

Logic and Knowledge
Representation

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

Knowledge representation, Ontologies, Semantic Web
25 May 2018

mailto:gsileno@enst.fr

What is Knowledge?
● Knowledge is what we ascribe to an agent to predict

his behaviour using principles of rationality.

Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18(1), 87–127.

What is Knowledge?
● Knowledge is what we ascribe to an agent to predict

his behaviour using principles of rationality.

– example of rationality principle: If a course of
action lead to my goal, I will take that course of
action.

Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18(1), 87–127.

What is Knowledge?
● Knowledge is what we ascribe to an agent to predict

his behaviour using principles of rationality.

– example of rationality principle: If a course of
action lead to my goal, I will take that course of
action.

Note: knowledge representation only reproduces
that which we ascribe; it is not intended to be
accurate, physical model

Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18(1), 87–127.

Data, Information, Knowledge
● Data: uninterpreted signals or symbols

Data, Information, Knowledge
● Data: uninterpreted signals or symbols
● Information: data with added meaning

Data, Information, Knowledge
● Data: uninterpreted signals or symbols
● Information: data with added meaning
● Knowledge: all data and information that people use

to act, accomplish tasks and to create new information
(know-how, -why, -who, -where and -when).

Data, Information, Knowledge

Data: ... - - - ...
Information: it is a message saying S O S
Knowledge: emergency signal, start rescue operation.

Data: 01 45431200
Information: it is a telephone number of a person
Knowledge: to make an appointment I need to call it

Types of knowledge
● Explicit, conscious and external, in focus
● Implicit, may be externalized, not in focus
● Tacit, often not conscious, internal (Polanyi)

Picture from Brohm, R. (2007). Bringing Polanyi on the Theatre Stage

More types of knowledge
● Procedural knowledge: procedures, plans
● Declarative knowledge: concepts, objects, facts

More types of knowledge
● Procedural knowledge: procedures, plans
● Declarative knowledge: concepts, objects, facts
● Heuristic knowledge: experience, defaults
● Knowledge about uncertainty: probability

estimations, defaults, knowing what you know

More types of knowledge
● Procedural knowledge: procedures, plans
● Declarative knowledge: concepts, objects, facts
● Heuristic knowledge: experience, defaults
● Knowledge about uncertainty: probability

estimations, defaults, knowing what you know
● Common-sense knowledge: general concepts and

theories, general taxonomies and mereonomies

More types of knowledge
● Procedural knowledge: procedures, plans
● Declarative knowledge: concepts, objects, facts
● Heuristic knowledge: experience, defaults
● Knowledge about uncertainty: probability

estimations, defaults, knowing what you know
● Common-sense knowledge: general concepts and

theories, general taxonomies and mereonomies
● Meta-knowledge: knowledge about knowledge types

and their use

What is Knowledge Representation?

R. Davis, H. Shrobe, and P. Szolovits. What is a Knowledge Representation? AI
Magazine, 14(1):17-33, 1993.

a simplified representation

reifying our attention to the world

and a model of associated reasoning processes

that is accessible to programs

and to people

What is Knowledge Representation?
● surrogate

● expression of ontological commitment

● theory of intelligent reasoning

● medium of efficient computation

● medium of human expression

R. Davis, H. Shrobe, and P. Szolovits. What is a Knowledge Representation? AI
Magazine, 14(1):17-33, 1993.

a simplified representation

reifying our attention to the world

and a model of associated reasoning processes

that is accessible to programs

and to people

Knowledge systems

if flower and seed then phanerogam
if phanerogam and bare­seed then fir
if phanerogam and 1­cotyledon then monocotyledonous
if phanerogam and 2­cotyledon then dicotyledonous
if monocotyledon and rhizome then thrush
if dicotyledon then anemone
if monocotyledon and ¬rhizome then lilac
if leaf and flower then cryptogamous
if cryptogamous and ¬root then foam
if cryptogamous and root then fern
if ¬leaf and plant then thallophyte
if thallophyte and chlorophyll then algae
if thallophyte and ¬ chlorophyll then fungus
if ¬leaf and ¬flower and ¬plant then colibacille

Example of expert system

rhizome + flower + seed + 1­cotyledon ?

