Logic and Knowledge
Representation

Language Processing, Meta-programming
1 June 2018

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

ot 1 | UNIVERSITE PARIS

mailto:gsileno@enst.fr

Natural Language Processing

About talking machines...

* The dream of machine talking to humans is
present in many fictional works...

MGM presents A STANLEY KUBRICK PRODUCTION

2001: a space odyssey

SCREENPLAY BY

STARRING
KEIR EULLEA - GARY LOCKWOOD STANLEY KUBRICK ano ARTHUR C. CLARKE

PRODUGED AND DIRECTED BY

SUPERPANAVISION® STANLEY KUBR'CK MGM@

mo METROCOLOR

Hal 9000

(F A .

Data (Star Trek)

JOAQUIN PHOENIX AMY ADAMS ROONEY MARA
OLIVIA WILDE we SCARLETT JOHANSSON

ASPIKE JONZE

Samantha

About talking machines...

* The dream of machine talking to humans is
present in many fictional works... even in ancient times!

From the Iliad, Book XVIII:
“There were golden
handmaids also who worked
for him [Hephaestus], and
were like real young women,
with sense and reason, voice
also and strength, and all the
learning of the immortals.”

Hephaestus

About talking machines...

-

!IIEI T RSK 1F £
T SH’RHVBUEHE’

W =
et

)

"’u

ﬁ i~

W, TR "n\"""_ l.'..l.'>l'l. \

N HARDIC

Variations of the (in)famous
"Turing test”

'HARRISON FORD.

First “concrete” attempts

EEEEEEEE

E
EEEEE
E

ELIZA

Welzenbaum ~ l 96 5 LIZA > HI, T'M ELIZA. WHAT DO YOU WANT TO TALK RBOUT ?
AMIT > CAN T TALK ABOUT MY PROBLEMW 7

LIZA > SURE... !
AMIT > DUE TO ON GOING EXAMS IN COLLEGE, T HAVE A LOT OF STRESS.
ELTIZA > PLEASE RELAX A LITTLE. SLEEP WELL.
; : 9 > :
is.:o::::;ng troubling you ? AMIT > BYE
Do you know anyone else who is bored ? ELIZA > BYE AND KEEP IN TOUCH...
e L T e [T i e e L I [
\'Ou lr!ﬂ‘t sure 4} o M M e M Mm e M M e e e e e M e M e e M e e e M e e e e e A M m m m m m m m m m m m m Mm m m m Mm m m hm mm m m e
I don“t really know
Why don“t you really know ?
Well, I haven't really asked
Do you say you haven't really asked for some special reason ?

I'm feeling blue
Do you believe it is normal to be feeling blue ?
What's normal?

What is it you really want to know ?
Why don"t I have more energy in the morning?

That's quite interesting.
Not really

Do you feel strongly about discussing such things ?

Yea, I'm LOMELY

Is it because you are lonely that you came to me ?
Duh

Does talking about this bother you ?

It is 50 NICE to TALK TO YOU

We were discussing you -- not me.

First “concrete” attempts

EEEEEEEE

E
EEEEE
E

ELIZA

Welzenbaum ~ l 96 5 LIZA > HI, T'M ELIZA. WHAT DO YOU WANT TO TALK RBOUT ?
AMIT > CAN T TALK ABOUT MY PROBLEMW 7
LIZA > SURE... !
AMIT > DUE TO ON GOING EXAMS IN COLLEGE, T HAVE A LOT OF STRESS.
ELTIZA > PLEASE RELAX A LITTLE. SLEEP WELL.
' - " >)
is.:o::::;nq troubling you ? AMIT > BYE
Do you know anyone else who is bored ? ELIZA > BYE AND KEEP IN TOUCH...
e L T e [T i e e L I [
?ou lr!ﬂ.t sure 4} o M M e M Mm e M M e e e e e M e M e e M e e e M e e e e e A M m m m m m m m m m m m m Mm m m m Mm m m hm mm m m e
I don“t really know
Why don“t you really know ?
Well, I haven't really asked
Do you say you haven't really asked for some special reason ?
I'm feeling blue
Do you believe it is normal to be feeling blue ?
What's normal?
What is it you really want to know ?
Why don"t I have more energy in the morning?
That's quite interesting.
Not really
Do you feel strongly about discussing such things ?
Yea, I'm LOMELY
Is it because you are lonely that you came to me ?

Bo taking et this bothr o If you have emacs,
try M-x doctor

Pe were discussing you -- not me.

First “concrete” attempts

SHRDLU
Winograd ~1969

PICK WP A BIG RED BLOCK.

* Deeper understanding
* but limited to a simple blocks world

Today?

