order of clauses



Resolution with variables



  

Using variables...

● Variables allow us to:

– compute more than yes/no answers
?­ parent(marge, X).



  

Using variables...

● Variables allow us to:

– compute more than yes/no answers
?­ parent(marge, X).

– compress the program.
parent(marge, lisa) :­ child(lisa, marge).
parent(marge, bart) :­ child(bart, marge).
…
parent(X, Y) :­ child(Y, X).



  

Using variables...

● Variables allow us to:

– compute more than yes/no answers
?­ parent(marge, X).

– compress the program.
parent(marge, lisa) :­ child(lisa, marge).
parent(marge, bart) :­ child(bart, marge).
…
parent(X, Y) :­ child(Y, X).

– reversibility (when declarativity is maintaned)
?­ parent(Y, lisa).



  

Variables matching via Unification

?­ brother(bart, Who).

brother(X,Y) :­ 
male(X),
parent(X,Z),
parent(Y,Z),
X \== Y. 

Unification with
brother(X,Y)
X=bart, Y=Who

male(bart)
parent(bart,Z)
parent(bart,Z)
bart \== Who 



  

Unification examples

● Unification predicate: “=”
?­ a(B,C) = a(2,3). 
YES {B=2, C=3}

?­ a(X,Y,L) = a(Y,2,carole). 
YES {X=2, Y=2, L=carole}

?­ a(X,X,Y) = a(Y,u,v). 
NO



  

Unification examples

● Unification predicate: “=”
?­ a(B,C) = a(2,3). 
YES {B=2, C=3}

?­ a(X,Y,L) = a(Y,2,carole). 
YES {X=Y, Y=2, L=carole}

?­ a(X,X,Y) = a(Y,u,v). 
NO

Exercise 
Unify  p(X,b(Z,a),X) with p(Y,Y,b(V,a)) 



  

Unification algorithm

dereference is a function that 
dereferences bound variables and 
returns the input otherwise

A free variable can be seen as a pointer to NIL. When not free, it is 
said bound variable. Dereferencing a variable means reaching the 
value to which it is bound.

procedure unify(t1,t2)   

t3 := dereference(t1); t4 := dereference(t2)  
if t3 is a variable then 

t3 points to t4; return success 
else if t4 is a variable then 

t4 points to t3; return success 
else if t3 is an atom and t4 is an atom then

if t3 = t4 then return success
else return fail 

else let t3 = f(t31, .., t3n) and t4 = g(t41, .., t4m) 
if f = g and n = m then 

for i := 1 to n do 
if unify(t3i, t4i) fails then return fail  

return success
else 

return fail 

t1, t2 are two terms

● X and marge where X is 
bound to the value marge 
will match.

● X and Y where X is bound 
to marge and Y is bound to 
marge will match,

● X and marge where X is 
bound to lisa will not 
match.



Lists



  

Representing lists
● Lists are a crucial data structure in Prolog. They are 

usually written as:
[a, b, c, d]

This corresponds to the structured term:
[a|[b|[c|[d|[]]]]]

where [] is a special constant the empty list.



  

Representing lists
● Each list is of the form [<head> | <rest_of_list>]

<head> an element of the list (not necessarily a list).
<rest_of_list> is a list (a sub-list).

[a, b, c, d] = [a | [b, c, d] ]    
a: head; [b, c, d]: tail

[a, b, c, d] = [a, b | [c, d]]
[_|_] has at least one element.



Cut



  

Backtracking control using CUT
● Sometimes it is useful to control the backtracking, and 

this can be done using the “!”, the cut operator. 

→  once it is executed, it disallows backtracking 



  

Backtracking control using CUT
● Sometimes it is useful to control the backtracking, and 

this can be done using the “!”, the cut operator. 

→  once it is executed, it disallows backtracking 

p :­ b1, b2, !, a1, a2, a3.
p :­ r1, r2 .           
p :­ r3 .           

