

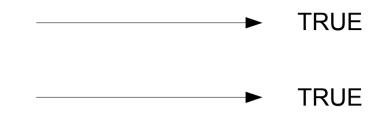
Logic and Knowledge Representation

Predicate Logic 18 May 2018

Giovanni Sileno gsileno@enst.fr

Télécom ParisTech, Paris-Dauphine University

All men are mortals. Socrates is a man. Therefore... ? All men are mortals. Socrates is a man. Therefore...?



All men are mortals. Socrates is a man. TRUE
TRUE
TRUE

We cannot do a lot just working at the level of propositions.

All men are mortals. Socrates is a man. TRUE
TRUE
TRUE

We cannot do a lot just working at the level of propositions.

 \rightarrow We need to have access to individuals, their properties and their relations.

All men are mortals. Socrates is a man. TRUE
TRUE
TRUE

We cannot do a lot just working at the level of propositions.

 \rightarrow We need to have access to individuals, their properties and their relations.

Additional problems...

• 4 is preceded by 2 ⇔ 2 precedes 4 → TRUE

Additional problems...

• 4 is preceded by 2 ⇔ 2 precedes 4 → TRUE

All instants are preceded by an instant ⇔ An instant precedes all instants → FALSE

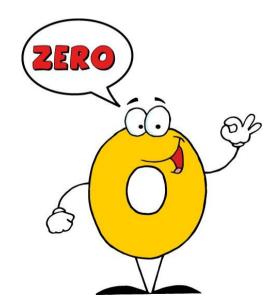
Additional problems...

• 4 is preceded by 2 ⇔ 2 precedes 4 → TRUE

All instants are preceded by an instant ⇔ An instant precedes all instants

→ FALSE

• No man is immortal ???



Predicate logic: Quantifiers

• ∃x [...]

Gottlob Frege

The **existential quantifier** means: amongst all entities in the universe, there is *at least one entity* which satisfies what described in [...]

Predicate logic: Quantifiers

• ∃x [...]

Gottlob Frege

The **existential quantifier** means: amongst all entities in the universe, there is *at least one entity* which satisfies what described in [...]

• \Vx [...]

The **universal quantifier** means: *all entities* in the universe satisfy what described in [...]

Predicate logic: Quantifiers

• ∃x [...]

Gottlob Frege

The **existential quantifier** means: amongst all entities in the universe, there is *at least one entity* which satisfies what described in [...]

• \Vx [...]

The **universal quantifier** means: *all entities* in the universe satisfy what described in [...]

Nota bene: the *x* is a specific individual within [...], and it cannot be outside of [...]

A(x) is a predicate with argument x

from *prae-dico* (~ to say something about x publicly)

- A(x) is a predicate with argument x
 from prae-dico (~ to say something about x publicly)
- It is a "open" statement: there is no anchoring to actual elements. ex. Red(car): "car is red" does not make complete sense: which car?

- *A(x)* is a **predicate** with **argument** *x*
- when t has a defined value (i.e. it refers to a specific entity), A(t) is a proposition and may be true or false.
- Example: That car is red: *Red(thatcar)*

(assuming *thatcar* to be a shared constant)



shared symbol

correspondence semantics

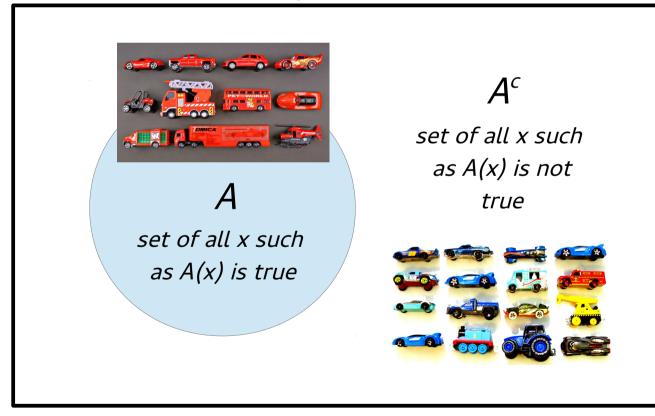
- *A(x)* is a **predicate** with **argument** *x*
- when t has a defined value (i.e. it refers to a specific entity), A(t) is a proposition and may be true or false.

