

Logic and Knowledge Representation

Propositional Logic 4 May 2018

Giovanni Sileno gsileno@enst.fr

Télécom ParisTech, Paris-Dauphine University

This is a nice variation of Epimenides paradox, the story of a Cretan saying "All Cretans are liars".

Logic: a long history

Overview on (Western) logic

- Greek Logic
 - Stoics
 - Aristotle
 - logic in argumentation
 - syllogism

Overview on (Western) logic

- Greek Logic
 - Stoics
 - Aristotle
 - logic in argumentation
 - syllogism
- Medieval and traditional logic
 - Thomas Aquinas (1225-1274)
 - modal logic
 - William of Ockham (1288-1348)
 - laws of de Morgan
 - ternary logic
 - Logic of Port Royal
 - Antoine Arnauld & Pierre Nicole (1662)

some athlete is not a consultant (???)

some athlete is not a consultant!

some athlete is not a consultant.

some athlete is not a consultant.

some athlete is not a consultant.

some athlete is not a consultant.

Overview on (Western) logic

- Modern logic
 - Descartes, Leibniz
 - George Boole (1848)
 - Gottlob Frege, Bregriffschrift (1879)
 - Quantification
 - Charles Peirce
 - Reasoning and logic
 - Guiseppe Peano
 - Logical Axiomatization of Artihmetics
 - Bertand Russell & Alfred N. Whitehead, *Principia Mathematica* (1925)
 - Logical Axiomization of Mathematics

Propositional logic

A language consists of **symbols**, ...

- alphabet
 - propositional symbols
 p1, p2, ...

A language consists of **symbols**, ...

- alphabet
 - propositional symbols
 p1, p2, ...
 - connectives
 - nullary: T, \perp (top, bottom)
 - unary: ¬ (negation)
 - binary: ∧, ∨, ⊃, ⊂, ↑, ↓, ⊅, ⊄, ≡, ≠ (and, or, implies, only-if, nand (incompatible), nor, not-implies, not-only-if, equivalent, not-equivalent)

A language consists of a **syntax** (rules to aggregate symbols), ...

- set A of atomic formulas
 - A contains all propositional symbols
 - A contains the nullary connectives T, \perp

A language consists of a **syntax** (rules to aggregate symbols), ...

- set A of atomic formulas
 - A contains all propositional symbols
 - A contains the nullary connectives T, \perp
- set P of (*well-formed*) propositional formulas
 - P contains atomic formulas
 - if F is in P, then \neg F is in P
 - if F and G are in P, then (F o G) is in P, where o is a binary connective (Λ , V, ⊃, ⊂, ↑, ↓, ⊅, ¢, ≡, ≠).
 - P is the smallest set that has these properties (equivalently, there is nothing in P that does not satisfy these properties)

 Semantics should tell us how the meaning of the constituent parts of a discourse, and their mode of combination, determine the overall meaning.

- Semantics should tell us how the meaning of the constituent parts of a discourse, and their mode of combination, determine the overall meaning.
- But what do we mean by *meaning*?

- Semantics should tell us how the meaning of the constituent parts of a discourse, and their mode of combination, determine the overall meaning.
- But what do we mean by *meaning*?
 ex. "there is a dog"

correspondence semantics ...that a dog is out there

- Semantics should tell us how the meaning of the constituent parts of a discourse, and their mode of combination, determine the overall meaning.
- But what do we mean by *meaning*?
 ex. "there is a dog"

correspondence semantics ...that a dog is out there

truth-conditional semantics ..that that proposition is true "there is a dog" is true

- Semantics should tell us how the meaning of the constituent parts of a discourse, and their mode of combination, determine the overall meaning.
- But what do we mean by *meaning*?
 ex. "there is a dog"

correspondence semantics ...that a dog is out there

cognitive semantics ..that the locutor believes that..

truth-conditional semantics ..that that proposition is true "there is a dog" is true

- "a dog is a dog"
- "a dog is a mammal"

Each sentence is assigned to a truth value

Each sentence is assigned to a truth value

Under truth-conditional semantics, they have the same "meaning"!

Each sentence is assigned to a truth value

Under truth-conditional semantics, they have the same "meaning"!

truth-conditional semantics is prone to logic solipsism

• Truth space: Tv = {T, F}

- Truth space: Tv = {T, F}
- Truth functions:
 - 2 Nullary functions: T, F

- Truth space: Tv = {T, F}
- Truth functions:
 - 2 Nullary functions: T, F
 - 1 Unary functions: $Tv \rightarrow Tv$

not

Т	F
F	Т

- Truth space: Tv = {T, F}
- Truth functions:
 - 2 Nullary functions: T, F
 - 1 Unary functions: $Tv \rightarrow Tv$

	not
Т	F
F	Т

- 16 Binary functions: $Tv \times Tv \rightarrow Tv$

		or			and			imp
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т	F	F
F	Т	Т	F	Т	F	F	Т	Т
F	F	F	F	F	F	F	F	Т