From expert systems to KBS
● Expert systems

Separate knowledge (rules) from the reasoning engine

From expert systems to KBS
● Expert systems

Separate knowledge (rules) from the reasoning engine

● Knowledge-based systems
Separate knowledge (concepts) from rules and
reasoning

– example: Frames
● stereotyped structures of knowledge

From expert systems to KBS
● Expert systems

Separate knowledge (rules) from the reasoning engine

● Knowledge-based systems
Separate knowledge (concepts) from rules and
reasoning

– example: Frames
● stereotyped structures of knowledge

– example: Semantic networks
● representation by graph-based formalism
● model entities and their relations

Frames
● Frames are "stereotyped" knowledge units representing

situations, objects or events or (classes) sets of such entities.

Frames
● Frames are "stereotyped" knowledge units representing

situations, objects or events or (classes) sets of such entities.

● A frame is a collection of attributes (slots), specified by
facets that correspond to the values they acquire or
procedures that launch.

Frames
● Frames are "stereotyped" knowledge units representing

situations, objects or events or (classes) sets of such entities.

● A frame is a collection of attributes (slots), specified by
facets that correspond to the values they acquire or
procedures that launch.

Frames
● Frames are "stereotyped" knowledge units representing

situations, objects or events or (classes) sets of such entities.

● A frame is a collection of attributes (slots), specified by
facets that correspond to the values they acquire or
procedures that launch.

Frames
● Frames are "stereotyped" knowledge units representing

situations, objects or events or (classes) sets of such entities.

● A frame is a collection of attributes (slots), specified by
facets that correspond to the values they acquire or
procedures that launch.

Towards semantic networks

● Rather then focusing on the “object” aspect, we could focus
on the predication aspect, just as we do with language.

~ objects constituted by what we can say about them

“Willy threw a ball to Morgan.”

“Willy threw a ball to Morgan.”

nodes: entities
arcs: relationships

“Willy threw a ball to Morgan.”

nodes: entities
arcs: relationships

labels on nodes: entity names
labels on arcs: relation names

“Willy threw a ball to Morgan.”

fact(throwing, actor, willy). % or: throwing(actor, willy).
fact(throwing, receiver, morgan). % or: throwing(receiver, morgan).
fact(throwing, object, ball). % or: throwing(object, ball).

who_action_what(Who, Act, What) :­
fact(Act, actor, Who),
fact(Act, object, What). ?­ fact(throwing, X, willy).

?­ who_action_what(willy,
throwing, ball).

“Willy threw a ball to Morgan.”

fact(throwing, actor, willy). % or: throwing(actor, willy).
fact(throwing, receiver, morgan). % or: throwing(receiver, morgan).
fact(throwing, object, ball). % or: throwing(object, ball).

who_action_what(Who, Act, What) :­
fact(Act, actor, Who),
fact(Act, object, What). ?­ fact(throwing, X, willy).

?­ who_action_what(willy,
throwing, ball).

We need more knowledge to infer something more interesting!

Semantic Networks

Knowledge systems, inspired
by human cognition, aim to be
reusable and efficient...

Semantic Networks

...but what the machine
reads is not what we read!

Semantic Networks

Annotation principle: differences in intended processing should
be reflected in differences in the symbol structures

First encounter between semantic
networks and logic: KL-ONE

Primitive concepts (*)
do not have sufficient
conditions, may have
necessary

Derived concepts
specified by sufficient
and necessary
conditions.

Brachman, R. J., & Schmolze, J. (1985). An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9, 171–216.

First encounter between semantic
networks and logic: KL-ONE

Brachman, R. J., & Schmolze, J. (1985). An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9, 171–216.

A MESSAGE is a THING with at least one Sender, all of which are
PERSONs, at least one Recipient, all of which are PERSONs,
exactly one Body, which is a TEXT, exactly one SendDate,
which is a DATE, and exactly one ReceivedDate, which is a DATE.

v/r: value restriction
n/r: number restriction

(min, max), NIL = ∞

First encounter between semantic
networks and logic: KL-ONE

Brachman, R. J., & Schmolze, J. (1985). An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9, 171–216.