We can create a map with all the possible values of x, where A(x) is true, and where is false, i.e. where $\neg A(x)$ is true

Predicate logic and Venn diagrams

• Considering just one predicate A(x), we have:

domain or **universe** of the predicate variable x



• Individual variables: x, y, z, . . . may be considered to vary over one (or more) universes.

Attention: letters in the propositional calculus denoted fixed statements, like "it rains", "Giovanni is teaching LKR", etc.

• Individual variables: x, y, z, . . . may be considered to vary over one (or more) universes.

Attention: letters in the propositional calculus denoted fixed statements, like "it rains", "Giovanni is teaching LKR", etc.

 Predicate symbols: B(·), P(·, ·), etc. denote fixed relations "· is a bird", "· is parent of ·".

• Individual variables: x, y, z, . . . may be considered to vary over one (or more) universes.

Attention: letters in the propositional calculus denoted fixed statements, like "it rains", "Giovanni is teaching LKR", etc.

- Predicate symbols: B(·), P(·, ·), etc. denote fixed relations "· is a bird", "· is parent of ·".
- Quantifiers: "For all x" (∀x) and "there exists an x" (∃x) *bind* the individual variable x.

• Individual variables: x, y, z, . . . may be considered to vary over one (or more) universes.

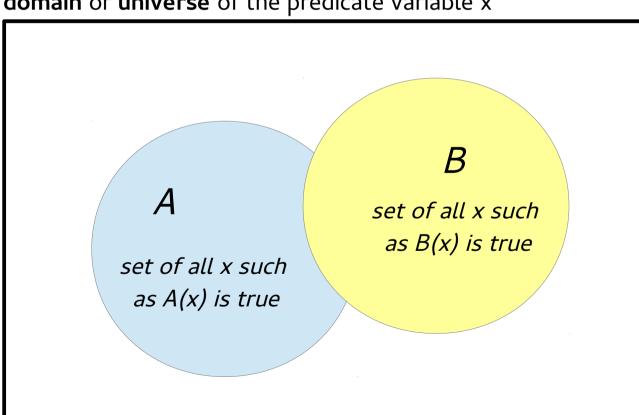
Attention: letters in the propositional calculus denoted fixed statements, like "it rains", "Giovanni is teaching LKR", etc.

- Predicate symbols: B(·), P(·, ·), etc. denote fixed relations "· is a bird", "· is parent of ·".
- Quantifiers: "For all x" (∀x) and "there exists an x" (∃x) *bind* the individual variable x.

First–order logic (FOL): no quantifiers over predicates, e.g. ∀P [..] no predicate applies on predicates. e.g. P(Q, R)

Predicate logic and Venn diagrams

 When a statement contains more predicates, we can map the different sets and translate the logical operators in set operators. The resulting set is where our original statement is true.



domain or **universe** of the predicate variable x

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

implicit universe: ∀x WearsUniform(x)

explicit universe: ∀x [Student(x) → WearsUniform(x)]

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

implicit universe:

∀x WearsUniform(x)

explicit universe:

 $\forall x [Student(x) \rightarrow WearsUniform(x)]$

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

implicit universe: ∀x WearsUniform(x)

Syllogisms assume that in **A** there is always some student: *...* Λ *A Student(x)*

explicit universe:

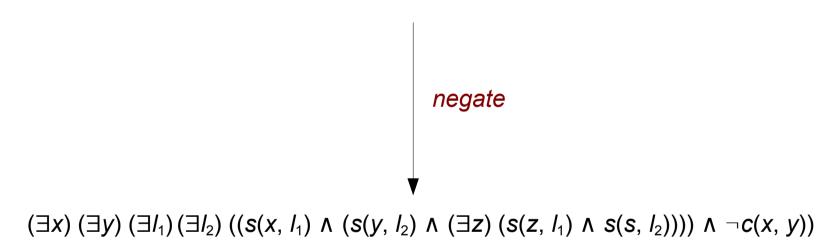
 $\forall x [Student(x) \rightarrow WearsUniform(x)]$

