

Logic and Knowledge
Representation

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

Programming as problem-solving, First steps in Prolog
20 April 2018

mailto:gsileno@enst.fr

Logic and Knowledge
Representation

This course is an introduction to symbolic techniques in
Artificial Intelligence (AI), following an homonym
course held by Jean-Louis Dessalles.

The course website:
http://aicourse.r2.enst.fr:4242/SCIA

Frontal teacher: Giovanni Sileno, gsileno@enst.fr
Do not hesitate to write me or ask questions in class!

http://www.dessalles.fr/
http://aicourse.r2.enst.fr:4242/SCIA
mailto:gsileno@enst.fr

Logic and Knowledge
Representation

Being a new course, we will plausibly tweak on the fly
the content, the exercises, and the workload.

In principle, your grade will be a weighted average of:

● weekly exercises proposed on the course webpages
● a final exam
● a programming project

“Mechanical” computing

Pascal: Pascaline ~ 1650

Blaise Pascal

Helping his father (tax accountant
of Normandy, appointed by
Richelieu), Pascal invented a
machine for mechanic calculation,
performing addition and
subtraction.

Schickard: Calculating Clock ~1625

Wilhelm Schickard

Before him, Schickard had already
invented an “artithmetic
instrument”, but unfortunately he
was not able to publicly present a
full working copy.

Leibniz: Stepped Reckoner ~1680

Gottfried Wilhelm
von Leibniz

Influenced by the Pascaline,
Leibniz proposed a mechanic
calculator performing all four
operations: addition, subtraction,
multiplication and division.

Leibniz: Calculemus! ~1686

Gottfried Wilhelm
von Leibniz

Furthermore, Leibniz believed that
calculation would be the key to
settle all human conflicts and
disagreements...

 → characteristics numbers
instead of concepts.

Leibniz: Calculemus! ~1686

Gottfried Wilhelm
von Leibniz

Furthermore, Leibniz believed that
calculation would be the key to
settle all human conflicts and
disagreements...

 → characteristics numbers
instead of concepts.

animal = 2
rational = 3
man = rational animal = 2*3 = 6

Leibniz: Calculemus! ~1686

Gottfried Wilhelm
von Leibniz

Furthermore, Leibniz believed that
calculation would be the key to
settle all human conflicts and
disagreements...

 → characteristics numbers
instead of concepts.

animal = 2
rational = 3
man = rational animal = 2*3 = 6
Is every man rational?
Yes, because 6 is divisible by 3.

Machines as symbol handlers

Starting from the Pascaline,
computing machines
respond to the need to
displace tedious, repetitive
(symbolic) work.

A physical symbol system has the
necessary and sufficient means for
general intelligent action

Allen Newell and Herbert A. Simon
Computer Science as Empirical Inquiry: Symbols and Search (1976)

A physical symbol system has the
necessary and sufficient means for
general intelligent action

Allen Newell and Herbert A. Simon
Computer Science as Empirical Inquiry: Symbols and Search (1976)

...basis for Good Old Fashioned AI (GOFAI)

Machines as symbol handlers

Starting from the Pascaline,
computing machines
respond to the need to
displace tedious, repetitive
(symbolic) work.

but how to say to the
machine what to do?

Machine code/instructions
Related to the physical structure of the computer.

+ poweful and fast

- long programs

- difficult to be written

- difficult to be revised

Natural (human) language

It is the language we use in all our communications,
learned since our childhood.

+ Expressively rich.

- Ambiguous, redundant.

Programming languages

A programming language is a language which is
intermediary between machine code and natural
language.

Programming languages

VanRoy 2009,
Weinberg 1977

Programming languages

A programming language is a language which is
intermediary between machine language and natural
language.

– But what we have to tell to the machine?

Programming as problem-solving

Problem solving terms

● A well-defined problem is usually defined in terms of
● an initial state or situation
● a goal state, i.e. a desired

outcome,
● certain resources (which put

contraints on the possible paths
towards the goal).

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and
purchased a fox, a goose, and a bag of beans. On his
way home, the farmer came to the bank of a river. In
crossing the river by boat, the farmer could carry only
himself and a single one of his purchases - the fox, the
goose, or the bag of the beans.

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and
purchased a fox, a goose, and a bag of beans. On his
way home, the farmer came to the bank of a river. In
crossing the river by boat, the farmer could carry only
himself and a single one of his purchases - the fox, the
goose, or the bag of the beans.

An ancient puzzle ~ 9th century

● Once upon a time a farmer went to market and
purchased a fox, a goose, and a bag of beans. On his
way home, the farmer came to the bank of a river. In
crossing the river by boat, the farmer could carry only
himself and a single one of his purchases - the fox, the
goose, or the bag of the beans.

