

Logic and Knowledge
Representation

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

Propositional Logic
4 May 2018

mailto:gsileno@enst.fr

This is a nice variation of Epimenides paradox, the
story of a Cretan saying “All Cretans are liars”.

https://en.wikipedia.org/wiki/Epimenides_paradox

Logic: a long history

Overview on (Western) logic
● Greek Logic

– Stoics
– Aristotle

– logic in argumentation
– syllogism

Overview on (Western) logic
● Greek Logic

– Stoics
– Aristotle

– logic in argumentation
– syllogism

● Medieval and traditional logic
– Thomas Aquinas (1225-1274)

– modal logic
– William of Ockham (1288-1348)

– laws of de Morgan
– ternary logic

– Logic of Port Royal
● Antoine Arnauld & Pierre Nicole (1662)

All bankers are athletes.
No consultant is a banker.
Therefore….

All bankers are athletes.
No consultant is a banker.
Therefore….

some athlete is not
a consultant (???)

All bankers are athletes.
No consultant is a banker.
Therefore….

● Valid, and not trivial.

some athlete is not
a consultant!

All bankers are athletes.
No consultant is a banker.
Therefore….

B A

● Valid, and not trivial.

C

some athlete is not
a consultant.

All bankers are athletes.
No consultant is a banker.
Therefore….

B A

● Valid, and not trivial.

C

some athlete is not
a consultant.

All bankers are athletes.
No consultant is a banker.
Therefore….

B A

● Valid, and not trivial.

C

some athlete is not
a consultant.

All bankers are athletes.
No consultant is a banker.
Therefore….

B A

● Valid, and not trivial.

C

some athlete is not
a consultant.

● Modern logic
– Descartes, Leibniz
– George Boole (1848)
– Gottlob Frege, Bregriffschrift (1879)

● Quantification
– Charles Peirce

● Reasoning and logic
– Guiseppe Peano

● Logical Axiomatization of Artihmetics
– Bertand Russell & Alfred N. Whitehead, Principia

Mathematica (1925)
● Logical Axiomization of Mathematics

Overview on (Western) logic

Propositional logic

● alphabet
– propositional symbols

p1, p2, ...

A language consists of symbols, ...

● alphabet
– propositional symbols

p1, p2, ...
– connectives

● nullary: T, (top, bottom)⊥
● unary: ¬ (negation)
● binary: , , , , , , , , , (and, or, ∧ ∨ ⊃ ⊂ ↑ ↓ ⊅ ⊄ ≡ ≠

implies, only-if, nand (incompatible), nor, not-implies,
not-only-if, equivalent, not-equivalent)

A language consists of symbols, ...

● set A of atomic formulas
– A contains all propositional symbols
– A contains the nullary connectives T, ⊥

A language consists of a syntax
(rules to aggregate symbols), ...

● set A of atomic formulas
– A contains all propositional symbols
– A contains the nullary connectives T, ⊥

● set P of (well-formed) propositional formulas
– P contains atomic formulas
– if F is in P, then ¬F is in P
– if F and G are in P, then (F o G) is in P, where o is a

binary connective (, , , , , , ∧ ∨ ⊃ ⊂ ↑ ↓ ⊅, , ,).⊄ ≡ ≠
– P is the smallest set that has these properties (equivalently,

there is nothing in P that does not satisfy these properties)

A language consists of a syntax
(rules to aggregate symbols), ...

A language consists of a semantic
(rules to interpret its expressions)

● Semantics should tell us how the meaning of the
constituent parts of a discourse, and their mode of
combination, determine the overall meaning.

A language consists of a semantic
(rules to interpret its expressions)

● Semantics should tell us how the meaning of the
constituent parts of a discourse, and their mode of
combination, determine the overall meaning.

● But what do we mean by meaning?

A language consists of a semantic
(rules to interpret its expressions)

● Semantics should tell us how the meaning of the
constituent parts of a discourse, and their mode of
combination, determine the overall meaning.

● But what do we mean by meaning?
ex. “there is a dog”

...that a dog is out there
correspondence semantics

A language consists of a semantic
(rules to interpret its expressions)

● Semantics should tell us how the meaning of the
constituent parts of a discourse, and their mode of
combination, determine the overall meaning.

● But what do we mean by meaning?
ex. “there is a dog”

...that a dog is out there

“there is a dog” is true
..that that proposition is true

correspondence semantics

truth-conditional semantics

A language consists of a semantic
(rules to interpret its expressions)

● Semantics should tell us how the meaning of the
constituent parts of a discourse, and their mode of
combination, determine the overall meaning.

