

Logic and Knowledge
Representation

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

Predicate Logic
18 May 2018

mailto:gsileno@enst.fr

Predicate logic

All men are mortals.
Socrates is a man.
Therefore... ?

All men are mortals.
Socrates is a man.
Therefore... ?

TRUE

TRUE

All men are mortals.
Socrates is a man.
Therefore... ?

TRUE

TRUE

We cannot do a lot just working at the
level of propositions.

All men are mortals.
Socrates is a man.
Therefore... ?

TRUE

TRUE

We cannot do a lot just working at the
level of propositions.

 → We need to have access to individuals,
their properties and their relations.

All men are mortals.
Socrates is a man.
Therefore... ?

TRUE

TRUE

We cannot do a lot just working at the
level of propositions.

 → We need to have access to individuals,
their properties and their relations.

● 4 is preceded by 2 ⇔ 2 precedes 4

Additional problems...

TRUE

● 4 is preceded by 2 ⇔ 2 precedes 4

All instants are preceded by an instant
 ⇔ An instant precedes all instants

Additional problems...

TRUE

FALSE

● 4 is preceded by 2 2 precedes 4⇔

All instants are preceded by an instant
 ⇔ An instant precedes all instants

● No man is immortal ???

Additional problems...

TRUE

FALSE

Predicate logic: Quantifiers
● ∃x […]

The existential quantifier means: amongst all
entities in the universe, there is at least one entity
which satisfies what described in […]

Gottlob Frege

Predicate logic: Quantifiers
● ∃x […]

The existential quantifier means: amongst all
entities in the universe, there is at least one entity
which satisfies what described in […]

● ∀x […]
The universal quantifier means: all entities in the
universe satisfy what described in […]

Gottlob Frege

Predicate logic: Quantifiers
● ∃x […]

The existential quantifier means: amongst all
entities in the universe, there is at least one entity
which satisfies what described in […]

● ∀x […]
The universal quantifier means: all entities in the
universe satisfy what described in […]

Nota bene: the x is a specific individual within […], and
it cannot be outside of [...]

Gottlob Frege

Predicate logic

● A(x) is a predicate with argument x
from prae-dico (~ to say something about x publicly)

Predicate logic

● A(x) is a predicate with argument x
from prae-dico (~ to say something about x publicly)

● It is a “open” statement: there is no anchoring to
actual elements. ex. Red(car): “car is red” does not
make complete sense: which car?

Predicate logic

● A(x) is a predicate with argument x
● when t has a defined value (i.e. it refers to a

specific entity), A(t) is a proposition and may be
true or false.

● Example: That car is red: Red(thatcar)
(assuming thatcar to be a shared constant)

thatcar
shared symbol correspondence

semantics

Predicate logic

● A(x) is a predicate with argument x
● when t has a defined value (i.e. it refers to a

specific entity), A(t) is a proposition and may be
true or false.

We can create a map with all the possible values of
x, where A(x) is true, and where is false, i.e. where
¬A(x) is true

● Considering just one predicate A(x), we have:

A

Ac

set of all x such
as A(x) is true

set of all x such
as A(x) is not

true

domain or universe of the predicate variable x

Predicate logic and Venn diagrams

Predicate logic: new features
● Individual variables: x, y, z, . . . may be considered

to vary over one (or more) universes.
Attention: letters in the propositional calculus denoted fixed
statements, like “it rains”, “Giovanni is teaching LKR”, etc.

Predicate logic: new features
● Individual variables: x, y, z, . . . may be considered

to vary over one (or more) universes.
Attention: letters in the propositional calculus denoted fixed
statements, like “it rains”, “Giovanni is teaching LKR”, etc.

● Predicate symbols: B(·), P(·, ·), etc. denote fixed
relations “· is a bird”, “· is parent of ·”.

Predicate logic: new features
● Individual variables: x, y, z, . . . may be considered

to vary over one (or more) universes.
Attention: letters in the propositional calculus denoted fixed
statements, like “it rains”, “Giovanni is teaching LKR”, etc.

