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All instants are preceded by an instant 
 ⇔ An instant precedes all instants

● No man is immortal ???

Additional problems...
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Predicate logic: Quantifiers
● ∃x […]

The existential quantifier means: amongst all 
entities in the universe, there is at least one entity 
which satisfies what described in […]

● ∀x […]
The universal quantifier means: all entities in the 
universe satisfy what described in […]

Nota bene: the x is a specific individual within […], and 
it cannot be outside of [...]

Gottlob Frege
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Predicate logic

● A(x) is a predicate with argument x
from prae-dico (~ to say something about x publicly)

● It is a “open” statement: there is no anchoring to 
actual elements. ex. Red(car): “car is red” does not 
make complete sense: which car?



Predicate logic

● A(x) is a predicate with argument x
● when t has a defined value (i.e. it refers to a 

specific entity), A(t) is a proposition and may be 
true or false.

● Example: That car is red: Red(thatcar) 
(assuming thatcar  to be a shared constant)

thatcar
shared symbol correspondence

semantics



Predicate logic

● A(x) is a predicate with argument x
● when t has a defined value (i.e. it refers to a 

specific entity), A(t) is a proposition and may be 
true or false.

We can create a map with all the possible values of 
x, where A(x) is true, and where is false, i.e. where 
¬A(x) is true 



● Considering just one predicate A(x), we have:

A

Ac

set of all x such 
as A(x) is true

set of all x such 
as A(x) is not 

true

domain or universe of the predicate variable x

Predicate logic and Venn diagrams 
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Predicate logic: new features
● Individual variables: x, y, z, . . . may be considered 

to vary over one (or more) universes.
Attention: letters in the propositional calculus denoted fixed 
statements, like “it rains”, “Giovanni is teaching LKR”, etc.

● Predicate symbols: B(·), P(·, ·), etc. denote fixed 
relations “· is a bird”, “· is parent of ·”.

● Quantifiers: “For all x” ( x) and “there exists an x” ∀
( x) ∃ bind the individual variable x.

First-order logic (FOL): 
no quantifiers over predicates, e.g. P [..]∀
no predicate applies on predicates. e.g. P(Q, R)



A
set of all x such 

as A(x) is true

● When a statement contains more predicates, we can map the different 
sets and translate the logical operators in set operators. The resulting 
set is where our original statement is true.  

B
set of all x such 
as B(x) is true

Predicate logic and Venn diagrams 

domain or universe of the predicate variable x
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A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

implicit universe:
∀x WearsUniform(x)

explicit universe:
∀x [Student(x)  WearsUniform(x)]→

but the universe 
may be empty!



Predicate logic and syllogisms

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

Syllogisms assume that in A 
there is always some student:

…  ∧ ∃x Student(x) 

implicit universe:
∀x WearsUniform(x)

explicit universe:
∀x [Student(x)  WearsUniform(x)]→



(x) (y) (l1) (l2) ((s(x, l1) ∧ (s(y, l2) ∧ (z) (s(z, l1) ∧ s(z, l2))))  c(x, y))

Example

any two individuals communicate, if there is an interpreter



(x) (y) (l1) (l2) ((s(x, l1) ∧ (s(y, l2) ∧ (z) (s(z, l1) ∧ s(z, l2))))  c(x, y))

Example

any two individuals communicate, if there is an interpreter

negate

(x) (y) (l1) (l2) ((s(x, l1) ∧ (s(y, l2) ∧ (z) (s(z, l1) ∧ s(s, l2)))) ∧ c(x, y))

there are two individuals who do not communicate despite 
the presence of an interpreter
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● A term or a formula is ground if there are no variables.
● A variable is either free or bound in a formula. 

– x is bound by the smallest x ∀ F or x ∃ F in the formula 
where the F contains an occurrence of x; 

– unbound variables are free.
● A closed formula or statement is a formula with no free 

variables.

A language consists of a syntax 
(rules to aggregate symbols), ...