● But what do we mean by meaning?
ex. “there is a dog”

...that a dog is out there

“there is a dog” is true
..that that proposition is true

simpleicon.com
Collection Of Flat Icon, Symbols And Glyph Icons

..that the locutor believes that..

correspondence semantics

truth-conditional semantics

cognitive semantics

Strange effects...

● “a dog is a dog”
● “a dog is a mammal”

Strange effects...

● “a dog is a dog”
● “a dog is a mammal”

TRUE

TRUE

Each sentence is assigned to a truth value

Strange effects...

● “a dog is a dog”
● “a dog is a mammal”

TRUE

TRUE

Under truth-conditional semantics, they
have the same “meaning”!

Each sentence is assigned to a truth value

Strange effects...

● “a dog is a dog”
● “a dog is a mammal”

TRUE

TRUE

Under truth-conditional semantics, they
have the same “meaning”!

Each sentence is assigned to a truth value

truth-conditional semantics is prone to logic solipsism

Truth space and functions

● Truth space: Tv = {T, F}

Truth space and functions

● Truth space: Tv = {T, F}
● Truth functions:

– 2 Nullary functions: T, F

Truth space and functions

not
T F

F T

● Truth space: Tv = {T, F}
● Truth functions:

– 2 Nullary functions: T, F
– 1 Unary functions: Tv Tv→

Truth space and functions

and
T T T

T F F

F T F

F F F

or
T T T

T F T

F T T

F F F

imp
T T T

T F F

F T T

F F T

not
T F

F T

● Truth space: Tv = {T, F}
● Truth functions:

– 2 Nullary functions: T, F
– 1 Unary functions: Tv Tv→

– 16 Binary functions: Tv x Tv Tv →

Connecting syntax with semantics
● Boolean valuation, a function mapping propositions

to truth values: v: P Tv→

– v() = ⊤ T
– v() = ⊥ F
– v(¬X) = not v(X)
– v(X o Y) = v(X) • v(Y)

o syntactic connectives ¬ ∧ ∨ , ⊃ → ….

• semantic connectives not and or implies, ⇒ ….

syntax vs semantics

language objects
atoms and formulas

“a”

“world” objects, here
truth values

“b”
T

F

valuations

syntax vs semantics

language objects
atoms and formulas

“world” objects, here
truth values

“a ∧ b”

T

F

valuations

?

“a”

“b”

syntax vs semantics

language objects
atoms and formulas

“world” objects, here
truth values

T

F

valuations

?
and

T T T

T F F

F T F

F F F

“a ∧ b”

“a”

“b”

F and T

syntax vs semantics

language objects
atoms and formulas

“world” objects, here
truth values

T

F

valuations

F and T

“a ∧ b”

“a”

“b”

syntax vs semantics 2

language objects
symbols and formulas

“world” objects, here
counting items

interpretation

“3 + 5”

“3”
“5”

“8”

plus

syntax vs semantics 2

language objects
symbols and formulas

“world” objects, here
counting items

interpretation

“3 + 5”

“3”
“5”

“8”

plus
language operator

“world” operator

syntax vs semantics 3

% backward chaining rule interpreter

is_true(P) :
fact(P).

is_true(P) :
if Condition then P,
is_true(Condition).

is_true(P1 and P2) :
is_true(P1), is_true(P2).

is_true(P1 or P2) :
is_true(P1) ; is_true(P2).

% symbols of DSL and priority

: op(800, fx, if).
: op(700, xfx, then).
: op(300, xfy, or).
: op(200, xfy, and).

% knowledge base

If cloud then rain.
If rain then wet.
If sprinkler then wet.

fact(sprinkler).

language objects?
language operators?
“world” objects?
“world” operators?

Tautologies & co.

Tautology, satisfiability, consequence

● A propositional formula F is a tautology if v(F) = T
for any Boolean valuation v

Tautology, satisfiability, consequence

● A propositional formula F is a tautology if v(F) = T
for any Boolean valuation v

F(x, y, z, ...) T

x
y

z

T F
T F
T F
...

Functional view:
any configuration of inputs brings the same outcome T

inputs (associated to factors)

Tautology, satisfiability, consequence

● A propositional formula F is a tautology if v(F) = T
for any Boolean valuation v

● A set S of propositional formulas is satisfiable if
some valuation vi maps every member of S to T:
– vi(F) = T for all F of S.

