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This is a nice variation of Epimenides paradox, the 
story of a Cretan saying “All Cretans are liars”.

https://en.wikipedia.org/wiki/Epimenides_paradox


Logic: a long history



Overview on (Western) logic
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Overview on (Western) logic
● Greek Logic

– Stoics
– Aristotle

– logic in argumentation
– syllogism

● Medieval and traditional logic
– Thomas Aquinas (1225-1274)

– modal logic
– William of Ockham (1288-1348)

– laws of de Morgan
– ternary logic

– Logic of Port Royal 
● Antoine Arnauld & Pierre Nicole (1662)
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● Modern logic
– Descartes, Leibniz
– George Boole (1848)
– Gottlob Frege, Bregriffschrift (1879)

● Quantification
– Charles Peirce

● Reasoning and logic
– Guiseppe Peano

● Logical Axiomatization of Artihmetics
– Bertand Russell & Alfred N. Whitehead, Principia 

Mathematica (1925)
● Logical Axiomization of Mathematics

Overview on (Western) logic



Propositional logic



● alphabet 
– propositional symbols

p1, p2, ...     

A language consists of symbols, ... 



● alphabet 
– propositional symbols

p1, p2, ...     
– connectives

● nullary: T,  (top, bottom)⊥
● unary: ¬ (negation)
● binary: , , , , , , , , ,  (and, or, ∧ ∨ ⊃ ⊂ ↑ ↓ ⊅ ⊄ ≡ ≠

implies, only-if, nand (incompatible), nor, not-implies, 
not-only-if, equivalent, not-equivalent)

A language consists of symbols, ... 



● set A of atomic formulas
– A contains all propositional symbols
– A contains the nullary connectives T,   ⊥

A language consists of a syntax 
(rules to aggregate symbols), ...



● set A of atomic formulas
– A contains all propositional symbols
– A contains the nullary connectives T,   ⊥

● set P of (well-formed) propositional formulas
– P contains atomic formulas
– if F is in P, then ¬F is in P
– if F and G are in P, then (F o G) is in P, where o is a 

binary connective ( , , , , , , ∧ ∨ ⊃ ⊂ ↑ ↓ ⊅, , , ).⊄ ≡ ≠
– P is the smallest set that has these properties (equivalently, 

there is nothing in P that does not satisfy these properties)

A language consists of a syntax 
(rules to aggregate symbols), ...
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(rules to interpret its expressions)

● Semantics should tell us how the meaning of the 
constituent parts of a discourse, and their mode of 
combination, determine the overall meaning.
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A language consists of a semantic
(rules to interpret its expressions)

● Semantics should tell us how the meaning of the 
constituent parts of a discourse, and their mode of 
combination, determine the overall meaning.

● But what do we mean by meaning?
ex. “there is a dog”

...that a dog is out there

“there is a dog” is true
..that that proposition is true

simpleicon.com 
Collection Of Flat Icon, Symbols And Glyph Icons

..that the locutor believes that..

correspondence semantics

truth-conditional semantics

cognitive semantics
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Strange effects...

● “a dog is a dog”
● “a dog is a mammal”

TRUE

TRUE

Under truth-conditional semantics, they 
have the same “meaning”!

Each sentence is assigned to a truth value

truth-conditional semantics is prone to logic solipsism
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Truth space and functions

not
T F

F T

● Truth space: Tv = {T, F}
● Truth functions:

– 2 Nullary functions: T, F
– 1 Unary functions: Tv  Tv→



Truth space and functions

and
T T T

T F F

F T F

F F F

or
T T T

T F T

F T T

F F F

imp
T T T

T F F

F T T

F F T

not
T F

F T

● Truth space: Tv = {T, F}
● Truth functions:

– 2 Nullary functions: T, F
– 1 Unary functions: Tv  Tv→

– 16 Binary functions: Tv x Tv  Tv  →



Connecting syntax with semantics
● Boolean valuation, a function mapping propositions 

to truth values: v: P  Tv→
  

– v( ) = ⊤ T 
– v( ) = ⊥ F
– v(¬X) = not v(X)
– v(X o Y) = v(X) • v(Y)

o syntactic connectives ¬ ∧ ∨ ,  ⊃ → ….