Connecting syntax with semantics

- **Boolean valuation**, a function mapping propositions to truth values: v: $P \rightarrow Tv$
 - $-v(\top) = T$
 - $-v(\perp) = F$
 - $-v(\neg X) = not v(X)$
 - $v(X \circ Y) = v(X) \bullet v(Y)$
 - o syntactic connectives ¬ ∧ ∨ ⊃, → ….
 semantic connectives not and or implies, ⇒ ….

syntax vs semantics

syntax vs semantics

syntax vs semantics

% symbols of DSL and priority

```
:- op(800, fx, if).
:- op(700, xfx, then).
:- op(300, xfy, or).
:- op(200, xfy, and).
```

% knowledge base

If cloud then rain. If rain then wet. If sprinkler then wet.

fact(sprinkler).

language objects?
language operators?
"world" objects?
"world" operators?

% backward chaining rule interpreter

```
is_true(P) :-
    fact(P).
```

```
is_true(P) :-
    if Condition then P,
    is_true(Condition).
```

```
is_true(P1 and P2) :-
    is_true(P1), is_true( P2).
```

```
is_true(P1 or P2) :-
    is_true(P1) ; is_true( P2).
```


Tautologies & co.

 A propositional formula F is a tautology if v(F) = T for any Boolean valuation v

 A propositional formula F is a tautology if v(F) = T for any Boolean valuation v

inputs (associated to factors)

Functional view:

any configuration of inputs brings the same outcome T

- A propositional formula F is a tautology if v(F) = T for any Boolean valuation v
- A set S of propositional formulas is satisfiable if some valuation v maps every member of S to T:

- $v_i(F) = T$ for all F of S.

- A propositional formula F is a tautology if v(F) = T for any Boolean valuation v
- A set S of propositional formulas is satisfiable if some valuation v maps every member of S to T:

 $-v_i(F) = T$ for all F of S.

Functional view: *There is a configuration of inputs making all outputs* **T**.

- A propositional formula F is a tautology if v(F) = T for any Boolean valuation v
- A set S of propositional formulas is satisfiable if some valuation vi maps every member of S to T:

$$-v_i(F) = T$$
 for all F of S.

$$S = \{ F_{1,}, F_{2}, ... \}$$

Functional view:

There is a configuration of

inputs making T the output of the conjunction of the formula in S.

S ⊨ C is called semantic consequence: if a valuation assigns the value T to all element of S, then it will assign T to C

S ⊨ C is called semantic consequence: if a valuation assigns the value T to all element of S, then it will assign T to C

Functional view:

All configurations making T the outputs of S make C true.

S ⊨ C is called semantic consequence: if a valuation assigns the value T to all element of S, then it will assign T to C

Functional view:

not the inverse !!

All configurations making T the outputs of S make C true.

- S ⊨ C is called semantic consequence: if a valuation assigns the value T to all element of S, then it will assign T to C
- \models C denotes the fact that C is a *tautology*.

- $S \models C$ if a valuation assigns the value T to any element of S, then it will assign T to C
- \models C is a *tautology*.

Exercices (1):

- Show that X is a tautology only if (X $\equiv \top$) is a tautology
- Show that $(\neg(X \land Y) \equiv (\neg X \lor \neg Y))$ is a tautology

- $S \models C$ if a valuation assigns the value T to any element of S, then it will assign T to C
- \models C is a *tautology*.

Exercices (2):

- (*ex falso quodlibet sequitur*). if A, $\neg A \in S$, then for any X : S \models X.
- (monotonicity). if $S \models X$, then $S \cup \{Y\} \models X$

- $S \models C$ if a valuation assigns the value T to any element of S, then it will assign T to C
- \models C is a *tautology*.

Exercices (3):

- Show that $S \models C$ entails that $S \cup \{\neg C\}$ is not satisfiable.
- Show the reciprocal.

• Central result:

C is a semantic consequence of S, i.e. $S \models C$ if and only if $S \cup \{\neg C\}$ is not satisfiable the conjunction of the formulas in S and the $\neg C$ is an **antilogy** or *contradiction* (false for all inputs)

Replacement theorem

• Given F(P), formula with any occurrences of symbol P

if $(X \equiv Y)$ is a tautology, then (F(X) \equiv F(Y)) is a tautology as well.

Replacement theorem

• Given F(P), formula with any occurrences of symbol P

if $(X \equiv Y)$ is a tautology, then (F(X) \equiv F(Y)) is a tautology as well.

Proof. If $(X \equiv Y)$ is a tautology, then v(X) = v(Y) for any evaluation v, but then also v(F(X)) = v(F(Y)). As v(F(X)) = v(F(Y)) for any v, $(F(X) \equiv F(Y))$ is a tautology.