Google

Translate

English Spanish French English - detected ~ -
Today automatic translation is much more X
readable. |

) & 51/5000

o

Turn off instant translation o

English Spanish French - m

Aujourd'hui, la traduction automatique est beaucoup
plus lisible.

T O < ’

* But do automatic translators “understand” what we say?

Winograd Schema Challenge

* Proposed by Levesque in 2014 to go beyond the
Turing test, it counts today 140 sentences as:

“The city councilmen refused the
demonstrators a permit because
they [feared /advocated] violence.”

* To whom they refers?

Winograd Schema Challenge

* Proposed by Levesque in 2014 to go beyond the
Turing test, it counts today 140 sentences as:

“The city councilmen refused the
demonstrators a permit because
they [feared /advocated] violence.”

* To whom they refers?
* Problem: resolving anaphoras

/al Bot.../ go/going
(Phonology, the (Morphology, the study
study of pronunciation) of word constituents)

N
| thought they're never
going to hear me ‘cause

Sentence they're screaming all the

L N time. [Elvis Presley]

Noun Verbal
phrase phrase

(Syntax, the study
of grammair)

It doesn't matter what | sing. _
(Pragmatics, the (Semantics, the

study of language use) °TUAY Of meaning]

[Slide by Fabian Suchanek, Télécom ParisTech]

/al Bot.../ go/going
(Phonology, the (Morphology, the study
study of pronunciation) of word constituents)

N
| thought they're never
going to hear me ‘cause

Sentence they're screaming all the
P N time. [Elvis Presley]
Noun Verpal

phrase phrase

(Syntax, the study
of grammar)

It doesn’'t matter what | sing. -
: manfics, th
(Pragmatics, the |SSIARICS; The

study of language use) study of meanipg)

* All these levels play a role with language!

not only in
verbal
language...

Vittore Carpaccio,
Due Dame, ~1495

not only in
verbal
language...

Beware of
contextl!

Vittore Carpaccio,
Due Dame + Caccia in valle, ~1495

reconstruction of the original painting

Language Processing in Prolog

Prolog and Context-Free Grammars

* Alain Colmerauer and Philippe Roussel conceived
Prolog (1972) to facilitate syntaxic processing,
following the theory of context-free grammars.

* CFGs were introduced in linguistics by Noam Chomsky
to clearly distinguish syntax from semantics [and to
attack simple statistical models of language.]

Colorless green Furiously sleep
ideas sleep ideas green
furiously. colorless.

Context-Free Grammar

* A context-free grammar G is defined by
G=(V,2, R, 8)

- Vis the finite set of non—-terminal characters (variables),
standing for the syntaxic category

- 2 is a finite set of terminal symbols, disjoint from V, standing
for the actual content of the sentence

— Ris a set of rewrite or production rules of the grammar, i.e.
mappings from V to (VU 2)* (* = Kleene star symbol)

— S is the start symbol, used to represent the whole sentence
(or program). It belongs to V.

Context-Free Grammar

A context-free grammar G is defined by
G=(V,2Z,R, S)
The language L(G) of a grammar G is defined as :
L(G) = {w€& 2 /S ="w}

A word in L(G) derives from S and contains only
terminal symbols.

A language L is a context-free language if there is a
context-free grammar G, such that L(G) = L.

Regular Expressions

* Regular expressions consist of:

— constants, denoting sets of strings
* 0 denoting the empty set: {}
* € denoting the set containing only the empty string: {*"}
* a denoting the set containing only the string “a": {"a"}

Regular Expressions

* Regular expressions consist of:

— constants, denoting sets of strings
* 0 denoting the empty set: {}
* € denoting the set containing only the empty string: {*"}
* a denoting the set containing only the string “a": {"a"}

— operator symbols, denoting operations over sets.
given two sets denoted with R and S, we have:

* RS (concatenation): denotes the set of strings obtained by
concatenanting a string of R and a string of S

* R|S (alternance): denotes the set of strings obtained by the
union of Rand S

* R* (Kleene star): denotes set the including €, and all possible
concatenations of strings in R (closed under concatenation).

Context-Free vs Regular languages

* Areqular language is a language that can be expressed
through a reqular expression, or equivalently, by a
finite state machine (Kleene's Theorem).

* All regular languages are context-free languages, but
not otherwise.

* Example: { 0"1": n € N } is not reqular

Context-Free Grammar

* A CFG allows us to say whether a sentence is
syntactically correct (recogniser) and what is their
syntactic structure (parser).

Context-Free Grammar

* A CFG allows us to say whether a sentence is
syntactically correct (recogniser) and what is their
syntactic structure (parser).

