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Problem solving



  

Well-defined problems

Problems are well-defined when 
there is a simple test to conclude 
whether a solution is a solution.
J. McCarthy (1956) The inversion of functions defined by 
Taring ma- chines. Automata Studies, Annals of 
Mathematical Studies, 34:177 – 181. 



  

Well-defined problems &
 problem spaces

Problems are well-defined when 
there is a simple test to conclude 
whether a solution is a solution.
J. McCarthy (1956) The inversion of functions defined by 
Taring ma- chines. Automata Studies, Annals of 
Mathematical Studies, 34:177 – 181. 

People solve problems by searching 
through a problem space, consisting 
of the initial state, the goal state, 
and all possible states in between.  
Newell, A., & Simon, H. A. (1972). Human problem solving. 
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Defining the problem...

An old lady wants to visit her 

friend in a neighbouring village. 

She takes her car, but halfway the 

engine stops after some 

hesitations. On the side of the 

road she tries to restart the 

engine, but to no avail.

Breuker, J. (1994). Components of problem solving and types of problems. 
A Future for Knowledge Acquisition, 867, 118–136.
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Which is the problem here?



  

from ill-defined 
to well-defined 
problems...

Breuker, J. (1994). Components of problem solving and types of problems. 
A Future for Knowledge Acquisition, 867, 118–136.
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behavioural view: system + 
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structural view: system
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configuration
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Suite of problem types

modelling

planning

design

assignment

assessment
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Breuker, J. (1994). Components of problem solving and types of problems. 
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system + 
environment



  

Suite of problem types

modelling

planning

design

assignment

assessment

monitoring diagnosis

Breuker, J. (1994). Components of problem solving and types of problems. 
A Future for Knowledge Acquisition, 867, 118–136.

structural view: system

behavioural view: system + 
environment
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Agent problem-solving cycle

where ill-defined 
problems come up

where well-defined 
problems are set up

where tasks are 
assigned and scheduled



Forward and backward reasoning
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How do we approach a problem?

Novice students 
start from the goal. 
They look for a formula returning 
the goal, and then for formulas 
returning what it is needed by the 
previous one, up they formulas 
satisfied with the given data.

Experts start from 
the data.
They apply formulas directly to data, 
according to some heuristics. 

and Prolog?



Example of diagnosis task

“expert” knowledge



Example of diagnosis task

“expert” knowledge

leak_in_bathroom :
hall_wet,
kitchen_dry.

problem_in_kitchen :
hall_wet,
bathroom_dry.

no_water_from_outside :
window_closed ;
no_rain.

leak_in_kitchen :
problem_in_kitchen,
no_water_from_outside.

hall_wet.
bathroom_dry.
window_closed.

prolog program



Some technical detail

prolog program

: dynamic(kitchen_dry/0, no_rain/0).

leak_in_bathroom :
hall_wet,
kitchen_dry.

problem_in_kitchen :
hall_wet,
bathroom_dry.

no_water_from_outside :
window_closed ;
no_rain.

leak_in_kitchen :
problem_in_kitchen,
no_water_from_outside.

hall_wet.
bathroom_dry.
window_closed.

? leak_in_bathroom.
FALSE

? leak_in_kitchen.
TRUE

necessary to define fluents, i.e. facts
that might change along the execution



Some technical detail

prolog program

: dynamic(kitchen_dry/0, no_rain/0).

leak_in_bathroom :
hall_wet,
kitchen_dry.

problem_in_kitchen :
hall_wet,
bathroom_dry.

no_water_from_outside :
window_closed ;
no_rain.

leak_in_kitchen :
problem_in_kitchen,
no_water_from_outside.

hall_wet.
bathroom_dry.
window_closed.

? leak_in_bathroom.
FALSE

? leak_in_kitchen.
TRUE

necessary to define fluents, i.e. facts
that might change along the execution

How? … using assert and rectract



Generalization
● Using Prolog's own syntax for rules may gave 

certain disadvantages however:
– this syntax may not be the most suitable for a 

user unfamiliar with Prolog; e.g. experts
– the knowledge base is not syntactically 

distinguishable from the rest of the program

● Let us create a small DSL (domain specific 
language)!