Example

any two individuals communicate, if there is an interpreter $(\forall x) (\forall y) (\forall l_1) (\forall l_2) ((s(x, l_1) \land (s(y, l_2) \land (\exists z) (s(z, l_1) \land s(z, l_2)))) \supset c(x, y))$

Example

any two individuals communicate, if there is an interpreter $(\forall x) (\forall y) (\forall l_1) (\forall l_2) ((s(x, l_1) \land (s(y, l_2) \land (\exists z) (s(z, l_1) \land s(z, l_2)))) \supset c(x, y))$



there are two individuals who do not communicate despite the presence of an interpreter

A language consists of **symbols**, ...

- Alphabet
 - terms:
 - *constants:* c1, c2, ...
 - *variables:* v1, v2, ...
 - *functors:* f(t1, .., tn), where t1, .. tn are terms

A language consists of **symbols**, ...

- Alphabet
 - terms:
 - *constants:* c1, c2, ...
 - *variables:* v1, v2, ...
 - *functors:* f(t1, .., tn), where t1, .. tn are terms
 - predicates: p(t1, .., tn), where t1, .. tn are terms
 - quantifiers: ∀, ∃
 - propositional logic connectives: T, ⊥, ¬, ∧, ∨, ⊃, ≡, ...

- set A of atomic formulas
 - predicates: p(t1, .., tn), where t1, .. tn are terms
 - nullary connectives \top , \perp

- set A of atomic formulas
 - predicates: p(t1, .., tn), where t1, .. tn are terms
 - nullary connectives \top , \perp
- A formula is
 - an atomic formula
 - if F is a formula, then \neg F is a formula
 - if F and G are formulas, then (F o G) is a formula, where o is a binary connective.
 - if F is a formula, $(\forall x)$ F and $(\exists x)$ F are formulas, where x is a variable.

- set A of atomic formulas
 - predicates: p(t1, .., tn), where t1, .. tn are terms
 - nullary connectives \top , \perp

A formula is **ground** if there are no variables.

- an atomic formula

A formula is

- if F is a formula, then \neg F is a formula
- if F and G are formulas, then (F o G) is a formula, where o is a binary connective.
- if F is a formula, $(\forall x)$ F and $(\exists x)$ F are formulas, where x is a variable.

• A term or a formula is **ground** if there are no variables.

- A term or a formula is **ground** if there are no variables.
- A variable is either **free** or **bound** in a formula.
 - x is **bound** by the smallest $\forall x F$ or $\exists x F$ in the formula where the F contains an occurrence of x;
 - unbound variables are **free**.

A language consists of a **syntax** (rules to aggregate symbols), ...

- A term or a formula is **ground** if there are no variables.
- A variable is either **free** or **bound** in a formula.
 - x is **bound** by the smallest $\forall x F$ or $\exists x F$ in the formula where the F contains an occurrence of x;
 - unbound variables are **free**.
- A closed formula or *statement* is a formula with no free variables.

Another example: Peano arithmetics

- Alphabet
 - terms:
 - *constants:* 1, 2, 3, 4, 5, 6, 7, 8, 9
 - *variables:* x, y, z, ...
 - functors (arity): 0/0, +/2, */2
 - predicates (arity): </2, ≤/2, ≈/2, …</p>
 - quantifiers: ∀, ∃
 - propositional logic connectives: T, \bot , \neg , \land , \lor , \supseteq , \equiv , ...
- Examples:

$$\begin{array}{l} (\forall x) \ (\forall y) \ (x \leq y \equiv (\exists z) \ (x + z \approx y)) \\ (\exists x) \ (\forall y) \ (x + y \approx y) \end{array}$$