A STARFLEET­MESSAGE is a MESSAGE, all of whose Senders are
STARFLEET­COMMANDERS.

role restriction through v/r

First encounter between semantic
networks and logic: KL-ONE

● KL-ONE is an automatic classifier
– takes a new Concept and automatically determines all

subsumption relations (is-a) between it and all other Concepts in
the network

– adds new links when new subsumption relations are discovered
– automates the placement of new Concepts in the taxonomy
– It is sound (all found subsumption relations are legitimate) but not

complete (it does not find all subsumption relations)

● basis for OWL (giving semantics to the Semantic Web)

Differences

Prolog

special purpose
reasoning engine
– closed world assumption
– negation as failure (NAF)
– only sufficient conditions
– no true existential

quantification
– programmer prevents

infinite loops

KL-ONE and OWL

general purpose
knowledge manipulation
– open world assumption
– no or strong negation
– at least necessary,

optionally sufficient
conditions

– infinite loops should
not be possible

Qualifications of KR

Canonicity
● A KR formalism is canonic if one piece of knowledge can

only be represented in one way

alive(Elvis).
is(Elvis, alive).
alive(elvis).
alive(Elvis, true).
vivant(Elvis).

● Canonicity is improved by
– restricting the formalism (e.g. only unary predicates)
– providing guidelines (e.g. proper name in upper case)
– using standard vocabularies (e.g. {alive, dead})

Expressiveness
● A KR formalism is more expressive than another one if

we can say things in the first formalism that we
cannot say in the second.

First Order Logic > Propositional Logic
∀x: man(x) ⊃ mortal(x) ?

Decidability
● A KR formalism is decidable, if there is an algorithm

that can answer any query on a knowledge base in
that formalism.

● Typically, the more expressive a formalism, the more
likely it is undecidable.

Decidability
● A KR formalism is decidable, if there is an algorithm

that can answer any query on a knowledge base in
that formalism.

● A formalism can be made decidable by restricting it.
– propositional logic is decidable
– FOL is decidable if all formulas are in this form:

∃x, y,…. z, q,… ∀ : p(x,y) … => …
existential universal arbitrary formula
quantifiers quantifiers without quantifiers

Closed and Open World
Assumptions

● A KR formalism follows the closed world assumption
(CWA), if any statement that cannot be proven is
assumed to be false.

Example, UFOs do not exist!

If it is not the case
that ufos exist,

then it is the case
that ufos do not exist.

Closed and Open World
Assumptions

● A KR formalism follows the closed world assumption
(CWA), if any statement that cannot be proven is
assumed to be false.

● Sometimes the open world assumption (OWA) is
more appropriate. A statement can then be:
– provable false
– provable true
– unknown

Unique Name Assumption (UNA)
● A KR formalism follows the unique name assumption

(UNA), if different names always refer to different
objects.

Unique Name Assumption (UNA)
● A KR formalism follows the unique name assumption

(UNA), if different names always refer to different
objects.

Schemas
● A KR formalism is schema-bound, if one has to decide

upfront which entities can have which properties.

Schemas
● A KR formalism is schema-bound, if one has to decide

upfront which entities can have which properties.

● In schema-bound formalisms, one has to decide a
priori for classes of things and their properties: a
schema-bound formalism puts more modeling
constraints, but can exclude non-sensible statements.

● Prolog is schema-free, any entity can have any
property.

Schemas
● Databases are a particular schema-bound KR

formalism.
● A database can be seen as a set of tables.

Name Profession Birth

Elvis Singer 1935

Obama President 1961

… … …

Name Resolution Brand

Sony T300 4 MP Sony

Ixus700 12 MP Canon

… … …

each row corresponds to a thing

each table corresponds to one class of things

each column corresponds to a property

Inheritance
● A KR formalism supports inheritance, if properties

specified for one class of things can be automatically
transferred to a more specific class.

● A class is a set of entities with the same properties.

52

Person
Name Profession Birth

Singer
Name Profession Birth Instrument

more general class,
few properties

more specific class,
more properties,
some restrictions:= singer

inherited
properties

additional
properties

restriction

inheritance / subclass relationship

Monotonicity and non-monotonicity
● A KR formalism is monotonic, if adding new knowledge

does not undo deduced facts.

