

Logic and Knowledge
Representation

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

Problem Types, and Problem solving methods
27 April 2018

mailto:gsileno@enst.fr

Problem solving

Well-defined problems

Problems are well-defined when
there is a simple test to conclude
whether a solution is a solution.
J. McCarthy (1956) The inversion of functions defined by
Taring ma- chines. Automata Studies, Annals of
Mathematical Studies, 34:177 – 181.

Well-defined problems &
 problem spaces

Problems are well-defined when
there is a simple test to conclude
whether a solution is a solution.
J. McCarthy (1956) The inversion of functions defined by
Taring ma- chines. Automata Studies, Annals of
Mathematical Studies, 34:177 – 181.

People solve problems by searching
through a problem space, consisting
of the initial state, the goal state,
and all possible states in between.
Newell, A., & Simon, H. A. (1972). Human problem solving.

Problem and solution spaces

P S

problems
space

solution
space

solution
sp

solution(s, p) can be interpreted as s satisfies p

Problem and solution spaces

P S

problems
space

solution
space

solution
sp

solution(s, p) can be interpreted as s satisfies p
problem: how to generate solutions?

Problem and solution spaces

P S

problems
space

solution
space

solution
sp

solution(s, p) can be interpreted as s satisfies p
problem: how to generate solutions?

problem
type

abstract
solution

abstraction refinement

Defining the problem...

An old lady wants to visit her

friend in a neighbouring village.

She takes her car, but halfway the

engine stops after some

hesitations. On the side of the

road she tries to restart the

engine, but to no avail.

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

Defining the problem...

An old lady wants to visit her

friend in a neighbouring village.

She takes her car, but halfway the

engine stops after some

hesitations. On the side of the

road she tries to restart the

engine, but to no avail.

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

Which is the problem here?

from ill-defined
to well-defined
problems...

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

Suite of problem types

modelling

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

Suite of problem types

modelling

design

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

Suite of problem types

modelling

planning

design

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system +
environment

Suite of problem types

modelling

planning

design

assignment

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system +
environment

Suite of problem types

modelling

planning

design

assignment

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

behavioural view: system +
environment

structural view: system

scheduling

configuration

Suite of problem types

modelling

planning

design

assignment

assessment

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system +
environment

Suite of problem types

modelling

planning

design

assignment

assessment

monitoring

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system +
environment

Suite of problem types

modelling

planning

design

assignment

assessment

monitoring diagnosis

Breuker, J. (1994). Components of problem solving and types of problems.
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system +
environment

Agent problem-solving cycle

Agent problem-solving cycle

where ill-defined
problems come up

Agent problem-solving cycle

where ill-defined
problems come up

where well-defined
problems are set up

Agent problem-solving cycle

where ill-defined
problems come up

where well-defined
problems are set up

where tasks are
assigned and scheduled

Forward and backward reasoning

J. Larkin, J. McDermott, D. P. Simon, H. A. Simon (1980), Expert and
Novice Performance in Solving Physics Problems, Science, 208(4450)

How do we approach a problem?

J. Larkin, J. McDermott, D. P. Simon, H. A. Simon (1980), Expert and
Novice Performance in Solving Physics Problems, Science, 208(4450)

How do we approach a problem?

Novice students
start from the goal.
They look for a formula returning
the goal, and then for formulas
returning what it is needed by the
previous one, up they formulas
satisfied with the given data.

J. Larkin, J. McDermott, D. P. Simon, H. A. Simon (1980), Expert and
Novice Performance in Solving Physics Problems, Science, 208(4450)

How do we approach a problem?

Novice students
start from the goal.
They look for a formula returning
the goal, and then for formulas
returning what it is needed by the
previous one, up they formulas
satisfied with the given data.

Experts start from
the data.
They apply formulas directly to data,
according to some heuristics.

J. Larkin, J. McDermott, D. P. Simon, H. A. Simon (1980), Expert and
Novice Performance in Solving Physics Problems, Science, 208(4450)

How do we approach a problem?

Novice students
start from the goal.
They look for a formula returning
the goal, and then for formulas
returning what it is needed by the
previous one, up they formulas
satisfied with the given data.

Experts start from
the data.
They apply formulas directly to data,
according to some heuristics.

and Prolog?

Example of diagnosis task

“expert” knowledge

Example of diagnosis task

“expert” knowledge

leak_in_bathroom :
hall_wet,
kitchen_dry.

problem_in_kitchen :
hall_wet,
bathroom_dry.

no_water_from_outside :
window_closed ;
no_rain.

leak_in_kitchen :
problem_in_kitchen,
no_water_from_outside.

hall_wet.
bathroom_dry.
window_closed.

prolog program

Some technical detail

prolog program

: dynamic(kitchen_dry/0, no_rain/0).

leak_in_bathroom :
hall_wet,
kitchen_dry.

problem_in_kitchen :
hall_wet,
bathroom_dry.

no_water_from_outside :
window_closed ;
no_rain.

leak_in_kitchen :
problem_in_kitchen,
no_water_from_outside.

hall_wet.
bathroom_dry.
window_closed.