Another example: Peano arithmetics

- Alphabet
 - terms:
 - *constants:* 1, 2, 3, 4, 5, 6, 7, 8, 9
 - *variables:* x, y, z, ...
 - functors (arity): 0/0, +/2, */2
 - predicates (arity): </2, ≤/2, ≈/2, …</p>
 - quantifiers: ∀, ∃
 - propositional logic connectives: T, \bot , \neg , \land , \lor , \supseteq , \equiv , ...
- Examples:

$$\begin{array}{ll} (\forall x) \ (\forall y) \ (x \leq y \equiv (\exists z) \ (x + z \approx y)) & {\color{red}} \end{array} \\ (\exists x) \ (\forall y) \ (x + y \approx y) & {\color{red}} \end{array} \\ \begin{array}{l} \text{Definition of } 0 \end{array}$$

Another example: Peano arithmetics

- Alphabet
 - terms:
 - constants: 1, 2, 3, 4, 5, 6, 7, 8, 9
 - *variables:* x, y, z, ...
 - functors (arity): 0/0, +/2, */2
 - predicates (arity): </2, \leq /2, \approx /2, ...
 - quantifiers: ∀, ∃
 - propositional logic connective $T, \perp, \neg, \Lambda, V, \supset, \equiv, \dots$

trade-off between complexity of signature and of quantification

Examples:

 $(\forall x) (\forall y) (x \le y \equiv (\exists z) (x+z \approx y))$ Definition of \leq $(\exists x) (\forall y) (x+y \approx y) \blacktriangleleft$ Definition of 0

• A non-empty set D called **domain**.

- A non-empty set D called **domain**.
- An **interpretation** I associates:
 - each constant c of the language with an element c^{1} of D,
 - each functor f of arity n to a function $f^{I}: D^{n} \rightarrow D$
 - each predicate P of arity n to a n-ary relation P^{\dagger} dans D.

- A non-empty set D called **domain**.
- An **interpretation** I associates:
 - each constant c of the language with an element c^{I} of D,
 - each functor f of arity n to a function $f^{I}: D^{n} \rightarrow D$
 - each predicate P of arity n to a n-ary relation P^{\dagger} dans D.
- An assignment A instantiates each variable v by giving it a value v^A taken from D.

- Terms are interpreted recursively from the interpretation of their elements: for each term t, t^{I,A} is defined as:
 - c¹ for a constant c,
 - v^A for a variable v,
 - f¹(t1^{1,A}, t2^{1,A},... tn^{1,A}) for a functional term f(t1, , ...tn).
- A model M(D, I) is defined by the domain D and the interpretation I.

- How to evaluate truth?
 - Start by considering the domain as a *database* made with many tables (one for each P¹), then..

- How to evaluate truth?
 - Start by considering the domain as a *database* made with many tables (one for each P¹), then..

 $P(t1, \dots tn)^{I,A} = V$ if and only if $(t1^{I,A}, \dots, tn^{I,A}) \in P^{I}$

- How to evaluate truth?
 - Start by considering the domain as a *database* made with many tables (one for each P^{I}), then.. $P(t1, ...tn)^{I,A} = V$ if and only if $(t1^{I,A}, ..., tn^{I,A}) \in P^{I}$

• $T^{I,A} = \mathbf{V}$; $\bot^{I,A} = \mathbf{F}$

- $(\neg X^{I,A}) = \neg X^{I,A}$
- (X o Y)^{I,A} = X^{I,A} Y^{I,A} for coupled operators o and •
- ((∀x) F)^{I,A} = V *if and only if* F^{I,B} = V for all assignation B equal to A save for x.
- $((\exists x) F)^{I,A} = V$ if and only if $F^{I,B} = V$ for (at least) one assignation B equal to A save for x.

Semantics of formulas

 A formula F is *true* in M(D,I) if F^{I,A} = V for all assignments A.

Semantics of formulas

- A formula F is *true* in M(D,I)
 if F^{I,A} = V for all assignments A.
- A formula F is *valid* if F is true in any M(D,I).

Semantics of formulas

- A formula F is *true* in M(D,I)
 if F^{I,A} = V for all assignments A.
- A formula F is *valid* if F is true in any M(D,I).
- A set S of formulas is *satisfiable* in M(D,I) if there exists (at least) an assignment A such that F^{I,A} = V for all F belonging to S.

NOTA BENE: A formula F is *valid* if and only if {¬F} is not satisfiable.