Monotonicity and non-monotonicity
● A KR formalism is monotonic, if adding new knowledge

does not undo deduced facts.
● First order logic and propositional logic are monotonic.

● Monotonicity can be counter-intuitive. It requires to
know everything up-front.

elvis_is_person
elvis_is_alive
elvis_is_dead => ~ elvis_is_alive

+

=> elvis_is_alive

elvis_is_person
elvis_is_alive
elvis_is_dead => ~ elvis_is_alive
elvis_is_dead

=> michael_jackson_alive
=> elvis_is_dead



 => elvis_is_alive

subset

● A KR formalism is monotonic, if adding new knowledge
does not undo deduced facts.

● Default logic is not monotonic.

elvis_is_person: elvis_is_alive
 elvis_is_alive

=> elvis_is_alive

elvis_is_dead
~elvis_is_alive

if Elvis is a person
(and nothing says he’s not alive)
then he is alive

if Elvis is dead
then he is not alive

elvis_is_person

elvis_is_dead+

prerequisite
conclusion

justification

Monotonicity and non-monotonicity

● A KR formalism is distributed, if it encourages use and
co-operation
– by different people
– by different systems
– across different places
– across different organizations.

Distributedness

Semantic Web

What's in a web page?
● Textual content, markup and embedded media

● The typical markup consists of:
– hyper-links to related content,
– rendering information (pagination, font size

and colour, …)

● The semantic content is
accessible to humans but
not directly to computers...

The Web was designed as an
information space, with the goal that it
should be useful not only for human-human
communication, but also that machines would
be able to participate and help.

One of the major obstacles to this has been the fact that most
information on the Web is designed for human
consumption, and even if it was derived from a database with well
defined meanings (in at least some terms) for its columns, that the
structure of the data is not evident to a robot browsing the Web. Leaving
aside the artificial intelligence problem of training machines to behave like

people, the Semantic Web approach instead develops
languages for expressing information in a machine
processable form.

Tim Berners-Lee, The Semantic Web Roadmap.

http://www.w3.org/DesignIssues/Semantic.html

● External agreement on meaning of annotations
– Problems with this approach

● Inflexible
● Limited number of things can be expressed

How to add meaning for machines?

● External agreement on meaning of annotations
– Problems with this approach

● Inflexible
● Limited number of things can be expressed

● Use formal vocabularies or ontologies to specify
meaning of annotations
– ontologies provide a vocabulary of terms that are machine

understandable
– new terms can be formed by combining existing ones as a

kind of “conceptual Lego”
– meaning (semantics) of such terms is formally specified

How to add meaning for machines?

Four principles towards a
Semantic Web of Data

● P1: give all things a name

Four principles towards a
Semantic Web of Data

● P2: relationships form a graph between things (a
knowledge graph)

Four principles towards a
Semantic Web of Data

● P3: names are addresses on the Web

● P1 + P2 + P3: a huge global graph

Linking open data cloud diagram:
http://lod-cloud.net/

http://lod-cloud.net/

Four principles towards a
Semantic Web of Data

● P4: give explicit, formal semantics
– assign types to things
– assign types to relations
– organize types in hierarchies
– specify constraints

Semantic Web
● The Semantic Web is an evolving extension of the

World Wide Web, promoting a distributed knowledge
representation.

● It provides standards to
– identify entities (URIs)
– express facts (RDF)
– express concepts (RDFS)
– share vocabularies
– reason on facts (OWL)

● These standards are produced and endorsed by the
Word Wide Web Consortium (W3C)

https://www.w3.org/

The Semantic Web Tower

URI and namespaces
● URI = uniform resources identifier

– uniform resource names (URNs): URIs used to
name something, even if this is an abstract object
that is not available on the Web.

● for instance, a person might have a URI that is
used in ontologies to refer to that person.

– uniform resource locators (URLs): URIs used to
specify the location of something. they start with a
protocol identifier, with a well-established
technical interpretation (e.g. "http").