Tautology, satisfiability, consequence

● A propositional formula F is a tautology if v(F) = T
for any Boolean valuation v

● A set S of propositional formulas is satisfiable if
some valuation vi maps every member of S to T:
– vi(F) = T for all F of S.

F1(x, y, z, ...) T

F2(x, y, z, ...)

F3(x, y, z, ...)

...

T

T

x
y

z

S

Functional view:
There is a configuration of
inputs making all outputs T.

Tautology, satisfiability, consequence

● A propositional formula F is a tautology if v(F) = T
for any Boolean valuation v

● A set S of propositional formulas is satisfiable if
some valuation vi maps every member of S to T:
– vi(F) = T for all F of S.

F1(x, y, z, …) ∧ F2(x, y, z, …) ∧ ... T

x
y

z

S = { F1,, F2 , ...}

Functional view:
There is a configuration of
inputs making T the output of the conjunction of the formula in S.

Tautology, satisfiability, consequence

● S C is called ⊨ semantic consequence: if a valuation
assigns the value T to all element of S, then it will
assign T to C

Tautology, satisfiability, consequence

● S C is called ⊨ semantic consequence: if a valuation
assigns the value T to all element of S, then it will
assign T to C

F1(x, y, z, ...) T

F2(x, y, z, ...)

F3(x, y, z, ...)

...

T

T

x
y

z

S

C(x, y, z, ...) T

Functional view:
All configurations making Tthe outputs of S make C true.

Tautology, satisfiability, consequence

● S C is called ⊨ semantic consequence: if a valuation
assigns the value T to all element of S, then it will
assign T to C

F1(x, y, z, ...) T

F2(x, y, z, ...)

F3(x, y, z, ...)

...

T

T

x
y

z

S

C(x, y, z, ...) T

Functional view:
All configurations making Tthe outputs of S make C true.

not the inverse !!

Tautology, satisfiability, consequence

● S C is called ⊨ semantic consequence: if a valuation
assigns the value T to all element of S, then it will
assign T to C

● ⊨ C denotes the fact that C is a tautology.

T C(x, y, z, ...) T⊤

Tautology, satisfiability, consequence

● S C⊨ if a valuation assigns the value T to any
element of S, then it will assign T to C

● ⊨ C C is a tautology.

Exercices (1):

– Show that X is a tautology only if (X ⊤) is a
tautology

– Show that ((X ∧ Y) ≡ (X ∨ Y)) is a tautology

Tautology, satisfiability, consequence

● S C⊨ if a valuation assigns the value T to any
element of S, then it will assign T to C

● ⊨ C C is a tautology.

Exercices (2):

– (ex falso quodlibet sequitur). if A, A S, then for
any X : S X. ⊨

– (monotonicity). if S X, then S ⊨ {Y} X ⊨

Tautology, satisfiability, consequence

● S C⊨ if a valuation assigns the value T to any
element of S, then it will assign T to C

● ⊨ C C is a tautology.

Exercices (3):

– Show that S C entails that ⊨ S {C} is not
satisfiable.

– Show the reciprocal.

Tautology, satisfiability, consequence

C is a semantic consequence of S, i.e. S C ⊨

if and only if

S {C} is not satisfiable

● Central result:

the conjunction of the formulas in S
and the C is an antilogy or
contradiction (false for all inputs)

Replacement theorem

● Given F(P), formula with any occurrences of symbol P

if (X Y) is a tautology, then ≡
(F(X) F(Y)) is a tautology as well.≡

Replacement theorem

● Given F(P), formula with any occurrences of symbol P

if (X Y) is a tautology, then ≡
(F(X) F(Y)) is a tautology as well.≡

Proof. If (X Y) is a tautology, then v(X) = v(Y) for any evaluation ≡
v, but then also v(F(X)) = v(F(Y)). As v(F(X)) = v(F(Y)) for any v,
(F(X) F(Y)) is a tautology. ≡

Replacement theorem

● Given F(P), formula with any occurrences of symbol P

if (X Y) is a tautology, then ≡
(F(X) F(Y)) is a tautology as well.≡

Exercices:
– (double negation) Show that (X ≡ X) is a

tautology
– (modus ponens) Show that Y is a tautology if X and

(X Y) are tautologies

Normal Forms (CNF and DNF)

Rewriting of formulas

● Any number may be computed as
– product of sums, e.g.

8 = (1 + 1) * (2 + 2)
– sums of products, e.g.