● Predicate symbols: B(·), P(·, ·), etc. denote fixed
relations “· is a bird”, “· is parent of ·”.

● Quantifiers: “For all x” (x) and “there exists an x” ∀
(x) ∃ bind the individual variable x.

Predicate logic: new features
● Individual variables: x, y, z, . . . may be considered

to vary over one (or more) universes.
Attention: letters in the propositional calculus denoted fixed
statements, like “it rains”, “Giovanni is teaching LKR”, etc.

● Predicate symbols: B(·), P(·, ·), etc. denote fixed
relations “· is a bird”, “· is parent of ·”.

● Quantifiers: “For all x” (x) and “there exists an x” ∀
(x) ∃ bind the individual variable x.

First-order logic (FOL):
no quantifiers over predicates, e.g. P [..]∀
no predicate applies on predicates. e.g. P(Q, R)

A
set of all x such

as A(x) is true

● When a statement contains more predicates, we can map the different
sets and translate the logical operators in set operators. The resulting
set is where our original statement is true.

B
set of all x such
as B(x) is true

Predicate logic and Venn diagrams

domain or universe of the predicate variable x

Predicate logic and syllogisms

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

Predicate logic and syllogisms

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

implicit universe:
∀x WearsUniform(x)

explicit universe:
∀x [Student(x) WearsUniform(x)]→

Predicate logic and syllogisms

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

implicit universe:
∀x WearsUniform(x)

explicit universe:
∀x [Student(x) WearsUniform(x)]→

but the universe
may be empty!

Predicate logic and syllogisms

A: All students wear uniforms.
E: No student wears uniforms.
I: Some students wear uniforms.
O: Not all students wear uniforms.

Syllogisms assume that in A
there is always some student:

… ∧ ∃x Student(x)

implicit universe:
∀x WearsUniform(x)

explicit universe:
∀x [Student(x) WearsUniform(x)]→

(x) (y) (l1) (l2) ((s(x, l1) ∧ (s(y, l2) ∧ (z) (s(z, l1) ∧ s(z, l2))))  c(x, y))

Example

any two individuals communicate, if there is an interpreter

(x) (y) (l1) (l2) ((s(x, l1) ∧ (s(y, l2) ∧ (z) (s(z, l1) ∧ s(z, l2))))  c(x, y))

Example

any two individuals communicate, if there is an interpreter

negate

(x) (y) (l1) (l2) ((s(x, l1) ∧ (s(y, l2) ∧ (z) (s(z, l1) ∧ s(s, l2)))) ∧ c(x, y))

there are two individuals who do not communicate despite
the presence of an interpreter

● Alphabet
– terms:

● constants: c1, c2, ...
● variables: v1, v2, ...
● functors: f(t1, .., tn), where t1, .. tn are terms

A language consists of symbols, ...

● Alphabet
– terms:

● constants: c1, c2, ...
● variables: v1, v2, ...
● functors: f(t1, .., tn), where t1, .. tn are terms

– predicates: p(t1, .., tn), where t1, .. tn are terms
– quantifiers: ∀, ∃
– propositional logic connectives: ⊤, , ¬, , , , , ...⊥ ∧ ∨ ⊃ ≡

A language consists of symbols, ...

● set A of atomic formulas
– predicates: p(t1, .., tn), where t1, .. tn are terms
– nullary connectives , ⊤ ⊥

A language consists of a syntax
(rules to aggregate symbols), ...

● set A of atomic formulas
– predicates: p(t1, .., tn), where t1, .. tn are terms
– nullary connectives , ⊤ ⊥

● A formula is
– an atomic formula
– if F is a formula, then ¬F is a formula
– if F and G are formulas, then (F o G) is a formula, where

o is a binary connective.
– if F is a formula, (x) F and (x) F are formulas, where x ∀ ∃

is a variable.