URI and namespaces
● Namespaces

– Derived from domain registration (e.g. epita.fr)
– Everything up to # may be namespace

● Examples:
urn:myappname:students#student1234
http://myserver.com/myapp/students/student1234

URI and namespaces
● Namespaces

– Derived from domain registration (e.g. epita.fr)
– Everything up to # may be namespace

● Examples:
urn:myappname:students#student1234
http://myserver.com/myapp/students/student1234

● URI are dereferenciable if the resource identified by
the URI is retrievable from that URI

RDF (resource description
framework)

● RDF is a data model:
– application and domain independent
– based on simple triple format
– (labeled and directed) graph

RDF (resource description
framework)

● RDF is a data model:
– application and domain independent
– based on simple triple format
– (labeled and directed) graph

● RDF “statements” consist of
– resources (= nodes)

● which have properties
– which have values (= nodes, strings, ...)

RDF (resource description
framework)

● RDF is a data model:
– application and domain independent
– based on simple triple format
– (labeled and directed) graph

● RDF “statements” consist of
– resources (= nodes)

● which have properties
– which have values (= nodes, strings)

predicate(subject, object)

subject
predicate

object

RDF (resource description
framework)

RDF and XML
● Being so general, syntactic details are relatively

insignificant; however XML is an example of
commonly used syntactic structure.

– NOTE: XML is just a way to write and transport
RDF, but is not a component of RDF !
RDF data can also be stored very differently, for
example in a relational database.

RDF, a note on resources
● A graph node (corresponding to a resource) can be

– the value of a property
– arbitrarily complex tree and graph structures

● Syntactically, values can be
– embedded (i.e. lexically in-line)
– or referenced (linked)

RDF Schema
● Base-level specification of semantics

RDF Schema
● Base-level specification of semantics

● Language constructs include:
– class,
– property,
– subclass,
– subproperty

● Classes and properties are themselves also resources:
this enables annotations about annotations

● Vocabulary can be used to define other vocabularies
for your application domain

RDF(S) Terminology and Semantics
● Classes and class hierarchy

– All classes are instances of rdfs:Class
– A class hierarchy is defined by rdfs:subClassOf

● Instances (individuals) of a class
– defined by rdf:type

RDF(S) Terminology and Semantics
● Properties

– properties are global: a property name in one place
is the same as the property name in another
(assuming the same namespace)

– properties form a hierarchy, rdfs:subPropertyOf

● Domain and Range of a property
– domain: the class (or classes) that have the

property
– range: the class (or classes) to which property

values belong

RDF(S) Terminology and Semantics

RDF(S) Terminology and Semantics

Example:

(ex:MotorVehicle, rdf:type, rdfs:Class)
(ex:PassengerVehicle, rdf:type, rdfs:Class)
(ex:Van, rdf:type, rdfs:Class)
(ex:Truck, rdf:type, rdfs:Class)
(ex:MiniVan, rdf:type, rdfs:Class)
(ex:PassengerVehicle, rdfs:subClassOf, ex:MotorVehicle)
(ex:Van, rdfs:subClassOf, ex:MotorVehicle)
(ex:Truck, rdfs:subClassOf, ex:MotorVehicle)
(ex:MiniVan, rdfs:subClassOf, ex:Van)
(ex:MiniVan, rdfs:subClassOf, ex:PassengerVehicle)

Querying RDF: SPARQL
● Simple Protocol And RDF Query Language

– W3C standardisation effort similar to the Xquery
query language for XML data

– suitable for remote use (remote access protocol)

PREFIX abc: <http://mynamespace.com/exampleOntology#>
SELECT ?capital ?country
WHERE { ?x abc:cityname ?capital.
 ?y abc:countryname ?country.
 ?x abc:isCapitalOf ?y.
 ?y abc:isInContinent abc:africa. }

OWL (Web Ontology Language)
● OWL adds expressivity to RDF Schema to enable

more powerful semantics:
– cardinality restrictions,
– local range constraints,
– equality of resources,
– inverse, symmetric and transitive properties,
– boolean class combinations,
– disjointness and completeness, …

OWL (Web Ontology Language)
● OWL adds expressivity to RDF Schema to enable

more powerful semantics:
– cardinality restrictions,
– local range constraints,
– equality of resources,
– inverse, symmetric and transitive properties,
– boolean class combinations,
– disjointness and completeness, …

● OWL Lite: subset of features that is easy to
implement and use

● OWL DL: subset of features supporting description-
logic reasoning (e.g. useful for ontology construction)

Instances, Taxonomies, Mereonomies
hierarchies compositionsobjects

Individuals (IS-INSTANCE-OF)
● The concept of class intuitively refers to some entity

that belongs to that class.