- Consider
 - the domain D = {"France", "Vatican", "Japan", "to have diplomatic relations with"}
 - in the interpretation I which matches
 f to f^l as "Erance"

f to f^I as "France", ...

D to the only relation of D,

• We can then evaluate the truth and validity of formula as *D*(x, y), *D*(france, vatican), and all their combinations

Herbrand model

- A model M(D,I) for a first-order language L is an Herbrand model, if and only if:
 - D contains only closed terms of L
 - For each closed term t, $t^{I} = t$

Noting with $F\{v/d\}$ the outcome of a substitution of v by d in F (note that $F\{v/d\}$ is still a formula!)...

In an Herbrand model:

- For any formula F, (∀v) F is true if and only if
 F{v/d} is true for any d ∈ D
- For any formula F, **(\exists v)** F is true if and only if F{v/d} it true for at least a d $\in D$

Replacing quantifiers

- M(D,I) is an Herbrand Model for a first order language L:
- If γ is a formula of L, γ is true in M if and only if
 γ(d) is true for any d ∈ D ;
- If δ is a formula of L, δ is true in M if and only if
 δ(d) is true for (at least a) d ∈ D

 γ -rule $\gamma(d)$ δ -rule $\delta(d)$ $(\forall x) F$ $F\{x/d\}$ $(\exists x) F$ $F\{x/d\}$ $\neg(\exists x) F$ $\neg\{x/d\}$ $\neg(\forall x) F$ $\neg\{x/d\}$

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

start from the negated formula (refutation): 1. $[\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 \quad [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
 - 2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
 - 3. $[\neg((\exists x) P(x) V (\forall x) Q(x))]$ development of 1. (α -rule)

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 \quad [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
 - 2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
- $\exists -3 = [\neg((\exists x) P(x) V (\forall x) Q(x))]$ development of 1. (α -rule)
 - 4. $[\neg(\exists x) P(x)]$ development of 3. (α -rule)
 - 5. $[\neg(\forall x) Q(x)]$ development of 3. (α -rule)

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
 - 2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
- $\exists -3 = [\neg((\exists x) P(x) V (\forall x) Q(x))]$ development of 1. (α -rule)
 - 4. $[\neg(\exists x) P(x)]$ development of 3. (α -rule)
- -5. [¬($\forall x$) Q(x)] development of 3. (α -rule)
 - 6. $[\neg Q(c)]$ a version of 5. (δ -rule)

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 \quad [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
 - 2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
- $\exists -3$ [\neg (($\exists x$) P(x) V ($\forall x$) Q(x))] development of 1. (α -rule)
- -4. [¬($\exists x$) P(x)] development of 3. (α -rule)
- -5. [¬(∀x) Q(x)] development of 3. (α-rule)
 - 6. $[\neg Q(c)]$ a version of 5. (δ -rule)
 - 7. $[\neg P(c)]$ a version of 4. (γ -rule, *taking the same c*)

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
- -2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
- $\exists -3$. [\neg (($\exists x$) P(x) V ($\forall x$) Q(x))] development of 1. (α -rule)
- -4. [¬($\exists x$) P(x)] development of 3. (α -rule)
- -5. [¬($\forall x$) Q(x)] development of 3. (α -rule)
 - 6. $[\neg Q(c)]$ a version of 5. (δ -rule)
 - 7. $[\neg P(c)]$ a version of 4. (γ -rule, *taking the same c*)
 - ^{8.} [(P(c) V Q(c))] a version of 2. (γ-rule, *taking the same c*)

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
- -2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
- $\exists -3$. [\neg (($\exists x$) P(x) V ($\forall x$) Q(x))] development of 1. (α -rule)
- -4. [\neg (\exists x) P(x)] development of 3. (α -rule)
- -5. [¬(∀x) Q(x)] development of 3. (α-rule)
 - 6. $[\neg Q(c)]$ a version of 5. (δ -rule)
 - 7. $[\neg P(c)]$ a version of 4. (γ -rule, *taking the same c*)
- -8. [(P(c) V Q(c))] a version of 2. (γ-rule, *taking the same c*)
 - 9. [P(c), Q(c)] modification of 9. (β-rule)