A language consists of a syntax
(rules to aggregate symbols), ...

● set A of atomic formulas
– predicates: p(t1, .., tn), where t1, .. tn are terms
– nullary connectives , ⊤ ⊥

● A formula is
– an atomic formula
– if F is a formula, then ¬F is a formula
– if F and G are formulas, then (F o G) is a formula, where

o is a binary connective.
– if F is a formula, (x) F and (x) F are formulas, where x ∀ ∃

is a variable.

A language consists of a syntax
(rules to aggregate symbols), ...

A formula is ground if there are
no variables.

● A term or a formula is ground if there are no variables.

A language consists of a syntax
(rules to aggregate symbols), ...

● A term or a formula is ground if there are no variables.
● A variable is either free or bound in a formula.

– x is bound by the smallest x ∀ F or x ∃ F in the formula
where the F contains an occurrence of x;

– unbound variables are free.

A language consists of a syntax
(rules to aggregate symbols), ...

● A term or a formula is ground if there are no variables.
● A variable is either free or bound in a formula.

– x is bound by the smallest x ∀ F or x ∃ F in the formula
where the F contains an occurrence of x;

– unbound variables are free.
● A closed formula or statement is a formula with no free

variables.

A language consists of a syntax
(rules to aggregate symbols), ...

Another example: Peano arithmetics

● Alphabet
– terms:

● constants: 1, 2, 3, 4, 5, 6, 7, 8, 9
● variables: x, y, z, ...
● functors (arity): 0/0, +/2, */2

– predicates (arity): </2, /2, /2, ...≤ ≈
– quantifiers: ∀, ∃
– propositional logic connectives: ⊤, , ¬, , , , , ...⊥ ∧ ∨ ⊃ ≡

● Examples:
(x) (y) (x y (z) (x+z y))∀ ∀ ≤ ≡ ∃ ≈
(x) (y) (x+y y)∃ ∀ ≈

Another example: Peano arithmetics

● Alphabet
– terms:

● constants: 1, 2, 3, 4, 5, 6, 7, 8, 9
● variables: x, y, z, ...
● functors (arity): 0/0, +/2, */2

– predicates (arity): </2, /2, /2, ...≤ ≈
– quantifiers: ∀, ∃
– propositional logic connectives: ⊤, , ¬, , , , , ...⊥ ∧ ∨ ⊃ ≡

● Examples:
(x) (y) (x y (z) (x+z y))∀ ∀ ≤ ≡ ∃ ≈
(x) (y) (x+y y)∃ ∀ ≈

Definition of ≤

Definition of 0

Another example: Peano arithmetics

● Alphabet
– terms:

● constants: 1, 2, 3, 4, 5, 6, 7, 8, 9
● variables: x, y, z, ...
● functors (arity): 0/0, +/2, */2

– predicates (arity): </2, /2, /2, ...≤ ≈
– quantifiers: ∀, ∃
– propositional logic connectives: ⊤, , ¬, , , , , ...⊥ ∧ ∨ ⊃ ≡

● Examples:
(x) (y) (x y (z) (x+z y))∀ ∀ ≤ ≡ ∃ ≈
(x) (y) (x+y y)∃ ∀ ≈

Definition of ≤

Definition of 0

trade-off between complexity of
signature and of quantification

A language consists of a semantic
(rules to interpret it)

● A non-empty set D called domain.

A language consists of a semantic
(rules to interpret it)

● A non-empty set D called domain.
● An interpretation I associates:

– each constant c of the language with an element cI of D,
– each functor f of arity n to a function fI : Dn D→
– each predicate P of arity n to a n-ary relation P I dans D.

A language consists of a semantic
(rules to interpret it)

● A non-empty set D called domain.
● An interpretation I associates:

– each constant c of the language with an element cI of D,
– each functor f of arity n to a function fI : Dn D→
– each predicate P of arity n to a n-ary relation P I dans D.