A simple interpreter for rules
% symbols of DSL and priority

: op(800, fx, if).
: op(700, xfx, then).
: op(300, xfy, or).
: op(200, xfy, and).

priority
type of composition 
(unary, binary, ...)

symbol



A simple interpreter for rules
% symbols of DSL and priority

: op(800, fx, if).
: op(700, xfx, then).
: op(300, xfy, or).
: op(200, xfy, and).

% knowledge base

if
hall_wet and kitchen_dry

then
leak_in_bathroom.

if
hall_wet and bathroom_dry

then
problem_in_kitchen.

if
window_closed or no_rain

then
no_water_from_outside.

if
problem_in_kitchen and   
no_water_from_outside

then
leak_in_kitchen.

fact(hall_wet).
fact(bathroom_dry).
fact(window_closed).



Backward chaining
% backward chaining rule interpreter

is_true(P) :
fact(P).

is_true(P) :
if Condition then P,
is_true(Condition).

is_true(PI and P2) :
is_true(PI), is_true( P2).

is_true(PI or P2) :
is_true(PI) ; is_true( P2).



for forward chaining we need to 
materialize the (partial) conclusions!

% necessary with SWIProlog. 
: dynamic(sunshine/0, raining/0, fog/0).  

nice : 
sunshine, not(raining).

funny : 
sunshine, raining.

disgusting :
    raining,fog.

raining.
fog.

? nice.

? disgusting.

? retract(fog).

? disgusting.

? assert(sunshine).

? funny.



Forward chaining
% forward chaining rule interpreter
forward :

new_derived_fact(P),
!,
write('Derived:'), write(P), nl,
assert(fact(P)),
forward
;
write('No more facts').

new_derived_fact(Concl) :
if Cond then Concl,
not(fact( Concl)),
composed_fact( Cond).

composed_fact(Cond) :
fact(Cond).

composed_fact(Cond1 and Cond2) :
composed_fact(Cond1),
composed_fact( Cond2).

composed_fact(Cond1 or Cond2) :
composed_fact(Cond1)
; 
composed_fact( Cond2).



Backward vs Forward chaining

● Going from an initial 
state to a goal state can 
be unsuitable for 
problems with a large 
number of rules (all facts 
are derived, even the not 
useful ones).
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Backward vs Forward chaining

● Going from an initial 
state to a goal state can 
be unsuitable for 
problems with a large 
number of rules (all facts 
are derived, even the not 
useful ones).

● Searching backwards from the goal state usually 
eliminates spurious paths.

but it does not enjoy caching abilities!



Types of reasoning (with rules)



Types of reasoning (Pierce) - 1

Deduction
Rule: All the beans from this bag are white.
Fact: These beans are from this bag.
 Result: These beans are white.
This conclusion is certainly true, 
if the premises are true.



Types of reasoning (Pierce) - 2

Induction
Fact: These beans are from this bag.
Fact: These beans are white.
 Hyp. rule: All the beans from this bag are white.
This conclusion is true until proved otherwise.



Types of reasoning (Pierce) - 3

Abduction
Rule: All the beans from this bag are white.
Observed fact: These beans are white.
 Hyp. fact: These beans are from this bag.
This conclusion is plausibly true.



Resuming...

Deduction 
Asserted Rule 
+ Asserted Fact 
= Asserted Fact

Induction 
Observed Fact 
+ Observed Fact 
= Hypothetical Rule

 

Abduction 
Observed Fact
+ Known Rule  
= Plausible Fact



Planning



Monkeys and bananas
● A hungry monkey is in a room. Suspended from the 

roof, just out of his reach, is a bunch of bananas. In 
the corner of the room is a box. The monkey 
desperately wants the bananas but he can’t reach 
them. What shall he do?



Monkeys and bananas
● After several unsuccessful attempts to reach the 

bananas, the monkey walks to the box, pushes it 
under the bananas, climbs on the box, picks the 
bananas and eats them.



Planning
● To solve this problem the monkey needed to devise 

a plan, a sequence of actions that would allow him 
to reach the desired goal.

● Planning is a topic of traditional interest in AI.
● To be able to plan, a system needs to be able to 

reason about the individual and cumulative effects 
of a series of actions. 