An ancient puzzle ~ 9th century

● If left together, the fox would eat the goose, or the
goose would eat the beans.

● The farmer's challenge was to carry himself and his
purchases to the far bank of the river, leaving each
purchase intact. How did he do it?

An ancient puzzle ~ 9th century

● What is the goal?
● What is the initial situation?
● Which are the resources/constraints?

From problems to solvers

Problem

Analysis

Problem solving method

Planning

Problem solving task

Execution

Solution

Problem

Analysis

Algorithm

Programming

Program

Execution

Outcome

Problem

Analysis

Problem solving method

Planning

Problem solving task

Execution

Solution

Problem

Analysis

Algorithm

Programming

Program

Execution

Outcome

The “real” problem is not programming
but finding the path toward the solution.

From problems to solvers

Imperative vs Declarative

Imperative vs Declarative

● Imperative:

– programming focusing on the sequence of
operations necessary to solve the problem (which in
turn usually stays implicit)

● Declarative

– programming focusing on describing the problem
(while the sequence of operations to be performed is
left implicit)

Imperative programming

Focus: how to compute

Based on instructions, correspondent to actions
commanded to the machine.

– It assumes that the computer can maintain the
changes (the side-effects) caused by the
computation process.

Imperative programming

Focus: how to compute
● Most popular programming languages implement the

imperative paradigm:

– it most closely resembles the actual machine itself,
so the programmer thinks in a much closer way to
the machine;

– because of such closeness, it was until recently the
only one efficient enough for widespread use.

Imperative programming
● Advantages

– efficient as close to the machine
– popular
– familiar

● Disadvantages
– a program can be complex to understand, because

the referential transparency does not hold (due to
side effects)

– abstraction is more limited
– order is crucial, which is not suited in certain

problems

Declarative programming

Focus: what to compute (as desired outcome)
● It is not concerned about how to do things, but what

should be obtained.

– Languages: domain specific (e.g. HTML), query
(SQL), logic (Prolog).

Declarative/Logic programming

Focus: what to compute (as desired outcome)
● Various logical assertions about a situation are made,

describing all known facts and rules about the
modeled world. Then queries are made.

● The role of the computer is to maintain data and to
perform inferences.

Algorithm = Logic + Control

“An algorithm can be regarded as consisting of

– a logic component, which specifies the knowledge
to be used in solving problems, and

– a control component, which determines the
problem-solving strategies by means of which that
knowledge is used.

The logic component determines the meaning of the
algorithm whereas the control component only affects
its efficency.”

Robert Kowalsky, Algorithm = Logic + Control (1979)

Imperative vs Declarative

● Imperative:

– inside-to-outside approach: all execution
alternatives are explicitly specified and new
alternatives must be explicitly added

● Declarative

– outside-to-inside approach: constraints implicitly
specify execution alternatives as all alternatives that
satisfy the constraints; adding new constraints
usually means discarding some execution alternatives

Imperative:
you command
the directions

Imperative:
you command
the directions

Imperative:
you command
the directions

● What if the
labyinth
changes?

Declarative: you
give just the
labyrinth. The
computer finds the
way.

Declarative: you
give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Declarative: you
give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Declarative: you
give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

Declarative: you
give just the
labyrinth. The
computer finds the
way.

● For instance, via
trial, error and
backtracking

First steps in Prolog

Histrory of Prolog

1965 Resolution algorithm by J. A. Robinson
followed by SLD resolution by R. Kowalski

1972 PROgrammation en LOGique created by A.
Colmerauer and P. Roussel in Luminy, Marseille

1980 Prolog acknowledged as a major A.I. language
…

now various versions, used in Constraint
Programming, or basis/reference for
alternative techniques, as DataLog, Anwser
Set Programming (ASP), etc.

First program
parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
parent(homer, bart).
parent(homer, maggie).
parent(abraham, homer).
parent(abraham, herb).
parent(mona, homer).
parent(jackie, marge).
parent(clancy, marge).
parent(jackie, patty).
parent(clancy, patty).
parent(jackie, selma).
parent(clancy, selma).
parent(selma, ling).

First program
parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
parent(homer, bart).
parent(homer, maggie).
parent(abraham, homer).
parent(abraham, herb).
parent(mona, homer).
parent(jackie, marge).
parent(clancy, marge).
parent(jackie, patty).
parent(clancy, patty).
parent(jackie, selma).
parent(clancy, selma).
parent(selma, ling).

child(X,Y) :­
 parent(Y,X).