? leak_in_bathroom.
FALSE

? leak_in_kitchen.
TRUE

necessary to define fluents, i.e. facts
that might change along the execution

Some technical detail

prolog program

: dynamic(kitchen_dry/0, no_rain/0).

leak_in_bathroom :
hall_wet,
kitchen_dry.

problem_in_kitchen :
hall_wet,
bathroom_dry.

no_water_from_outside :
window_closed ;
no_rain.

leak_in_kitchen :
problem_in_kitchen,
no_water_from_outside.

hall_wet.
bathroom_dry.
window_closed.

? leak_in_bathroom.
FALSE

? leak_in_kitchen.
TRUE

necessary to define fluents, i.e. facts
that might change along the execution

How? … using assert and rectract

Generalization
● Using Prolog's own syntax for rules may gave

certain disadvantages however:
– this syntax may not be the most suitable for a

user unfamiliar with Prolog; e.g. experts
– the knowledge base is not syntactically

distinguishable from the rest of the program

● Let us create a small DSL (domain specific
language)!

A simple interpreter for rules
% symbols of DSL and priority

: op(800, fx, if).
: op(700, xfx, then).
: op(300, xfy, or).
: op(200, xfy, and).

priority
type of composition
(unary, binary, ...)

symbol

A simple interpreter for rules
% symbols of DSL and priority

: op(800, fx, if).
: op(700, xfx, then).
: op(300, xfy, or).
: op(200, xfy, and).

% knowledge base

if
hall_wet and kitchen_dry

then
leak_in_bathroom.

if
hall_wet and bathroom_dry

then
problem_in_kitchen.

if
window_closed or no_rain

then
no_water_from_outside.

if
problem_in_kitchen and
no_water_from_outside

then
leak_in_kitchen.

fact(hall_wet).
fact(bathroom_dry).
fact(window_closed).

Backward chaining
% backward chaining rule interpreter

is_true(P) :
fact(P).

is_true(P) :
if Condition then P,
is_true(Condition).

is_true(PI and P2) :
is_true(PI), is_true(P2).

is_true(PI or P2) :
is_true(PI) ; is_true(P2).

for forward chaining we need to
materialize the (partial) conclusions!

% necessary with SWIProlog.
: dynamic(sunshine/0, raining/0, fog/0).

nice :
sunshine, not(raining).

funny :
sunshine, raining.

disgusting :
 raining,fog.

raining.
fog.

? nice.

? disgusting.

? retract(fog).

? disgusting.

? assert(sunshine).

? funny.

Forward chaining
% forward chaining rule interpreter
forward :

new_derived_fact(P),
!,
write('Derived:'), write(P), nl,
assert(fact(P)),
forward
;
write('No more facts').

new_derived_fact(Concl) :
if Cond then Concl,
not(fact(Concl)),
composed_fact(Cond).

composed_fact(Cond) :
fact(Cond).

composed_fact(Cond1 and Cond2) :
composed_fact(Cond1),
composed_fact(Cond2).

composed_fact(Cond1 or Cond2) :
composed_fact(Cond1)
;
composed_fact(Cond2).

Backward vs Forward chaining

● Going from an initial
state to a goal state can
be unsuitable for
problems with a large
number of rules (all facts
are derived, even the not
useful ones).

Backward vs Forward chaining

● Going from an initial
state to a goal state can
be unsuitable for
problems with a large
number of rules (all facts
are derived, even the not
useful ones).

● Searching backwards from the goal state usually
eliminates spurious paths.

Backward vs Forward chaining

● Going from an initial
state to a goal state can
be unsuitable for
problems with a large
number of rules (all facts
are derived, even the not
useful ones).

● Searching backwards from the goal state usually
eliminates spurious paths.

but it does not enjoy caching abilities!

Types of reasoning (with rules)

Types of reasoning (Pierce) - 1

Deduction
Rule: All the beans from this bag are white.
Fact: These beans are from this bag.
 Result: These beans are white.
This conclusion is certainly true,
if the premises are true.

Types of reasoning (Pierce) - 2

Induction
Fact: These beans are from this bag.
Fact: These beans are white.
 Hyp. rule: All the beans from this bag are white.
This conclusion is true until proved otherwise.

Types of reasoning (Pierce) - 3

Abduction
Rule: All the beans from this bag are white.
Observed fact: These beans are white.
 Hyp. fact: These beans are from this bag.
This conclusion is plausibly true.

Resuming...