● An assignment A instantiates each variable v by giving it a
value vA taken from D.

A language consists of a semantic
(rules to interpret it)

● Terms are interpreted recursively from the interpretation of
their elements: for each term t, tI,A is defined as:
– cI for a constant c,
– vA for a variable v,
– fI(t1I,A, t2I,A,... tnI,A) for a functional term f(t1, , ...tn).

● A model M(D, I) is defined by the domain D and the
interpretation I.

A language consists of a semantic
(rules to interpret it)

● How to evaluate truth?
– Start by considering the domain as a database made with

many tables (one for each P I), then..

A language consists of a semantic
(rules to interpret it)

● How to evaluate truth?
– Start by considering the domain as a database made with

many tables (one for each P I), then..
P(t1, , ...tn)I,A = V if and only if (t1I,A, …, tnI,A) ∈ P I

A language consists of a semantic
(rules to interpret it)

● How to evaluate truth?
– Start by considering the domain as a database made with

many tables (one for each P I), then..
P(t1, , ...tn)I,A = V if and only if (t1I,A, …, tnI,A) ∈ P I

● TI,A = V ; ⊥I,A = F
● (¬XI,A) = ¬XI,A

● (X o Y)I,A = XI,A • YI,A for coupled operators o and •
● ((x) F)∀ I,A = V if and only if FI,B = V for all assignation B equal

to A save for x.
● ((x) F)∃ I,A = V if and only if FI,B = V for (at least) one

assignation B equal to A save for x.

Semantics of formulas

● A formula F is true in M(D,I)
if FI,A = V for all assignments A.

Semantics of formulas

● A formula F is true in M(D,I)
if FI,A = V for all assignments A.

● A formula F is valid
if F is true in any M(D,I).

Semantics of formulas

● A formula F is true in M(D,I)
if FI,A = V for all assignments A.

● A formula F is valid
if F is true in any M(D,I).

● A set S of formulas is satisfiable in M(D,I)
if there exists (at least) an assignement A such
that FI,A = V for all F belonging to S.

NOTA BENE: A formula F is valid
if and only if {F} is not satisfiable.

Example

● Consider
– the domain D = {“France”, “Vatican”, “Japan”, “to have

diplomatic relations with”}
– in the interpretation I which matches

f to fI as “France”, ...
D to the only relation of D,

● We can then evaluate the truth and validity of formula as D(x, y),
D(france, vatican), and all their combinations

Herbrand model
● A model M(D,I) for a first-order language L is an Herbrand

model, if and only if:
– D contains only closed terms of L
– For each closed term t, tI = t

Noting with F{v/d} the outcome of a substitution of v by d
in F (note that F{v/d} is still a formula!)...

In an Herbrand model:
– For any formula F, (v) F is true∀ if and only if

F{v/d} is true for any d D ∈
– For any formula F, (v) F is true∃ if and only if

F{v/d} it true for at least a d D ∈

Replacing quantifiers
● M(D,I) is an Herbrand Model for a first order language L:

● If γ is a formula of L, γ is true in M if and only if
γ(d) is true for any d D ;∈

● If d is a formula of L, d is true in M if and only if
d(d) is true for (at least a) d D∈

γ-rule γ(d) d-rule d(d)
(x) F∀ F{x/d} (x) F∃ F{x/d}
¬(x) F∃ ¬F{x/d} ¬(x) F∀ ¬F{x/d}

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α
6. [¬Q(c)] a version of 5. (-rule)δ

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α
6. [¬Q(c)] a version of 5. (-rule)δ
7. [¬P(c)] a version of 4. (-rule, γ taking the same c)

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α
6. [¬Q(c)] a version of 5. (-rule)δ
7. [¬P(c)] a version of 4. (-rule, γ taking the same c)
8. [(P(c) Q(c))] a version of 2. (-rule, ∨ γ taking the same c)