* Example:
S = np vp a man kisses a woman.
np = det n a woman kisses a man.
vp = VvV np a man kisses a man.
Vvp = V a woman kisses a woman.
det = a * Jisses—woman~
det = the * & man—kisses—woman~
n = woman
n = man

v = kisses

CFG recognition in Prolog

* Prolog implementation using difference lists:

S = np vp
np = det n
Vp = V np
Vp = V

det =» a
det = the
n = woman
n = man

v = kisses

s(X, 2) := np(X, Y), vp(Y, 2).
np(X, z) :- det(X, Y), n(Y, 2).
vp(X, Z) := v(X, Y), np(Y, Z).
vp(X, Z2) :-= v(X, Z).

det([the|(W], W).
det([a|W], W).
n([woman|(wj, W).
n([man|wjl], WwW).
v([kisses|W], W).

?- s([a,woman,kisses,a,man], []).
True.

From CFG to DCG

* Rewriting it as definite clause grammars (DCG):

S = np vp S —--> np, Vvp.
np = det n np --> det, n.
Vvp = V np vp --> Vv, np.
Vvp = V vVp --> V.

det = a det --> [the].
det = the det --> [a].

n = woman n —--> [woman].
n = man n ——-> [man].

v = kisses v --> [kisses].

?- s([a,woman,kisses,a,man], []).
True.

A computational example

Backus—Naur Form (BNF):
<expr> ::= <num> | <num> + <expr> | <num> - <expr>

expr = num
expr = num + expr
expr = num — expr

num = 0
num = 1
num = 2
num =

A computational example

Backus—Naur Form (BNF):
<expr> ::= <num> | <num> + <expr> | <num> - <expr>

expr
expr
expr
num
num
num
num

=

=

4

4 4 4

num
num + expr
num — expr
o)
1
2

expr --> num.

exXpr --> num, [+], expr.
expr --> num, [-], exXpr.
num --> [D], {number(D)}.

expr recognize(L)
:—- expr(L, []).

A computational example

Backus—Naur Form (BNF):
<expr> ::= <num> | <num> + <expr> | <num> - <expr>

expr(zZ) =--> num(Z2)

expr(Z) =--> num(X), [+], expr(Y).
expr(zZ2) =-=> num(X), [-], expr(Y¥).
num(D) --> [D], {number(D)}.

expr compute(L, V)
= expr(V, L, [1])-

* first, create space for a value to be passed

A computational example

Backus—Naur Form (BNF):
<expr> ::= <num> | <num> + <expr> | <num> - <expr>

expr(zZ) =--> num(Z2)

exXpr(z) --> num(X), [+], expr(Y), {Z is X + Y}.
expr(z) --> num(X), [-], expr(Y), {Z 1is X - Y}.
num(D) --> [D], {number(D)}.

expr compute(L, V)
:—- expr(Vv, L, [])-.

* first, create space for a value to be passed
* second, make the actual calculations!

Limitations

* Although this grammar expresses an equivalent language,
its DCG does not work in Prolog.
expr --> num.
expr --> expr, [+], expr.

expr --> expr, [-], expr.
num --> [D], {number(D)}.

* DCGs have to be right-recursive.

Limitations

* Although this grammar expresses an equivalent language,
its DCG does not work in Prolog.

expr --> num.

expr --> expr, [t+], eXxpr.
expr --> expr, [-], expr.
num --> [D], {number(D)}.

* DCGs have to be right-recursive.

* Furthermore, because Prolog descent is amnesic, it may
inefficiently repeat the same computations (cf. chart

parsing).

Extending DCGs

Top-down recognizer

:- consult('dcg2rules.pl’). % np --> det, n. becomes rule(np, [det,n])
:- dcg2rules('naturalgrammarexample.pl’). % assert rule(np, [det,n])

tdr(Proto, Words) :- % Proto = list of non-terminals or words
match(Proto, Words, [], [])- % success if beginning of Proto = Words

tdr([X|Proto], Words) :-
rule(X, RHS), % retrieving rule that matches X
append(RHS, Proto, NewProto), % replacing X by RHS (= right-hand side)
nl, write(X),write(' --> "), write(RHS),
match(NewProto, Words, NewProtol, NewWords),
tdr(NewProtol, NewWords). % lateral recursive call

match([X|L1], [X|L2], R1, R2) :-
|
write("\t**** recognized: '), write(X),

match(L1, L2, R1, R2). start from structures and
match(L1, L2, L1, L2). fill them with words..

Bottom-up parsing

bup([s]). % success when one gets s as a list of words
bup(P):-
append(Pref, Rest, P), % P is split into three pieces
append(RHS, Suff, Rest), % P = Pref + RHS + Suff
rule(X, RHS), % bottom up use of rule
append(Pref, [X|Suff], NEWP), % RHS is replaced by X in P:
bup(NEWP). % lateral recursive call

start from words
to fill structures...