Prolog clauses

● Fact
female(marge).

Prolog clauses

● Fact
female(marge).

● Rule
child(X,Y) :­ parent(Y,X).

Prolog clauses

● Fact
female(marge).

● Rule
child(X,Y) :­ parent(Y,X).

Exercise: write

mother(X,Y) grandparent(X,Y)
ancestor(X,Y) cousin(X,Y)

Prolog syntax and bonuses

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower
case letters.

marge lisa x25 x_25 alpha_beta

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower
case letters.

marge lisa x25 x_25 alpha_beta

Numbers
1.001 2 3.03

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower
case letters.

marge lisa x25 x_25 alpha_beta

Numbers
1.001 2 3.03

Strings enclosed in single quotes
'Mary' '.01' 'string'

Note that, because of the enclosing, strings can start with upper case letter, or
can be a number now treated as a string.

Prolog syntax: Terms

● Constants

Identifiers strings of letters, digits, or underscore “_” that start with lower
case letters.

marge lisa x25 x_25 alpha_beta

Numbers
1.001 2 3.03

● Variables strings of letters, digits or underscore that start with an upper
case letter or the underscore

_x, Anna, Successor_State,
Note: undescore by itself (“_”) is a special anonymous variable.

Prolog syntax: Terms

● Structures
<identifier>(Term1, ..., Termk)

recursive definition: each term can itself be a structure

date(1, may, 1983)

point(X, Y, Z)

date(+(0,1), may, +(1900,­(183,100)))

Prolog syntax: Terms

Structures can be thought as trees!
date(+(0,1), may, +(1900,­(183,100)))

Prolog syntax: Predicates

● Predicates are syntaxically the same as structures.
<identifier>(Term1, ..., Termk)

parent(marge, bart)

female(marge)

Prolog syntax: Predicates

● Predicates are syntaxically the same as structures.
<identifier>(Term1, ..., Termk)

parent(marge, bart)

female(marge)

.. but they are not terms!

 → predicate identifiers structure identifiers≠

Prolog syntax: Predicates

 → predicate identifiers structure identifiers≠

objects

things said
about objects

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Facts are predicates terminated by a period “.”
<identifier>(Term1, ..., Termk).

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Facts are predicates terminated by a period “.”
<identifier>(Term1, ..., Termk).

Facts encode assertions, things that are declared certain!

female(marge).
parent(homer, bart).

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Rules are in the form:
predicateH :­ predicate1, .., predicatek.

the left of “:­” is named head, the right body.

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Rules are in the form:
predicateH :­ predicate1, .., predicatek.

● Rules encode ways of deriving or computing a new fact.

animal(X) :­ elephant(X).
We can show that X is an animal if we can show that it is an elephant.

Prolog Syntax

● A prolog program is a sequence of facts and rules.

● Rules are in the form:
predicateH :­ predicate1, .., predicatek.

● Rules encode ways of deriving or computing a new fact.

animal(X) :­ elephant(X).
We can show that X is an animal if we can show that it is an elephant.

father(X,Y) :­ parent(X,Y), male(X).
We can show that X is a father of Y if we can show that X is a parent of Y
and that X is male.

Prolog's main operation

● A query is a sequence of predicates
predicate1, predicate2, ..., predicatek

– using the facts and rules in the Prolog program, the
solver tries to prove that this sequence of predicates
is true.

– in proving the sequence it (should) perform the
computation you want.

Prolog's main operation

● A query is a sequence of predicates
predicate1, predicate2, ..., predicatek

– using the facts and rules in the Prolog program, the
solver tries to prove that this sequence of predicates
is true.

– in proving the sequence it (should) perform the
computation you want.

delicate point: procedural computation might be
mixed with declarative computation

Prolog's resolution strategy

Horn clauses

● Facts and rules falls under the definition of Horn clauses,
the structures on which SLD resolution was proven:

General form : F :­ F1, F2,…, Fn.
● To prove F, one must successively prove F1, …, Fn.

Horn clauses

● Facts and rules falls under the definition of Horn clauses,
the structures on which SLD resolution was proven:

General form : F :­ F1, F2,…, Fn.
● To prove F, one must successively prove F1, …, Fn.

● F is the clause’s head.
● F1, F2, …, Fn constitute the clause’s tail or body.
● A fact is a clause with an empty tail.

Prolog's strategy

● To answer the question, Prolog builds a search tree :
– set of possibilities (clauses matching the question)

represented as a tree
– each choice is a node of the search tree
– trial and error sequential search, following the order

of declaration

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
e(1).
d(3).

● Query: ?­ p(1).