• semantic connectives not and or implies, ⇒ ….



syntax vs semantics

language objects
atoms and formulas

“a”

“world” objects, here 
truth values

“b”
T

F

valuations
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syntax vs semantics

language objects
atoms and formulas

“world” objects, here 
truth values

T

F

valuations

F and T

“a ∧ b”

“a”

“b”



syntax vs semantics 2

language objects
symbols and formulas
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counting items

interpretation

“3 + 5”
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syntax vs semantics 2

language objects
symbols and formulas

“world” objects, here 
counting items

interpretation

“3 + 5”

“3”
“5”

“8”

plus
language operator

“world” operator



syntax vs semantics 3

% backward chaining rule interpreter

is_true(P) :
fact(P).

is_true(P) :
if Condition then P,
is_true(Condition).

is_true(P1 and P2) :
is_true(P1), is_true( P2).

is_true(P1 or P2) :
is_true(P1) ; is_true( P2).

% symbols of DSL and priority

: op(800, fx, if).
: op(700, xfx, then).
: op(300, xfy, or).
: op(200, xfy, and).

% knowledge base

If cloud then rain.
If rain then wet.
If sprinkler then wet.

fact(sprinkler).

language objects?
language operators?
“world” objects?
“world” operators?



Tautologies & co.
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● A propositional formula F is a tautology if v(F) = T 
for any Boolean valuation v
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● A propositional formula F is a tautology if v(F) = T 
for any Boolean valuation v

F(x, y, z, ...) T

x
y

z

T F
T F
T F
...

Functional view: 
any configuration of inputs brings the same outcome T

inputs (associated to factors)
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Tautology, satisfiability, consequence

● A propositional formula F is a tautology if v(F) = T 
for any Boolean valuation v

● A set S of propositional formulas is satisfiable if 
some valuation vi maps every member of S to T: 
– vi(F) = T for all F of S. 

F1(x, y, z, …) ∧ F2(x, y, z, …)  ∧ ...    T

x
y

z

S = { F1,, F2 , ...} 

Functional view: 
There is a configuration of 
inputs making T the output of the conjunction of the formula in S.  
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assign T to C 
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Tautology, satisfiability, consequence

● S  C is called ⊨ semantic consequence: if a valuation 
assigns the value T to all element of S, then it will 
assign T to C 

F1(x, y, z, ...) T

F2(x, y, z, ...) 

F3(x, y, z, ...) 

...

T

T

x
y

z

S

C(x, y, z, ...) T

Functional view: 
All configurations making Tthe outputs of S make C true.  

not the inverse !!



Tautology, satisfiability, consequence

● S  C is called ⊨ semantic consequence: if a valuation 
assigns the value T to all element of S, then it will 
assign T to C 

●  ⊨ C denotes the fact that C is a tautology.

T C(x, y, z, ...) T⊤



Tautology, satisfiability, consequence

● S  C⊨ if a valuation assigns the value T to any 
element of S, then it will assign T to C 

●  ⊨ C C is a tautology.

Exercices (1):

– Show that X is a tautology only if (X  ⊤) is a 
tautology

– Show that ((X  ∧ Y) ≡ (X ∨ Y)) is a tautology



Tautology, satisfiability, consequence

● S  C⊨ if a valuation assigns the value T to any 
element of S, then it will assign T to C 

●  ⊨ C C is a tautology.

Exercices (2):

– (ex falso quodlibet sequitur). if A, A  S, then for 
any X : S  X. ⊨

– (monotonicity). if S  X, then S ⊨  {Y}  X ⊨



Tautology, satisfiability, consequence

● S  C⊨ if a valuation assigns the value T to any 
element of S, then it will assign T to C 

●  ⊨ C C is a tautology.

Exercices (3):

– Show that S  C entails that ⊨ S  {C} is not 
satisfiable.

– Show the reciprocal.