8 = (2 * 1) + (2 * 1) + (2 * 1) + (2 * 1)

Rewriting of formulas

● Any number may be computed as
– product of sums, e.g.

8 = (1 + 1) * (2 + 2)
– sums of products, e.g.

8 = (2 * 1) + (2 * 1) + (2 * 1) + (2 * 1)

● In the algebraic interpretation of boolean logic,
– conjunction ∧stands for product *
– disjunction ∨ stands for addition +

Rewriting of formulas

● Any formula may be rewritten as
– conjunction of disjunctions (CNF)
– disjunction of conjunctions (DNF)

● In the algebraic interpretation of boolean logic,
– conjunction ∧stands for product *
– disjunction ∨ stands for addition +

Rewriting of formulas

● Any formula may be rewritten as
– conjunction of disjunctions (CNF)
– disjunction of conjunctions (DNF)

a

b F F
T T T F

T F F T

F T T F

F F T F

DNF
F
 = (a ∧ b) ∨ (a ∧b) ∨ (a ∧ b)

CNF
F
 = DNF

F
= (a ∧ b) = a ∨ b

For instance from truth tables:

Conjunctive normal form

● The conjunctive normal form (CNF) rewrites any
propositional formula as a conjunction of clauses.

Conjunctive normal form

● The conjunctive normal form (CNF) rewrites any
propositional formula as a conjunction of clauses.

● A clause is a disjunction of propositional symbols
possibly with negation. It is noted as [a,b,c].

Conjunctive normal form

● The conjunctive normal form (CNF) rewrites any
propositional formula as a conjunction of clauses.

● A clause is a disjunction of propositional symbols
possibly with negation. It is noted as [a,b,c].

● A conjunction of clauses is noted <C1,C2,C3>.

Conjunctive normal form

● The conjunctive normal form (CNF) rewrites any
propositional formula as a conjunction of clauses.

● A clause is a disjunction of propositional symbols
possibly with negation. It is noted as [a,b,c].

● A conjunction of clauses is noted <C1,C2,C3>.

propositional formula CNF

(a ¬(b c)) ⊃ ⊃ < [¬a, b], [¬a, ¬c] >

Evaluation with CNF

● Evaluations are performed as follows :

– v([X1,X2,…,Xn]) = F
if and only if v(Xi) = F for all I

– v(<C1,C2,…,Cm>) = T
if and only if v(Ci) = T for all I

– empty clause: v([]) = F
– empty conjunction: v(< >) = T.

Transforming a formula to CNF

● The algorithm that converts a propositional formula
into CNF proceeds sequentially with these steps :
replace < ... [... β ...]... > by < ... [… β1, β2 ...] ... >
replace < ... [... a ...]... > by < ... [... a1 ...], [... a2 ...] ... >
replace < ... [... ¬¬a ...]... > by < ... [... a ...] ... >

a-formula a1 a2
(X Y) ∧ X Y
¬(X Y)∨ ¬X ¬Y
¬(X Y) ⊃ X ¬Y
...

β-formula β1 β2
(X Y)∨ X Y
¬(X Y)∧ ¬X ¬Y
(X Y)⊃ ¬X Y
...

Example
● Transform ((A (B C)) ((A B) (A C))) to CNF
● Show that it is a tautology.

Automatic proof methods

Resolution method
● A sequence is the conjunction of lines.
● A line is a disjunction of propositional formulas.

Resolution method
● A sequence is the conjunction of lines.
● A line is a disjunction of propositional formulas.
● For a propositional formula X composed on the line L, the

growth of the sequence consists of:
– If X is of type β, replace it with β1, β2.
– If X is of type a, create two new lines L1 and L2, recopy

the line L replacing a with a1 and a2 respectively.

Resolution method
● A sequence is the conjunction of lines.
● A line is a disjunction of propositional formulas.
● For a propositional formula X composed on the line L, the

growth of the sequence consists of:
– If X is of type β, replace it with β1, β2.
– If X is of type a, create two new lines L1 and L2, recopy

the line L replacing a with a1 and a2 respectively.
● A resolution consists of concatenating two lines where X and
X are separated, omitting all occurrences of these last two
formulas. The new line is called the resolving clause of the
other two.

Resolution method
● A sequence is the conjunction of lines.
● A line is a disjunction of propositional formulas.
● For a propositional formula X composed on the line L, the

growth of the sequence consists of:
– If X is of type β, replace it with β1, β2.
– If X is of type a, create two new lines L1 and L2, recopy

the line L replacing a with a1 and a2 respectively.
● A resolution consists of concatenating two lines where X and
X are separated, omitting all occurrences of these last two
formulas. The new line is called the resolving clause of the
other two.