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

- $-1 [\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))]$
- -2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule)
- $\exists -3$. [\neg (($\exists x$) P(x) V ($\forall x$) Q(x))] development of 1. (α -rule)
- -4. [\neg (\exists x) P(x)] development of 3. (α -rule)
- -5. [¬(∀x) Q(x)] development of 3. (α-rule)
 - 6. [\neg Q(c)] a version of 5. (δ -rule)
- -8. [(P(c) V Q(c))] a version of 2. (γ-rule, *taking the same c*)
- <u>9. [P(c), Q(c)] modification of 9. (β-rule)</u>
 - 10. [Q(c)] resolving clause of 7. and 9.

 $((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))$

start from the negated formula (refutation): $-1 \quad \left[\neg((\forall x) (P(x) \lor Q(x)) \supset ((\exists x) P(x) \lor (\forall x) Q(x)))\right]$ -2. [($\forall x$) (P(x) V Q(x))] development of 1. (α -rule) $\exists \neg ((\exists x) P(x) V (\forall x) Q(x))]$ development of 1. (α -rule) -4. [\neg (\exists x) P(x)] development of 3. (α -rule) -5. $[\neg(\forall x) Q(x)]$ development of 3. (α -rule) -6. [\neg Q(c)] a version of 5. (δ -rule) \neg . [\neg P(c)] a version of 4. (γ -rule, *taking the same c*) -8. [(P(c) V Q(c))] a version of 2. (γ -rule, taking the same c) -9. [P(c), Q(c)] modification of 9. (β -rule) 10. [Q(c)] resolving clause of 7. and 9. ^{11.} [] resolving clause of 6. and 10.

Prenex form

• A formula is in **prenex** form if it is written as a sequence of quantifiers (prefix) followed by a quantifier-free part (matrix).

prefix matrix (Q1 x1) ... (Qn xn) M Qi $\in \{\forall, \exists\}$

Prenex form

• A formula is in **prenex** form if it is written as a sequence of quantifiers (prefix) followed by a quantifier-free part (matrix).

prefix matrix (Q1 x1) ... (Qn xn) M Qi $\in \{\forall, \exists\}$

helpers

$$\neg(\exists x) A(x) \equiv (\forall x) \neg A(x)$$

$$\neg(\forall x) A(x) \equiv (\exists x) \neg A(x)$$

$$((\forall x) A(x) \land B) \equiv (\forall x) (A(x) \land B)$$

$$(A \land (\forall x) B(x)) \equiv (\forall x) (A \land B(x))$$

$$((\exists x) A(x) \land B) \equiv (\exists x) (A(x) \land B)$$

$$(A \land (\exists x) B(x)) \equiv (\exists x) (A \land B(x))$$

$$((\forall x) A(x) \supset B) \equiv (\exists x) (A(x) \supseteq B)$$

$$(A \supseteq (\forall x) B(x)) \equiv (\forall x) (A \supseteq B(x))$$

$$((\exists x) A(x) \supseteq B) \equiv (\forall x) (A(x) \supseteq B)$$

$$(A \supseteq (\exists x) B(x)) \equiv (\exists x) (A \supseteq B(x))$$

Prenex form

• A formula is in **prenex** form if it is written as a sequence of quantifiers (prefix) followed by a quantifier-free part (matrix).

prefix matrix (Q1 x1) ... (Qn xn) M Qi $\in \{\forall, \exists\}$

non-deterministic process

a good practice: existential quantifiers in the *leftmost* possible positions.

helpers

$$\neg(\exists x) A(x) \equiv (\forall x) \neg A(x)$$

$$\neg(\forall x) A(x) \equiv (\exists x) \neg A(x)$$

$$((\forall x) A(x)) \land B \equiv (\forall x) (A(x) \land B)$$

$$A \land ((\forall x) B(x)) \equiv (\forall x) (A \land B(x))$$

$$((\exists x) A(x)) \land B \equiv (\exists x) (A(x) \land B)$$

$$A \land ((\exists x) B(x)) \equiv (\exists x) (A \land B(x))$$

$$((\forall x) A(x)) \supset B \equiv (\exists x) (A(x) \supseteq B)$$

$$A \supseteq ((\forall x) B(x)) \equiv (\forall x) (A \supseteq B(x))$$

$$((\exists x) A(x)) \supseteq B \equiv (\forall x) (A(x) \supseteq B)$$

$$A \supseteq ((\exists x) B(x)) \equiv (\exists x) (A \supseteq B(x))$$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