Replacement theorem

• Given F(P), formula with any occurrences of symbol P

if $(X \equiv Y)$ is a tautology, then $(F(X) \equiv F(Y))$ is a tautology as well.

Exercices:

- (double negation) Show that $(X \equiv \neg \neg X)$ is a tautology
- (modus ponens) Show that Y is a tautology if X and $(X \supset Y)$ are tautologies

Normal Forms (CNF and DNF)

- Any number may be computed as
 - product of sums, e.g.
 - 8 = (1 + 1) * (2 + 2)
 - sums of products, e.g.

8 = (2 * 1) + (2 * 1) + (2 * 1) + (2 * 1)

- Any number may be computed as
 - product of sums, e.g.
 - 8 = (1 + 1) * (2 + 2)
 - sums of products, e.g.

8 = (2 * 1) + (2 * 1) + (2 * 1) + (2 * 1)

- In the algebraic interpretation of boolean logic,
 - conjunction ^ stands for product *
 - disjunction v stands for addition +

- Any formula may be rewritten as
 - conjunction of *disjunctions* (CNF)
 - disjunction of conjunctions (DNF)

- In the algebraic interpretation of boolean logic,
 - conjunction **^** stands for product *
 - disjunction v stands for addition +

- Any formula may be rewritten as
 - conjunction of *disjunctions* (CNF)
 - disjunction of conjunctions (DNF)

				For instance from truth tables:			
а	b	F	⊐F				
Т	Т	Т	F	$DNE = (a b) \lor (a b) \lor (-a b)$			
Т	F	F	Т	$DNF_{F} = (a \land b) \lor (a \land \neg b) \lor (\neg a \land \neg b)$			
F	Т	Т	F	$CNE = \neg DNE = \neg (a \land \neg b) = \neg a \lor b$			
F	F	Т	F	$\sum_{F} = \sum_{F} - (a \land b) = a \lor b$			

• The conjunctive normal form (CNF) rewrites any propositional formula as a conjunction of **clauses**.

- The conjunctive normal form (CNF) rewrites any propositional formula as a conjunction of **clauses**.
- A clause is a disjunction of propositional symbols possibly with negation. It is noted as [a,b,c].

- The conjunctive normal form (CNF) rewrites any propositional formula as a conjunction of **clauses**.
- A clause is a disjunction of propositional symbols possibly with negation. It is noted as [a,b,c].
- A conjunction of clauses is noted <C1,C2,C3>.

- The conjunctive normal form (CNF) rewrites any propositional formula as a conjunction of **clauses**.
- A clause is a disjunction of propositional symbols possibly with negation. It is noted as [a,b,c].
- A conjunction of clauses is noted <C1,C2,C3>.

Evaluation with CNF

• Evaluations are performed as follows :

- empty clause: v([]) = F
- empty conjunction: v(< >) = T.

Transforming a formula to CNF

lpha-formula	α 1	α2	β -formula	β1	β2
(X ∧ Y)	Х	Y	(X V Y)	Х	Y
¬(X V Y)	¬Χ	¬Υ	¬(X ∧ Y)	¬Χ	¬Υ
$\neg(X \supset Y)$	Х	¬Υ	$(X \supset Y)$	¬Χ	Y

• The algorithm that converts a propositional formula into CNF proceeds sequentially with these steps :

replace < ... $[... \beta ...]... > by < ... [... \beta 1, \beta 2 ...]... >$ replace < ... $[... \alpha ...]... > by < ... [... \alpha 1 ...], [... \alpha 2 ...]... >$ replace < ... $[... \neg \neg \alpha ...]... > by < ... [... \alpha ...]... >$

Example

- Transform ((A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))) to CNF
- Show that it is a tautology.

Automatic proof methods

Resolution method

- A **sequence** is the *conjunction* of lines.
- A **line** is a *disjunction* of propositional formulas.

Resolution method

- A **sequence** is the *conjunction* of lines.
- A **line** is a *disjunction* of propositional formulas.
- For a propositional formula X composed on the line L, the growth of the sequence consists of:
 - If X is of type β , replace it with β 1, β 2.
 - If X is of type α , create two new lines L1 and L2, recopy the line L replacing α with α 1 and α 2 respectively.
Resolution method

- A **sequence** is the *conjunction* of lines.
- A **line** is a *disjunction* of propositional formulas.
- For a propositional formula X composed on the line L, the growth of the sequence consists of:
 - If X is of type β , replace it with β 1, β 2.
 - If X is of type α , create two new lines L1 and L2, recopy the line L replacing α with α 1 and α 2 respectively.
- A resolution consists of concatenating two lines where X and ¬X are separated, omitting all occurrences of these last two formulas. The new line is called the *resolving clause* of the other two.