Tautology, satisfiability, consequence

C is a semantic consequence of S, i.e. S  C ⊨

if and only if 

S  {C} is not satisfiable

● Central result:

the conjunction of the formulas in S 
and the C is an antilogy or 
contradiction (false for all inputs)



Replacement theorem

● Given F(P), formula with any occurrences of symbol P

if (X  Y) is a tautology, then ≡
(F(X)  F(Y)) is a tautology as well.≡



Replacement theorem

● Given F(P), formula with any occurrences of symbol P

if (X  Y) is a tautology, then ≡
(F(X)  F(Y)) is a tautology as well.≡

Proof. If (X  Y) is a tautology, then v(X) = v(Y) for any evaluation ≡
v, but then also v(F(X)) = v(F(Y)). As v(F(X)) = v(F(Y)) for any v, 
(F(X)  F(Y)) is a tautology.  ≡



Replacement theorem

● Given F(P), formula with any occurrences of symbol P

if (X  Y) is a tautology, then ≡
(F(X)  F(Y)) is a tautology as well.≡

Exercices:
– (double negation) Show that (X ≡ X) is a 

tautology
– (modus ponens) Show that Y is a tautology if X and 

(X  Y) are tautologies 



Normal Forms (CNF and DNF)



Rewriting of formulas

● Any number may be computed as
– product of sums, e.g.

8 = (1 + 1) * ( 2 + 2 )
– sums of products, e.g.

8 = (2 * 1)  + (2 * 1) + (2 * 1) + (2 * 1) 
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● Any formula may be rewritten as
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– disjunction of conjunctions (DNF)

● In the algebraic interpretation of boolean logic, 
– conjunction ∧stands for product *
– disjunction ∨ stands for addition + 

 



Rewriting of formulas

● Any formula may be rewritten as
– conjunction of disjunctions (CNF)
– disjunction of conjunctions (DNF)

 

a
 

b F F
T T T F

T F F T

F T T F

F F T F

DNF
F
 = (a ∧ b)  ∨ (a ∧b)  ∨ (a ∧ b) 

 

CNF
F
 = DNF

F 
= (a ∧ b) = a  ∨ b  

 

For instance from truth tables:
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Conjunctive normal form

● The conjunctive normal form (CNF) rewrites any 
propositional formula as a conjunction of clauses. 

● A clause is a disjunction of propositional symbols 
possibly with negation. It is noted as [a,b,c]. 

● A conjunction of clauses is noted <C1,C2,C3>. 

propositional formula CNF

(a  ¬(b  c)) ⊃ ⊃ < [¬a, b], [¬a, ¬c] > 



Evaluation with CNF

● Evaluations are performed as follows :

– v([X1,X2,…,Xn]) = F 
if and only if v(Xi) = F for all I

– v(<C1,C2,…,Cm>) = T 
if and only if v(Ci) = T for all I

– empty clause: v([ ]) = F
– empty conjunction: v(< >) = T.



Transforming a formula to CNF

● The algorithm that converts a propositional formula 
into CNF proceeds sequentially with these steps :
replace < ... [ ... β ...]... >    by    < ... [… β1, β2 ...] ... >
replace < ... [ ... a ...]... >    by    < ... [ ... a1 ...], [ ... a2 ...] ... >
replace < ... [ ... ¬¬a ...]... >    by    < ... [ ... a ...] ... >

a-formula a1 a2
(X  Y) ∧ X Y
¬(X  Y)∨ ¬X ¬Y
¬(X  Y) ⊃ X ¬Y
...

β-formula β1 β2 
(X  Y)∨ X Y
¬(X  Y)∧ ¬X ¬Y
(X  Y)⊃ ¬X Y
...



Example
● Transform ((A  (B  C))  ((A  B)  (A  C))) to CNF 
● Show that it is a tautology.



Automatic proof methods
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● A line is a disjunction of propositional formulas.
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Resolution method
● A sequence is the conjunction of lines.
● A line is a disjunction of propositional formulas.
● For a propositional formula X composed on the line L, the 

growth of the sequence consists of:
– If X is of type β, replace it with β1, β2.
– If X is of type a, create two new lines L1 and L2, recopy 

the line L replacing a with a1 and a2 respectively.
● A resolution consists of concatenating two lines where X and 
X are separated, omitting all occurrences of these last two 
formulas. The new line is called the resolving clause of the 
other two. 