● This is a skill that is only observed in a few animal 
species and only mastered by humans.



Ingredients
● Actions, with conditions and consequences:
action(InitialState, Action, ObtainedState)
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● States of the world
state(middle, onbox, middle, not_holding)

monkey 
horizonal
position

monkey 
vertical
position

box
horizonal
position

hand with 
banana
relation



Ingredients
● Actions, with conditions and consequences:

action(state(P, floor, P, T), climb, state(P, onbox, P, T)). 

● States of the world
state(middle, onbox, middle, not_holding)

monkey 
horizonal
position

monkey 
vertical
position

box
horizonal
position

hand with 
banana
relation



action(state(middle, onbox, middle, not_holding),
        grab,
        state(middle, onbox, middle, holding)).
action(state(P, floor, P, T),
        climb,
        state(P, onbox, P, T)).
action(state(P1, floor, P1, T),
        push(P1, P2),
        state(P2, floor, P2, T)).
action(state(P1, floor, B, T),
        walk(P1, P2),
        state(P2, floor, B, T)).

success(state(_, _, _, holding)).
success(State1) :
    action(State1, A, State2),
    write("Action : "), write(A), nl, 
    write(" > "), write(State2), nl,
    success( State2).

Cooking everything

? success(state(door, floor, window, not_holding)).

goal condition



Another exercise: the tower of Hanoi



Recursion



Recursion
● Recursion is a concept widely used in computer 

science and linguistic.
– an object defined in terms of itself
– a procedure invoking itself



Recursion
● Hypothesis: natural language is recursive, as (some) 

syntaxic categories are recursive.

● John thinks Emily plays well.

statement

statement



Recursion
● Three phases: descent, stop at bottom, ascent. 

even([ ]).

even([_,_|L]) : even(L). 
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even([ ]).
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Seek for an entrance



Recursion
● Three phases: descent, stop at bottom, ascent. 

even([ ]).

even([_,_|L]) : even(L). 

? even([3, 5, 3]).

Propagate recursively



Recursion
● Three phases: descent, stop at bottom, ascent. 

even([ ]).

even([_,_|L]) : even(L). 

? even([3, 5, 3]).

Reach the bottom of the recursion



Recursion
● Three phases: descent, stop at bottom, ascent. 

even([ ]).

even([_,_|L]) : even(L). 

? even([3, 5, 3]).

Retrace back



Recursion
● Three phases: descent, stop at bottom, ascent. 

even([ ]).

even([_,_|L]) : even(L). 

? even([3, 5, 3]).

Propagate the result back



Recursion
● Three phases: descent, stop at bottom, ascent. 

mirror(Left, Right) : 

    invert(Left, [], Right).

invert([X|L1], L2, L3) :    

    invert(L1, [X|L2], L3).    

invert([], L, L). 



Conclusions



  

Conclusions
● Symbolic AI presents relevant techniques to solve 

problems that can be described in symbolic terms, 
that in many cases outperform humans.

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov 

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov
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Conclusions
● Symbolic AI presents relevant techniques to solve 

problems that can be described in symbolic terms, 
that in many cases outperform humans.

● AI methods are today implemented in new 
generations of expert systems and all IT 
infrastructures of organizations.

● However, many problems cannot be 
adequately handled by symbolic 
techniques, as e.g. those faced 
by sensory-motor modules:
– vision, action



  

Conclusions
● In robotics, starting from the 80s, a 

radically different paradigm started 
to be considered, renouncing to 
symbolic representations.

● As Rodney Brooks famously put it: 
“Elephants don't play chess”
– overlap with machine learning 



  

Conclusions
● In robotics, starting from the 80s, a 

radically different paradigm started 
to be considered, renouncing to 
symbolic representations.

● As Rodney Brooks famously put it: 
“Elephants don't play chess”
– overlap with machine learning 

● Similarly, failures of symbolic AI 
explains today interest for deep 
learning techniques.



  

Conclusions
● However, we should not forget, 

that a good deal of our interactions 
with other people is not too far 
from playing chess.
– expressing how and why is 

fundamental for humans, and for 
this we need symbols. 

● Symbolic AI and Statistical AI 
occupy different sides of the 
spectrum of intelligent behaviour.
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