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α
6. [¬Q(c)] a version of 5. (-rule)δ
7. [¬P(c)] a version of 4. (-rule, γ taking the same c)
8. [(P(c) Q(c))] a version of 2. (-rule, ∨ γ taking the same c)
9. [P(c), Q(c)] modification of 9. (-rule)β

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α
6. [¬Q(c)] a version of 5. (-rule)δ
7. [¬P(c)] a version of 4. (-rule, γ taking the same c)
8. [(P(c) Q(c))] a version of 2. (-rule, ∨ γ taking the same c)
9. [P(c), Q(c)] modification of 9. (-rule)β
10. [Q(c)] resolving clause of 7. and 9.

Example of resolution
((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))∀ ∨ ⊃ ∃ ∨ ∀

start from the negated formula (refutation):
1. [¬((x) (P(x) Q(x)) ((x) P(x) (x) Q(x)))] ∀ ∨ ⊃ ∃ ∨ ∀
2. [(x) (P(x) Q(x))] development of 1. (-rule)∀ ∨ α
3. [¬((x) P(x) (x) Q(x))] development of 1. (-rule)∃ ∨ ∀ α
4. [¬(x) P(x)] development of 3. (-rule)∃ α
5. [¬(x) Q(x)] development of 3. (-rule)∀ α
6. [¬Q(c)] a version of 5. (-rule)δ
7. [¬P(c)] a version of 4. (-rule, γ taking the same c)
8. [(P(c) Q(c))] a version of 2. (-rule, ∨ γ taking the same c)
9. [P(c), Q(c)] modification of 9. (-rule)β
10. [Q(c)] resolving clause of 7. and 9.
11. [] resolving clause of 6. and 10.

Prenex form
● A formula is in prenex form if it is written as a

sequence of quantifiers (prefix) followed by a
quantifier-free part (matrix).

(Q1 x1) ... (Qn xn) M
Qi ∈ { , ∀ ∃}

prefix matrix

Prenex form
● A formula is in prenex form if it is written as a

sequence of quantifiers (prefix) followed by a
quantifier-free part (matrix).

(Q1 x1) ... (Qn xn) M
Qi ∈ { , ∀ ∃}

prefix matrix

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃
((x) A(x) ∀ ∧ B) (x) (A(x) ≡ ∀ ∧ B)
(A (x) B(x)) (x) (∧ ∀ ≡ ∀ A B(x)) ∧
((x) A(x) ∃ ∧ B) (x) (A(x) B) ≡ ∃ ∧
(A (x) B(x)) (x) (A B(x))∧ ∃ ≡ ∃ ∧
((x) A(x) ∀ ⊃ B) (x) (A(x) ≡ ∃ ⊃ B)
(A (x) B(x)) (x) (A B(x))⊃ ∀ ≡ ∀ ⊃
((x) A(x) ∃ ⊃ B) (x) (A(x) ≡ ∀ ⊃ B)
(A (x) B(x)) (x) (A B(x))⊃ ∃ ≡ ∃ ⊃

helpers

Prenex form
● A formula is in prenex form if it is written as a

sequence of quantifiers (prefix) followed by a
quantifier-free part (matrix).

(Q1 x1) ... (Qn xn) M
Qi ∈ { , ∀ ∃}

prefix matrix

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃
((x) A(x)) ∀ ∧ B (x) (A(x) ≡ ∀ ∧ B)
A ((x) B(x)) (x) (∧ ∀ ≡ ∀ A B(x)) ∧
((x) A(x)) ∃ ∧ B (x) (A(x) B) ≡ ∃ ∧
A ((x) B(x)) (x) (A B(x))∧ ∃ ≡ ∃ ∧
((x) A(x)) ∀ ⊃ B (x) (A(x) ≡ ∃ ⊃ B)
A ((x) B(x)) (x) (A B(x))⊃ ∀ ≡ ∀ ⊃
((x) A(x)) ∃ ⊃ B (x) (A(x) ≡ ∀ ⊃ B)
A ((x) B(x)) (x) (A B(x))⊃ ∃ ≡ ∃ ⊃

helpers

non-deterministic process

a good practice: existential
quantifiers in the leftmost
possible positions.