● This entity or
object is said to
an instance of
that class.

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

describe properties of
the system

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

actually allocate
(memory) space for

the object

Individuals (IS-INSTANCE-OF)
class Person {
 String name

 void setName(String newName) {
 name = newName
 }
}

p = new Person()
p.setName("Plato")

apply the required
method to the object

Hierarchy as Taxonomy (IS-A)
● Things and concepts are usually hierarchically classified

both in common and expert knowledge.

Hierarchy as Taxonomy (IS-A)
● Things and concepts are usually hierarchically classified

both in common and expert knowledge.
● Given a certan class, a subclass or derived class

inherits certain properties (as attributes and methods)
from the first.

– From the perspective of the second class, the first is
called superclass.

– Usually, derivation might be overridden.

Hierarchy as Taxonomy (IS-A)
class A {
 String salutation = "Ciao"
 void show() {
 print(salutation + "! My type is A.")
 }
}

class B extends A {
 @Override
 void show() {
 print(salutation + "! My type is B.")
 }
}

o = new A()
o.show()
o = new B()
o.show()

Ciao! My type is A.
Ciao! My type is B.

output

Hierarchy as partonomy (HAS-A)
● Given an object of a certain class, if it is composed by

other objects, the second ones belong to the first.

Hierarchy as partonomy (HAS-A)
● Given an object of a certain class, if it is composed by

other objects, the second ones belong to the first.

– The car has four wheels.
– Those wheels belongs to the car.

Hierarchy as partonomy (HAS-A)
● Given an object of a certain class, if it is composed by

other objects, the second ones belong to the first.

– The car has four wheels.
– Those wheels belongs to the car.

...but things are a bit more complicated!

“Strict” composition
class Car {
 Wheel frontLeftWheel
 Wheel frontRightWheel
 Wheel rearLeftWheel
 Wheel rearRightWheel

 Car {
 frontLeftWheel = new Wheel()
 frontRightWheel = new Wheel()
 rearLeftWheel = new Wheel()
 rearRightWheel = new Wheel()
 }
}

car = new Car()

The lifetime of the
components
depends on the
composed object.

class Car {
 Wheel frontLeftWheel
 Wheel frontRightWheel
 Wheel rearLeftWheel
 Wheel rearRightWheel

 Car { }

 void mountWheels(fLW, fRW, rLW, rRW) {
 frontLeftWheel = fLW
 frontRightWheel = fRW
 rearLeftWheel = rLW
 rearLeftWheel = rRW
 }
}

car = new Car()
car.mountWheels(...)

The lifetime of the
components can
differ of that of the
composed object.

Aggregation or weak composition

Example of ontology
in description logic

Woman Person Female≐ ⊓

Man Person ¬Female≐ ⊓

Mother Woman hasChild.Person≐ ⊓ ∃

Father Man hasChild.Person≐ ⊓ ∃

Parent Person hasChild.Person ≐ ⊓ ∃

Grandmother Mother hasChild.Parent≐ ⊓ ∃

DaughterlessMother Mother hasChild.¬Female≐ ⊓ ∀

TBOX
Terminological box

Example of ontology
in description logic

Woman Person Female≐ ⊓

Man Person ¬Female≐ ⊓

Mother Woman hasChild.Person≐ ⊓ ∃

Father Man hasChild.Person≐ ⊓ ∃

Parent Person hasChild.Person ≐ ⊓ ∃

Grandmother Mother hasChild.Parent≐ ⊓ ∃

DaughterlessMother Mother hasChild.¬Female≐ ⊓ ∀

DaughterlessMother(Paulette)
Child(Paulette, Pierre)
Child(Paulette, Jacques)
Father(Pierre)
Child(Pierre, Marinette)

TBOX
Terminological box

ABOX
Assertion box

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