Before reaching cut, there might be backtracking on b1 and b2 or trying other rules for 
p if one of b1 or b2 cannot be satisfied. After reaching !, no more backtracking. The 
second and third rule will not be searched.



  

Backtracking control using CUT
● Sometimes it is useful to control the backtracking, and 

this can be done using the “!”, the cut operator. 

→  once it is executed, it disallows backtracking 

p(X, Y) :­
q(X),
!,
r(X,Y).

p(X, Y) :­
s(X).

q(X) :­
!, r(a,Y). 



  

...undermining declarativity
● All times in which we play with the control we are 

undermining the declarative properties of the language. 
● Therefore, uses of cut (and as we will see negation as 

failure) or any other properties having side effects 
remove properties as reversibility. 



Prolog and logic



  

Prolog and Logic
● A Prolog clause is a generalised disjunction 

a :­ b, c.

In logic:

b  c  a∧ ⇒

As material implication p  q equivalent to ¬p  q⇒ ∨

¬b  ¬c  a∨ ∨

● Prolog inherits the correctness and completeness proof methods from 
First Order Logic, and, for the restriction to Horn Clauses, enjoyes 
decidable algorithms… More about this the next weeks.



  

Prolog and Logic - 2
● A Prolog clause 

a :­ b.

In logic would be:

b  a⇒

which is equivalent to

¬a  ¬b ⇒



  

Prolog and Logic - 2
● A Prolog clause 

a :­ b.

In logic would be:

b  a⇒

which is equivalent to

¬a  ¬b ⇒

but the clause does not specify that!!

...difference due to the different meaning of negation!
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● In propositional logic, propositions can be true and 
false. 
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● In propositional logic, propositions can be true and 
false. But propositions could be also unknown.

Example: obviously, it may rain, or not rain. But if I'm indoor, and there is no 
window, I do not know!

● When the inference engine is not able to assess if the 
proposition is true, the result will be false. This is 
called Negation as Failure (NAF).

● In general, there may be two possible negations:
- strong negation (  “classical” negation)↔

- NAF negation (  “↔ undecidable”)

NAF – Negation as Failure
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closed-world assumption. 
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● Ex. UFOs do not exist!

If it is not the case 
that ufos exist, 

then it is the case 
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● When NAF implies a strong negation we are under the 
closed-world assumption. 
If I do not know something (i.e. I cannot infer that something), than 
that something will be false. 

● Ex. UFOs do not exist!

If it is not the case 
that ufos exist, 

then it is the case 
that ufos do not exist.

NAF – Negation as Failure

That's the case of Prolog!



  

Negation as failure
● Negation as failure can be used to implement defaults.

fancy(belle_d_argent).
fancy(maximus).

expensive(belle_d_argent).
affordable(Restaurant) :­  

not(expensive(Restaurant)).
 

?­ fancy(X), affordable(X).
X=maximus



  

Negation as failure
● Negation as failure can be used to implement defaults.

fancy(belle_d_argent).
fancy(maximus).

expensive(belle_d_argent).
affordable(Restaurant) :­  

not(expensive(Restaurant)).
 

?­ fancy(X), affordable(X).
X=maximus

?­ affordable(X), fancy(X).
FALSE

 



  

Negation as failure with CUT
● This predicate behaves just as not p(X):

q(X) :­

p(X),

  !,

  fail.

q(X). 



Conclusions



  

Guidelines
● Go on http://aicourse.r2.enst.fr:4242/SCIA

– Read and work with the material.
– Responses to questions will be recorded up to a limit 

date. (generally 2 weeks from the lecture) and graded.
– After sending a response you receive a possible 

correction.
● Try to be in scheduling with the course !
● Collaborative learning is welcome, copying is prohibited !
● Question and comments are welcome, just write me : 

gsileno@enst.fr 

http://aicourse.r2.enst.fr:4242/SCIA
mailto:gsileno@enst.fr
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