 $\neg(\exists x) A(x) \equiv (\forall x) \neg A(x)$ $\neg(\forall x) A(x) \equiv (\exists x) \neg A(x)$

1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

- 1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$
- 2. $(\forall x) \neg (A(x) \supset (\forall y) A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

- 1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$
- 2. $(\forall x) \neg (A(x) \supset (\forall y) A(y))$
- 3. $\neg(\exists x) (A(x) \supset (\forall y) A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

- 1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$
- 2. $(\forall x) \neg (A(x) \supset (\forall y) A(y))$
- 3. $\neg(\exists x) (A(x) \supset (\forall y) A(y))$
- 4. $\neg((\forall x) A(x) \supset (\forall y) A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

- 1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$
- 2. $(\forall x) \neg (A(x) \supset (\forall y) A(y))$
- 3. $\neg(\exists x) (A(x) \supset (\forall y) A(y))$
- 4. $\neg((\forall x) A(x) \supset (\forall y) A(y))$
- 5. $\neg(\forall y) ((\exists x) A(x) \supset A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

- 1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$ $(\forall x) \neg (\forall y) (A(x) \supset A(y))$
- 2. $(\forall x) \neg (A(x) \supset (\forall y) A(y))$
- 3. $\neg(\exists x) (A(x) \supset (\forall y) A(y))$
- 4. $\neg((\forall x) A(x) \supset (\forall y) A(y))$
- 5. $\neg(\forall y) ((\exists x) A(x) \supset A(y))$
- 6. $\neg(\forall y) (\exists x) (A(x) \supset A(y))$

 $(\forall x) (\exists y) \neg (A(x) \supset A(y))$

- 1. $(\forall x) \neg (\forall y) (A(x) \supset A(y))$ 2. $(\forall x) \neg (A(x) \supset (\forall y) A(y))$ 3. $\neg (\exists x) (A(x) \supset (\forall y) A(y))$ 4. $\neg ((\forall x) A(x) \supset (\forall y) A(y))$
- 5. $\neg(\forall y) ((\exists x) A(x) \supset A(y))$
- 6. $\neg(\forall y) (\exists x) (A(x) \supset A(y))$
- 7. $(\exists y) (\forall x) \neg (A(x) \supset A(y))$

• Skolemization is a transformation in which a formula in prenex form, as

(Q1x1) (Q2x2) ...(<u>Jxk</u>)...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called *Skolem function*) that does not belong to the language.

• Skolemization is a transformation in which a formula in prenex form, as

(Q1x1) (Q2x2) ...(<u>Jxk</u>)...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called *Skolem function*) that does not belong to the language.

(Also free variables should be put in f.)

• Skolemization is a transformation in which a formula in prenex form, as

(Q1x1) (Q2x2) ...(<u>Jxk</u>)...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called *Skolem function*) that does not belong to the language.

(Also free variables should be put in f.)

• The two formulas are not equivalent, but they have the same satisfiability.

• Skolemization is a transformation in which a formula in prenex form, as

(Q1x1) (Q2x2) ...(<u>Jxk</u>)...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called *Skolem function*) that does not belong to the language.

non-deterministic process

a good practice: start from external quantifiers

Herbrand model lemma

• Let S be a set of statements in Skolem form

S has a model if and only if S has a Herbrand model

Authomatic proving in practice

To prove the validity of a formula F:

- rename variables if necessary, e.g. $((\forall x) p(x) \supset (\forall x) r(x))$ in $((\forall x) p(x) \supset (\forall y) r(y))$
- transform ¬F in prenex form
- skolemize
- remove the quantifiers
- transform in CNF
- use the resolution method
- apply unification