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃ ¬(x) A(x) (x) ¬A(x)∃ ≡ ∀

¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃
2. (x) ¬(A(x) (y) A(y))∀ ⊃ ∀

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃
2. (x) ¬(A(x) (y) A(y))∀ ⊃ ∀
3. ¬(x) (A(x) (y) A(y))∃ ⊃ ∀

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃
2. (x) ¬(A(x) (y) A(y))∀ ⊃ ∀
3. ¬(x) (A(x) (y) A(y))∃ ⊃ ∀
4. ¬((x) A(x) (y) A(y)) ∀ ⊃ ∀

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃
2. (x) ¬(A(x) (y) A(y))∀ ⊃ ∀
3. ¬(x) (A(x) (y) A(y))∃ ⊃ ∀
4. ¬((x) A(x) (y) A(y)) ∀ ⊃ ∀
5. ¬(y) ((x) A(x) A(y))∀ ∃ ⊃

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃
2. (x) ¬(A(x) (y) A(y))∀ ⊃ ∀
3. ¬(x) (A(x) (y) A(y))∃ ⊃ ∀
4. ¬((x) A(x) (y) A(y)) ∀ ⊃ ∀
5. ¬(y) ((x) A(x) A(y))∀ ∃ ⊃
6. ¬(y) (x) (A(x) A(y))∀ ∃ ⊃

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Example
(x) (y) ¬(A(x) A(y))∀ ∃ ⊃

1. (x) ¬(y) (A(x) A(y))∀ ∀ ⊃
2. (x) ¬(A(x) (y) A(y))∀ ⊃ ∀
3. ¬(x) (A(x) (y) A(y))∃ ⊃ ∀
4. ¬((x) A(x) (y) A(y)) ∀ ⊃ ∀
5. ¬(y) ((x) A(x) A(y))∀ ∃ ⊃
6. ¬(y) (x) (A(x) A(y))∀ ∃ ⊃
7. (y) (x) ¬(A(x) A(y))∃ ∀ ⊃

¬(x) A(x) (x) ¬A(x)∃ ≡ ∀
¬(x) A(x) (x) ¬A(x)∀ ≡ ∃

Skolemization

● Skolemization is a transformation in which a
formula in prenex form, as

(Q1x1) (Q2x2) ...(xk)∃ ...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function)
that does not belong to the language.

Skolemization

● Skolemization is a transformation in which a
formula in prenex form, as

(Q1x1) (Q2x2) ...(xk)∃ ...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function)
that does not belong to the language.

(Also free variables should be put in f.)

Skolemization

● Skolemization is a transformation in which a
formula in prenex form, as

(Q1x1) (Q2x2) ...(xk)∃ ...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function)
that does not belong to the language.

(Also free variables should be put in f.)
● The two formulas are not equivalent, but they have

the same satisfiability.

Skolemization

● Skolemization is a transformation in which a
formula in prenex form, as

(Q1x1) (Q2x2) ...(xk)∃ ...(Qnxn) F

is transformed in

(Q1x1) (Q2x2) ...(Qnxn) F{xk/f(x1, x2 ...xk-1)}

where f is a new functor (called Skolem function)
that does not belong to the language.

 non-deterministic process

a good practice: start from external quantifiers

Herbrand model lemma

● Let S be a set of statements in Skolem form

S has a model
if and only if
S has a Herbrand model

Authomatic proving in practice

● rename variables if necessary,
e.g. ((x) p(x) (x) r(x)) in ((x) p(x) (y) r(y))∀ ⊃ ∀ ∀ ⊃ ∀

● transform ¬F in prenex form
● skolemize
● remove the quantifiers
● transform in CNF
● use the resolution method
● apply unification

To prove the validity of a formula F:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