Deduction
Asserted Rule
+ Asserted Fact
= Asserted Fact

Induction
Observed Fact
+ Observed Fact
= Hypothetical Rule

Abduction
Observed Fact
+ Known Rule
= Plausible Fact

Planning

Monkeys and bananas
● A hungry monkey is in a room. Suspended from the

roof, just out of his reach, is a bunch of bananas. In
the corner of the room is a box. The monkey
desperately wants the bananas but he can’t reach
them. What shall he do?

Monkeys and bananas
● After several unsuccessful attempts to reach the

bananas, the monkey walks to the box, pushes it
under the bananas, climbs on the box, picks the
bananas and eats them.

Planning
● To solve this problem the monkey needed to devise

a plan, a sequence of actions that would allow him
to reach the desired goal.

● Planning is a topic of traditional interest in AI.
● To be able to plan, a system needs to be able to

reason about the individual and cumulative effects
of a series of actions.

● This is a skill that is only observed in a few animal
species and only mastered by humans.

Ingredients
● Actions, with conditions and consequences:
action(InitialState, Action, ObtainedState)

Ingredients
● Actions, with conditions and consequences:
action(InitialState, Action, ObtainedState)

● States of the world
state(middle, onbox, middle, not_holding)

monkey
horizonal
position

monkey
vertical
position

box
horizonal
position

hand with
banana
relation

Ingredients
● Actions, with conditions and consequences:

action(state(P, floor, P, T), climb, state(P, onbox, P, T)).

● States of the world
state(middle, onbox, middle, not_holding)

monkey
horizonal
position

monkey
vertical
position

box
horizonal
position

hand with
banana
relation

action(state(middle, onbox, middle, not_holding),
 grab,
 state(middle, onbox, middle, holding)).
action(state(P, floor, P, T),
 climb,
 state(P, onbox, P, T)).
action(state(P1, floor, P1, T),
 push(P1, P2),
 state(P2, floor, P2, T)).
action(state(P1, floor, B, T),
 walk(P1, P2),
 state(P2, floor, B, T)).

success(state(_, _, _, holding)).
success(State1) :
 action(State1, A, State2),
 write("Action : "), write(A), nl,
 write(" > "), write(State2), nl,
 success(State2).

Cooking everything

? success(state(door, floor, window, not_holding)).

goal condition

Another exercise: the tower of Hanoi

Recursion

Recursion
● Recursion is a concept widely used in computer

science and linguistic.
– an object defined in terms of itself
– a procedure invoking itself

Recursion
● Hypothesis: natural language is recursive, as (some)

syntaxic categories are recursive.

● John thinks Emily plays well.

statement

statement

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

? even([3, 5, 3]).

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

? even([3, 5, 3]).

Seek for an entrance

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

? even([3, 5, 3]).

Propagate recursively

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

? even([3, 5, 3]).

Reach the bottom of the recursion

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

? even([3, 5, 3]).

Retrace back

Recursion
● Three phases: descent, stop at bottom, ascent.

even([]).

even([_,_|L]) : even(L).

? even([3, 5, 3]).

Propagate the result back

Recursion
● Three phases: descent, stop at bottom, ascent.

mirror(Left, Right) :

 invert(Left, [], Right).

invert([X|L1], L2, L3) :

 invert(L1, [X|L2], L3).

invert([], L, L).

Conclusions

Conclusions
● Symbolic AI presents relevant techniques to solve

problems that can be described in symbolic terms,
that in many cases outperform humans.

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov

Conclusions
● Symbolic AI presents relevant techniques to solve

problems that can be described in symbolic terms,
that in many cases outperform humans.

● AI methods are today implemented in new
generations of expert systems and all IT
infrastructures of organizations.

Conclusions
● Symbolic AI presents relevant techniques to solve

problems that can be described in symbolic terms,
that in many cases outperform humans.

● AI methods are today implemented in new
generations of expert systems and all IT
infrastructures of organizations.

● However, many problems cannot be
adequately handled by symbolic
techniques, as e.g. those faced
by sensory-motor modules:
– vision, action

Conclusions
● In robotics, starting from the 80s, a

radically different paradigm started
to be considered, renouncing to
symbolic representations.

● As Rodney Brooks famously put it:
“Elephants don't play chess”
– overlap with machine learning

Conclusions
● In robotics, starting from the 80s, a

radically different paradigm started
to be considered, renouncing to
symbolic representations.

● As Rodney Brooks famously put it:
“Elephants don't play chess”
– overlap with machine learning

● Similarly, failures of symbolic AI
explains today interest for deep
learning techniques.

Conclusions
● However, we should not forget,

that a good deal of our interactions
with other people is not too far
from playing chess.
– expressing how and why is

fundamental for humans, and for
this we need symbols.

● Symbolic AI and Statistical AI
occupy different sides of the
spectrum of intelligent behaviour.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