● A proof by resolution of F is a sequence derived from <F>
and containing an empty clause [].

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d
g. [¬B, C] rewriting e

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d
g. [¬B, C] rewriting e
h. [¬C] development of c
i. [A] development of c

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d
g. [¬B, C] rewriting e
h. [¬C] development of c
i. [A] development of c
j. [B] resolving f and i

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d
g. [¬B, C] rewriting e
h. [¬C] development of c
i. [A] development of c
j. [B] resolving f and i
k. [C] resolving g and j

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Example

a. [¬(((A B) ∧ (B C))¬(¬C∧A))] negation of target
b. [((AB)∧(BC))] development of a
c. [(¬C∧A)] development of a
d. [(AB)] development of b
e. [(BC)] development of b
f. [¬A, B] rewriting d
g. [¬B, C] rewriting e
h. [¬C] development of c
i. [A] development of c
j. [B] resolving f and i
k. [C] resolving g and j
l. [] resolving h and k

Proof using the resolution method that:
((A B)∧(B C)) (C∧A)

Prolog and resolution

a.
b.
c : a, b.

? c.

< [a],
 [b],
 [c, ¬a, ¬b],

 [¬c] >

CNF

Complexity
(time or space)

● SAT problem
(check whether a boolean
expression is satisfiable)

– general case :
NP-complete

– with Horn clauses :
P

● A tree represents the disjunction of branches.
● A branch represents a conjunction of propositional formulas.

Tableaux method

● A tree represents the disjunction of branches.
● A branch represents a conjunction of propositional formulas.

● For a propositional formula X composed on the branch B, the
growth of the tree consists of:
– If X is of type a, add a1 then a2 at the end of B.
– If X is of type β, create a node and two new branches B1,

B2 at the end of B, add β1 and β2 respectively.

Tableaux method

Tableaux method

● A tree represents the disjunction of branches.
● A branch represents a conjunction of propositional formulas.

● For a propositional formula X composed on the branch B, the
growth of the tree consists of:
– If X is of type a, add a1 then a2 at the end of B.
– If X is of type β, create a node and two new branches B1,

B2 at the end of B, add β1 and β2 respectively.

● A branch is closed if X and X appear.
● A tree is closed if all its branches are closed.
● A proof tree for F is a closed tree grew from {F}.

Syntaxic consequence

● S X, if X can be proven from S.⊢
● ⊢ X, if X admits a proof.

● deduction theorem :

S {X} Y if and only if S (X ⊢ ⊢ Y)

Syntaxic consequence

● S X, if X can be proven from S.⊢
● ⊢ X, if X admits a proof. (X is said theorem)

● Proof the modus ponens : { P, (P Q) } Q⊢

{ (P Q) } (P ⊢ Q) trivial
{ (P Q) } { P } Q⊢ for deduction theorem

Syntaxic consequence

● S X, if X can be proven from S.⊢
● ⊢ X, if X admits a proof. (X is said theorem)

● ((P (Q R)) (Q (P R))) is a theorem :
{ (P (Q R), P, Q } R ⊢ applying twice modus ponens
{ (P (Q R), Q} (P ⊢ R) deduction theorem
{ (P (Q R)} (Q ⊢ (P R)) deduction theorem

 ⊢ ((P (Q R) (Q (P R))) deduction theorem

Soundness, completeness

Let F be any propositional formula and S a set of
propositional formulas (also called axioms),

● The logical system is Sound : if S F, then S F⊢ ⊨
(all that can be proven is true, but there may be
true propositions unproven)

● The logical system is Complete : if S F, then S F⊨ ⊢
(whatever is true can be proven, but there may
proof returning false propositions)

Consistency

Let F be any propositional formula and S a set of
propositional formulas (also called axioms),

● A logical system is Consistent : if S F, then S F⊢ ⊬

Gödel's incompleteness theorems

if S is a logical system which contain
elementary arithmetic, then S is incomplete

there are propositions that can be neither proved, neither disproved

Gödel's incompleteness theorems

if S is a logical system which contain
elementary arithmetic, then S is incomplete

there are propositions that can be neither proved, neither disproved

if S is a logical system which contain
elementary arithmetic, then S Consistent(S)⊬

a system cannot proof its own consistency

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