Prolog's strategy, example

p(1) :­ a(1).
p(1) :­ b(1).
a(1) :­ c(1).
c(1) :­ d(1).
c(1) :­ d(2).
b(1) :­ e(1).
b(1) :­ d(3).
e(1).
d(3).

● Query: ?­ p(1).

with backtracking we can get more answers by using “;”

Prolog's strategy

● The solver follows a depth-first strategy
– success node: solution found! the

solver displays it and stops.
– failure node: the solver backtracks up in

the tree, until it finds a choice point with
unexplored branches.

Prolog's strategy

● If backtracking encounters no choice point
left, Prolog stops. No further solution.

● NOTE: Some branches are infinite! So
search may not stop…

Take care of:

– The order of goals in clause tails
– The order of clauses

Resolution with variables

Using variables...

● Variables allow us to:

– compute more than yes/no answers
?­ parent(marge, X).

Using variables...

● Variables allow us to:

– compute more than yes/no answers
?­ parent(marge, X).

– compress the program.
parent(marge, lisa) :­ child(lisa, marge).
parent(marge, bart) :­ child(bart, marge).
…
parent(X, Y) :­ child(Y, X).

Using variables...

● Variables allow us to:

– compute more than yes/no answers
?­ parent(marge, X).

– compress the program.
parent(marge, lisa) :­ child(lisa, marge).
parent(marge, bart) :­ child(bart, marge).
…
parent(X, Y) :­ child(Y, X).

– reversibility (when declarativity is maintaned)
?­ parent(Y, lisa).

Variables matching via Unification

?­ brother(bart, Who).

brother(X,Y) :­
male(X),
parent(X,Z),
parent(Y,Z),
X \== Y.

Unification with
brother(X,Y)
X=bart, Y=Who

male(bart)
parent(bart,Z)
parent(bart,Z)
bart \== Who

Unification examples

● Unification predicate: “=”
?­ a(B,C) = a(2,3).
YES {B=2, C=3}

?­ a(X,Y,L) = a(Y,2,carole).
YES {X=2, Y=2, L=carole}

?­ a(X,X,Y) = a(Y,u,v).
NO

Unification examples

● Unification predicate: “=”
?­ a(B,C) = a(2,3).
YES {B=2, C=3}

?­ a(X,Y,L) = a(Y,2,carole).
YES {X=Y, Y=2, L=carole}

?­ a(X,X,Y) = a(Y,u,v).
NO

Exercise
Unify p(X,b(Z,a),X) with p(Y,Y,b(V,a))

Unification algorithm

dereference is a function that
dereferences bound variables and
returns the input otherwise

A free variable can be seen as a pointer to NIL. When not free, it is
said bound variable. Dereferencing a variable means reaching the
value to which it is bound.

procedure unify(t1,t2)

t3 := dereference(t1); t4 := dereference(t2)
if t3 is a variable then

t3 points to t4; return success
else if t4 is a variable then

t4 points to t3; return success
else if t3 is an atom and t4 is an atom then

if t3 = t4 then return success
else return fail

else let t3 = f(t31, .., t3n) and t4 = g(t41, .., t4m)
if f = g and n = m then

for i := 1 to n do
if unify(t3i, t4i) fails then return fail

return success
else

return fail

t1, t2 are two terms

● X and marge where X is
bound to the value marge
will match.

● X and Y where X is bound
to marge and Y is bound to
marge will match,

● X and marge where X is
bound to lisa will not
match.

Lists

Representing lists
● Lists are a crucial data structure in Prolog. They are

usually written as:
[a, b, c, d]

This corresponds to the structured term:
[a|[b|[c|[d|[]]]]]

where [] is a special constant the empty list.

Representing lists
● Each list is of the form [<head> | <rest_of_list>]

<head> an element of the list (not necessarily a list).
<rest_of_list> is a list (a sub-list).

[a, b, c, d] = [a | [b, c, d]]
a: head; [b, c, d]: tail

[a, b, c, d] = [a, b | [c, d]]
[_|_] has at least one element.

Cut

Backtracking control using CUT
● Sometimes it is useful to control the backtracking, and

this can be done using the “!”, the cut operator.

→ once it is executed, it disallows backtracking

Backtracking control using CUT
● Sometimes it is useful to control the backtracking, and

this can be done using the “!”, the cut operator.

→ once it is executed, it disallows backtracking

p :­ b1, b2, !, a1, a2, a3.
p :­ r1, r2 .
p :­ r3 .

Before reaching cut, there might be backtracking on b1 and b2 or trying other rules for
p if one of b1 or b2 cannot be satisfied. After reaching !, no more backtracking. The
second and third rule will not be searched.