Another example: Peano arithmetics

● Alphabet 
– terms:

● constants: 1, 2, 3, 4, 5, 6, 7, 8, 9
● variables: x, y, z, ...     
● functors (arity): 0/0, +/2, */2

– predicates (arity): </2, /2, /2, ...≤ ≈
– quantifiers: ∀, ∃
– propositional logic connectives: ⊤, , ¬, , , , , ...⊥ ∧ ∨ ⊃ ≡

● Examples:
( x) ( y) (x  y  ( z) (x+z y))∀ ∀ ≤ ≡ ∃ ≈
( x) ( y) (x+y y)∃ ∀ ≈
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Another example: Peano arithmetics

● Alphabet 
– terms:

● constants: 1, 2, 3, 4, 5, 6, 7, 8, 9
● variables: x, y, z, ...     
● functors (arity): 0/0, +/2, */2

– predicates (arity): </2, /2, /2, ...≤ ≈
– quantifiers: ∀, ∃
– propositional logic connectives: ⊤, , ¬, , , , , ...⊥ ∧ ∨ ⊃ ≡

● Examples:
( x) ( y) (x  y  ( z) (x+z y))∀ ∀ ≤ ≡ ∃ ≈
( x) ( y) (x+y y)∃ ∀ ≈

Definition of  ≤  

Definition of 0

trade-off between complexity of 
signature and of quantification
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A language consists of a semantic
(rules to interpret it)

● A non-empty set D called domain.
● An interpretation I associates:

– each constant c of the language with an element cI of D, 
– each functor f of arity n to a function fI : Dn  D→
– each predicate P of arity n to a n-ary relation P I dans D.

● An assignment A instantiates each variable v by giving it a 
value vA taken from D.



A language consists of a semantic
(rules to interpret it)

● Terms are interpreted recursively from the interpretation of 
their elements: for each term t, tI,A is defined as:
– cI for a constant c,
– vA for a variable v,
– fI(t1I,A, t2I,A,... tnI,A) for a functional term f(t1, , ...tn).

● A model M(D, I) is defined by the domain D and the 
interpretation I.
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– Start by considering the domain as a database made with 

many tables (one for each P I), then..
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A language consists of a semantic
(rules to interpret it)

● How to evaluate truth? 
– Start by considering the domain as a database made with 

many tables (one for each P I), then..
P(t1, , ...tn)I,A = V if and only if (t1I,A, …, tnI,A)  ∈ P I

● TI,A = V ; ⊥I,A = F
● (¬XI,A) = ¬XI,A

● (X o Y)I,A = XI,A • YI,A for coupled operators o and •
● (( x) F)∀ I,A = V if and only if  FI,B = V for all assignation B equal 

to A save for x.
● (( x) F)∃ I,A = V if and only if  FI,B = V for (at least) one 

assignation B equal to A save for x.
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if FI,A = V for all assignments A.
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Semantics of formulas

● A formula F is true in M(D,I) 
if FI,A = V for all assignments A.

● A formula F is valid 
if F is true in any M(D,I).

● A set S of formulas is satisfiable in M(D,I) 
if there exists (at least) an assignement A such 
that FI,A = V for all F belonging to S. 

NOTA BENE: A formula F is valid 
if and only if {F} is not satisfiable.



Example

● Consider 
– the domain D = {“France”, “Vatican”, “Japan”, “to have 

diplomatic relations with”}  
– in the interpretation I which matches 

f to fI as “France”, ...
D to the only relation of D, 

● We can then evaluate the truth and validity of formula as D(x, y), 
D(france, vatican), and all their combinations



Herbrand model
● A model M(D,I) for a first-order language L is an Herbrand 

model, if and only if:
– D contains only closed terms of L 
– For each closed term t, tI = t 

Noting with F{v/d} the outcome of a substitution of v by d 
in F (note that F{v/d} is still a formula!)...

In an Herbrand model:
– For any formula F, ( v) F is true∀  if and only if

F{v/d} is true for any d  D ∈
– For any formula F, ( v) F is true∃  if and only if 

F{v/d} it true for at least a d  D ∈



Replacing quantifiers
● M(D,I) is an Herbrand Model for a first order language L:

● If γ is a formula of L, γ is true in M if and only if
γ(d) is true for any d  D ;∈

● If d is a formula of L, d is true in M if and only if
d(d) is true for (at least a) d  D∈

γ-rule γ(d) d-rule d(d)
( x) F∀ F{x/d} ( x) F∃ F{x/d}
¬( x) F∃ ¬F{x/d} ¬( x) F∀ ¬F{x/d}



Example of resolution
(( x) (P(x)  Q(x))  (( x) P(x)  ( x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬(( x) (P(x)  Q(x))  (( x) P(x)  ( x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
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● A formula is in prenex form if it is written as a 

sequence of quantifiers (prefix) followed by a 
quantifier-free part (matrix).