Resolution method

- A **sequence** is the *conjunction* of lines.
- A **line** is a *disjunction* of propositional formulas.
- For a propositional formula X composed on the line L, the growth of the sequence consists of:
 - If X is of type β , replace it with β 1, β 2.
 - If X is of type α , create two new lines L1 and L2, recopy the line L replacing α with α 1 and α 2 respectively.
- A resolution consists of concatenating two lines where X and ¬X are separated, omitting all occurrences of these last two formulas. The new line is called the *resolving clause* of the other two.
- A proof by resolution of F is a sequence derived from <¬F> and containing an empty clause [].

Proof using the resolution method that: ((A \supset B) \land (B \supset C)) $\supset \neg$ (\neg C \land A)

a.
$$[\neg(((A ⊃B) \land (B ⊃ C)) ⊃ \neg (\neg C \land A))]$$

negation of target

a.
$$[\neg(((A \supset B) \land (B \supset C))) \supset \neg(\neg C \land A))]$$
negation of targetb. $[((A \supset B) \land (B \supset C))]$ development of ac. $[(\neg C \land A)]$ development of a

Prolog and resolution

?- c. [¬c] >

Complexity (time or space)

• SAT problem

(check whether a boolean expression is satisfiable)

- general case :
 NP-complete
- with Horn clauses :

Tableaux method

- A **tree** represents the *disjunction* of branches.
- A **branch** represents a *conjunction* of propositional formulas.

Tableaux method

- A **tree** represents the *disjunction* of branches.
- A **branch** represents a *conjunction* of propositional formulas.
- For a propositional formula X composed on the branch B, the growth of the tree consists of:
 - If X is of type α , add $\alpha 1$ then $\alpha 2$ at the end of B.
 - If X is of type β , create a node and two new branches B1, B2 at the end of B, add β 1 and β 2 respectively.

Tableaux method

- A **tree** represents the *disjunction* of branches.
- A branch represents a *conjunction* of propositional formulas.
- For a propositional formula X composed on the branch B, the growth of the tree consists of:
 - If X is of type α , add α 1 then α 2 at the end of B.
 - If X is of type β , create a node and two new branches B1, B2 at the end of B, add β 1 and β 2 respectively.
- A *branch* is **closed** if X and \neg X appear.
- A *tree* is **closed** if all its branches are closed.
- A proof tree for F is a **closed** tree grew from $\{\neg F\}$.

Syntaxic consequence

- $S \vdash X$, if X can be proven from S.
- \vdash X, if X admits a proof.
- deduction theorem :

 $S \cup \{X\} \vdash Y \text{ if and only if } S \vdash (X \supset Y)$

Syntaxic consequence

- $S \vdash X$, if X can be proven from S.
- ⊢ X, if X admits a proof. (X is said **theorem**)
- Proof the *modus ponens* : $\{ P, (P \supset Q) \} \vdash Q$

 $\{ (P \supset Q) \} \vdash (P \supset Q)$ trivial $\{ (P \supset Q) \} \cup \{ P \} \vdash Q$ for deduction theorem

Syntaxic consequence

- $S \vdash X$, if X can be proven from S.
- ⊢ X, if X admits a proof. (X is said **theorem**)
- (($P \supset (Q \supset R)$) \supset ($Q \supset (P \supset R)$)) is a theorem :

 $\{ (P \supset (Q \supset R), P, Q \} \vdash R \text{ applying twice modus ponens} \\ \{ (P \supset (Q \supset R), Q \} \vdash (P \supset R) \text{ deduction theorem} \\ \{ (P \supset (Q \supset R) \} \vdash (Q \supset (P \supset R)) \text{ deduction theorem} \\ \vdash ((P \supset (Q \supset R) \supset (Q \supset (P \supset R))) \text{ deduction theorem} \end{cases}$

Soundness, completeness

Let F be any propositional formula and S a set of propositional formulas (also called *axioms*),

- The logical system is Sound : if S ⊢ F, then S ⊨ F

 (all that can be proven is true, but there may be
 true propositions unproven)
- The logical system is Complete : if S ⊨ F, then S ⊢ F (whatever is true can be proven, but there may proof returning false propositions)

Consistency

Let F be any propositional formula and S a set of propositional formulas (also called *axioms*),

• A logical system is **Consistent** : if $S \vdash F$, then $S \nvDash F$

Gödel's incompleteness theorems

if S is a logical system which contain elementary arithmetic, then S is *incomplete*

there are propositions that can be neither proved, neither disproved

Gödel's incompleteness theorems

if S is a logical system which contain elementary arithmetic, then S is *incomplete*

there are propositions that can be neither proved, neither disproved

if S is a logical system which contain elementary arithmetic, then S ⊬ Consistent(S) a system cannot proof its own consistency