Backtracking control using CUT
● Sometimes it is useful to control the backtracking, and

this can be done using the “!”, the cut operator.

→ once it is executed, it disallows backtracking

p(X, Y) :­
q(X),
!,
r(X,Y).

p(X, Y) :­
s(X).

q(X) :­
!, r(a,Y).

...undermining declarativity
● All times in which we play with the control we are

undermining the declarative properties of the language.
● Therefore, uses of cut (and as we will see negation as

failure) or any other properties having side effects
remove properties as reversibility.

Prolog and logic

Prolog and Logic
● A Prolog clause is a generalised disjunction

a :­ b, c.

In logic:

b c a∧ ⇒

As material implication p q equivalent to ¬p q⇒ ∨

¬b ¬c a∨ ∨

● Prolog inherits the correctness and completeness proof methods from
First Order Logic, and, for the restriction to Horn Clauses, enjoyes
decidable algorithms… More about this the next weeks.

Prolog and Logic - 2
● A Prolog clause

a :­ b.

In logic would be:

b a⇒

which is equivalent to

¬a ¬b ⇒

Prolog and Logic - 2
● A Prolog clause

a :­ b.

In logic would be:

b a⇒

which is equivalent to

¬a ¬b ⇒

but the clause does not specify that!!

...difference due to the different meaning of negation!

NAF – Negation as Failure

● In propositional logic, propositions can be true and
false.

NAF – Negation as Failure

● In propositional logic, propositions can be true and
false. But propositions could be also unknown.

Example: obviously, it may rain, or not rain. But if I'm indoor, and there is no
window, I do not know!

● In propositional logic, propositions can be true and
false. But propositions could be also unknown.

Example: obviously, it may rain, or not rain. But if I'm indoor, and there is no
window, I do not know!

● When the inference engine is not able to assess if the
proposition is true, the result will be false. This is
called Negation as Failure (NAF).

NAF – Negation as Failure

● In propositional logic, propositions can be true and
false. But propositions could be also unknown.

Example: obviously, it may rain, or not rain. But if I'm indoor, and there is no
window, I do not know!

● When the inference engine is not able to assess if the
proposition is true, the result will be false. This is
called Negation as Failure (NAF).

● In general, there may be two possible negations:
- strong negation (“classical” negation)↔

- NAF negation (“↔ undecidable”)

NAF – Negation as Failure

● When NAF implies a strong negation we are under the
closed-world assumption.
If I do not know something (i.e. I cannot infer that something), than
that something will be false.

NAF – Negation as Failure

● When NAF implies a strong negation we are under the
closed-world assumption.
If I do not know something (i.e. I cannot infer that something), than
that something will be false.

● Ex. UFOs do not exist!

NAF – Negation as Failure

● When NAF implies a strong negation we are under the
closed-world assumption.
If I do not know something (i.e. I cannot infer that something), than
that something will be false.

● Ex. UFOs do not exist!

If it is not the case
that ufos exist,

then it is the case
that ufos do not exist.

NAF – Negation as Failure

● When NAF implies a strong negation we are under the
closed-world assumption.
If I do not know something (i.e. I cannot infer that something), than
that something will be false.

● Ex. UFOs do not exist!

If it is not the case
that ufos exist,

then it is the case
that ufos do not exist.

NAF – Negation as Failure

That's the case of Prolog!

Negation as failure
● Negation as failure can be used to implement defaults.

fancy(belle_d_argent).
fancy(maximus).

expensive(belle_d_argent).
affordable(Restaurant) :­

not(expensive(Restaurant)).

?­ fancy(X), affordable(X).
X=maximus

Negation as failure
● Negation as failure can be used to implement defaults.

fancy(belle_d_argent).
fancy(maximus).

expensive(belle_d_argent).
affordable(Restaurant) :­

not(expensive(Restaurant)).

?­ fancy(X), affordable(X).
X=maximus

?­ affordable(X), fancy(X).
FALSE

Negation as failure with CUT
● This predicate behaves just as not p(X):

q(X) :­

p(X),

 !,

 fail.

q(X).

Conclusions

Guidelines
● Go on http://aicourse.r2.enst.fr:4242/SCIA

– Read and work with the material.
– Responses to questions will be recorded up to a limit

date. (generally 2 weeks from the lecture) and graded.
– After sending a response you receive a possible

correction.
● Try to be in scheduling with the course !
● Collaborative learning is welcome, copying is prohibited !
● Question and comments are welcome, just write me :

gsileno@enst.fr

http://aicourse.r2.enst.fr:4242/SCIA
mailto:gsileno@enst.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119