● A proof by resolution of F is a sequence derived from <F> 
and containing an empty clause [].
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Proof using the resolution method that:
((A  B)∧(B  C))  (C∧A)
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Example

a. [¬(((A B) ∧ (B  C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d
g. [¬B, C] rewriting e
h. [¬C] development of c
i. [A] development of c
j. [B] resolving f and i
k. [C] resolving g and j
l. [ ] resolving h and k

Proof using the resolution method that:
((A  B)∧(B  C))  (C∧A)



Prolog and resolution

a.
b.
c : a, b.

? c. 

< [a],
   [b],
   [c, ¬a, ¬b], 

   [¬c] > 

CNF



Complexity 
(time or space)

● SAT problem
(check whether a boolean 
expression is satisfiable)

– general case : 
NP-complete

– with Horn clauses : 
P 

 



● A tree represents the disjunction of branches. 
● A branch represents a conjunction of propositional formulas.

Tableaux method



● A tree represents the disjunction of branches. 
● A branch represents a conjunction of propositional formulas.

● For a propositional formula X composed on the branch B, the 
growth of the tree consists of:
– If X is of type a, add a1 then a2 at the end of B.
– If X is of type β, create a node and two new branches B1, 

B2 at the end of B, add β1 and β2 respectively.

Tableaux method



Tableaux method

● A tree represents the disjunction of branches. 
● A branch represents a conjunction of propositional formulas.

● For a propositional formula X composed on the branch B, the 
growth of the tree consists of:
– If X is of type a, add a1 then a2 at the end of B.
– If X is of type β, create a node and two new branches B1, 

B2 at the end of B, add β1 and β2 respectively.

● A branch is closed if X and X appear.
● A tree is closed if all its branches are closed.
● A proof tree for F is a closed tree grew from {F}.



Syntaxic consequence

● S  X, if X can be proven from S.⊢
●  ⊢ X, if X admits a proof.

● deduction theorem :

S  {X}  Y if and only if S  (X ⊢ ⊢  Y)

 



Syntaxic consequence

● S  X, if X can be proven from S.⊢
●  ⊢ X, if X admits a proof. (X is said theorem)

● Proof the modus ponens :  { P, (P  Q) }   Q⊢

{ (P  Q) }   (P ⊢  Q) trivial
{ (P  Q) }  { P }  Q⊢ for deduction theorem



Syntaxic consequence

● S  X, if X can be proven from S.⊢
●  ⊢ X, if X admits a proof. (X is said theorem)

● (( P  (Q  R))  ( Q  (P  R))) is a theorem :
{ (P   (Q  R), P, Q }  R   ⊢ applying twice modus ponens
{ (P   (Q  R), Q}  (P ⊢  R)  deduction theorem
{ (P   (Q  R)}  (Q ⊢  (P  R))  deduction theorem

 ⊢ ((P   (Q   R) (Q  (P  R))) deduction theorem



Soundness, completeness

Let F be any propositional formula and S a set of 
propositional formulas (also called axioms),

● The logical system is Sound : if S   F, then S  F⊢ ⊨
(all that can be proven is true, but there may be 
true propositions unproven)

● The logical system is Complete : if S  F, then S   F⊨ ⊢
(whatever is true can be proven, but there may 
proof returning false propositions)



Consistency

Let F be any propositional formula and S a set of 
propositional formulas (also called axioms),

● A logical system is Consistent : if S   F, then S   F⊢ ⊬



Gödel's incompleteness theorems

if S is a logical system which contain 
elementary arithmetic, then S is incomplete

there are propositions that can be neither proved, neither disproved



Gödel's incompleteness theorems

if S is a logical system which contain 
elementary arithmetic, then S is incomplete

there are propositions that can be neither proved, neither disproved

if S is a logical system which contain 
elementary arithmetic, then S  Consistent(S)⊬

a system cannot proof its own consistency
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