(Q1 x1) ... (Qn xn) M
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prefix matrix

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
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A  (( x) B(x))  ( x) (A  B(x))∧ ∃ ≡ ∃ ∧
(( x) A(x)) ∀ ⊃ B  ( x) (A(x) ≡ ∃  ⊃ B)    
A  (( x) B(x))  ( x) (A  B(x))⊃ ∀ ≡ ∀ ⊃
(( x) A(x)) ∃ ⊃ B  ( x) (A(x) ≡ ∀ ⊃ B)    
A  (( x) B(x))  ( x) (A  B(x))⊃ ∃ ≡ ∃ ⊃

helpers

non-deterministic process

a good practice: existential 
quantifiers in the leftmost 
possible positions. 



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃ ¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀

¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃
2. ( x) ¬(A(x)  ( y) A(y))∀ ⊃ ∀

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃
2. ( x) ¬(A(x)  ( y) A(y))∀ ⊃ ∀
3. ¬( x) (A(x)  ( y) A(y))∃ ⊃ ∀

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃
2. ( x) ¬(A(x)  ( y) A(y))∀ ⊃ ∀
3. ¬( x) (A(x)  ( y) A(y))∃ ⊃ ∀
4. ¬(( x) A(x)  ( y) A(y)) ∀ ⊃ ∀

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃
2. ( x) ¬(A(x)  ( y) A(y))∀ ⊃ ∀
3. ¬( x) (A(x)  ( y) A(y))∃ ⊃ ∀
4. ¬(( x) A(x)  ( y) A(y)) ∀ ⊃ ∀
5. ¬( y) (( x) A(x)  A(y))∀ ∃ ⊃

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃
2. ( x) ¬(A(x)  ( y) A(y))∀ ⊃ ∀
3. ¬( x) (A(x)  ( y) A(y))∃ ⊃ ∀
4. ¬(( x) A(x)  ( y) A(y)) ∀ ⊃ ∀
5. ¬( y) (( x) A(x)  A(y))∀ ∃ ⊃
6. ¬( y) ( x) (A(x)  A(y))∀ ∃ ⊃

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Example
( x) ( y) ¬(A(x)  A(y))∀ ∃ ⊃

1. ( x) ¬( y) (A(x)  A(y))∀ ∀ ⊃
2. ( x) ¬(A(x)  ( y) A(y))∀ ⊃ ∀
3. ¬( x) (A(x)  ( y) A(y))∃ ⊃ ∀
4. ¬(( x) A(x)  ( y) A(y)) ∀ ⊃ ∀
5. ¬( y) (( x) A(x)  A(y))∀ ∃ ⊃
6. ¬( y) ( x) (A(x)  A(y))∀ ∃ ⊃
7. ( y) ( x) ¬(A(x)  A(y))∃ ∀ ⊃

¬( x) A(x)  ( x) ¬A(x)∃ ≡ ∀
¬( x) A(x)  ( x) ¬A(x)∀ ≡ ∃



Skolemization

● Skolemization is a transformation in which a 
formula in prenex form, as 

(Q1x1) (Q2x2) ...( xk)∃ ...(Qnxn) F 

is transformed in 

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function) 
that does not belong to the language.
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● Skolemization is a transformation in which a 
formula in prenex form, as 

(Q1x1) (Q2x2) ...( xk)∃ ...(Qnxn) F 

is transformed in 

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function) 
that does not belong to the language.

(Also free variables should be put in f.)



Skolemization

● Skolemization is a transformation in which a 
formula in prenex form, as 

(Q1x1) (Q2x2) ...( xk)∃ ...(Qnxn) F 

is transformed in 

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function) 
that does not belong to the language.

(Also free variables should be put in f.)
● The two formulas are not equivalent, but they have 

the same satisfiability. 



Skolemization

● Skolemization is a transformation in which a 
formula in prenex form, as 

(Q1x1) (Q2x2) ...( xk)∃ ...(Qnxn) F 

is transformed in 

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function) 
that does not belong to the language.

 non-deterministic process

a good practice: start from external quantifiers



Herbrand model lemma

● Let S be a set of statements in Skolem form

S has a model 
if and only if 
S has a Herbrand model



Authomatic proving in practice

● rename variables if necessary, 
e.g. (( x) p(x)  ( x) r(x))   in   (( x) p(x)  ( y) r(y))∀ ⊃ ∀ ∀ ⊃ ∀

● transform ¬F in prenex form
● skolemize
● remove the quantifiers
● transform in CNF 
● use the resolution method
● apply unification

To prove the validity of a formula F:
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