Exploiting unification

* Using arguments we can perform additional checks,
e.g. checking number agreement:

np (Number) --> det(Number), n(Number).
det (singular) --> [a].
det(plural) --> [many].

det(_) --> [the].

n(singular) --> [dog].
n(plural) --> [dogs].

Exploiting unification
* Using arguments we can perform additional checks,
e.g. checking number agreement:
np (Number) --> det(Number), n(Number).
det (singular) --> [a].
det(plural) --> [many].

det(_) --> [the].

n(singular) --> [dog].
n(plural) --> [dogs].

* but also gender agreement, transitivity, etc.

Exploiting unification

* Using arguments we can perform additional checks,
e.g. checking number agreement:

np (Number) --> det(Number), n(Number).

det (singular) --> [a].
det(plural) --> [many].
det(_) --> [the].

n(singular) --> [dog].
n(plural) --> [dogs].

* but also gender agreement, transitivity, etc.
* but also “semantic” agreements (edible objects for
eating, etc.)

Feature structures

* Feature structures may be described with lists. But an
Important improvement consists in using maps:

np([number:singular, person:3,
gender:feminine,
sentience:true]) --> [mary].

v([subj:[number:singular, person:3,
gender: , sentience:true],
event:false]) --> [thinks].

v([subj:[number:singular, person:3,
gender: , sentience:],
event:true]) --> [falls].

Variable-length feature structures

* To have the possibility of not defining all elements of
features structures, we consider unterminated lists

?— A = [number:singular, person:3,
sentience:true, gender:feminine |],
B = [number:singular, person:3 | 1,
A = B.

Variable-length feature structures

* To have the possibility of not defining all elements of
features structures, we consider unterminated lists

?— A = [number:singular, person:3,
sentience:true, gender:feminine |],
B = [number:singular, person:3 | 1,
A = B.

* but we need to neglect their order still...

Variable-length feature structures

* To have the possibility of not defining all elements of
features structures, we consider unterminated lists

?— A = [number:singular, person:3,
sentience:true, gender:feminine |],
B = [number:singular, person:3 | 1,
A = B.

* pbut here their order still matters... so use this:
unify(FS, FS) :- !.

unify([Feature | R1], FS) :-

select (Feature, FS, FS1),

|
o

unify(R1,FS1l).

Meta-programming

Going meta-

* The prefix meta- is used to say the we go "up”
recursively on a concept:

— meta-physics: physics of physics
— meta—data: data about data
- meta-reasoning: reasoning about reasoning

A modern computer (roughly)
~ Von Neumann architecture

Memory |
(e.g. RAM) .. . » /O devices
Instructions & Data I [
registers
CPU

Central Processing Unit

From a hardware perspective, instructions are data!

Meta-programming

* A meta-program is a program that manipulates other
programs (or itself) as its data.

Meta-programming

* A meta-program is a program that manipulates other
programs (or itself) as its data.

* Meta-programming is the act of writing meta-
programs. Examples of meta-programs are:

when executed, print a copy of their codes

using an “eval” function to execute dynamically generated code
relying on macros (generative programming)

reasoning with their own structures and processes (e.g. reading
the class of an object) (reflection, namely introspection)
compilers or interpreters of any lanquage

Meta-programming

* A meta-program is a program that manipulates other

programs (or itself) as its data.

* Why is it done?

to get around limitations of or to enhance with new features the
primary development language,

to encapsulate domain-specific knowledge, by introducing a
domain-specific language (DSL) with its own semantics

to allow users to configure a system in a easier way

Meta-programming in Prolog

* Let us start from the simplest meta-interpreter..

prove(Goal) :-
call (Goal).

call/1 is a built-in predicate invoking the parameter as goal

Meta-programming in Prolog

* Let us start from the simplest meta-interpreter..

prove(Goal) :-

call (Goal).
object-level meta-level
Goal going meta- Goal
object Instruction
(term) (prove me ...)

call/1 is a built-in predicate invoking the parameter as goal

Meta-programming in Prolog

* Going further...

prove(true).

prove([Goall, Goal2]) :-
prove (Goall),
prove (Goal2).

prove(Goal) :-
clause(Goal, Body),
prove (Body).

clause/2 is a built-in predicate true if Head can be unified with a clause
head and Body with the corresponding clause body.

Meta-programming in Prolog

* Going further...

prove(true).

prove([Goall, Goal2]) :-
prove (Goall),
prove (Goal2).

prove (Goal) :- ‘//////

clause(Goal, Body),
prove (Body).

Introspection

clause/2 is a built-in predicate true if Head can be unified with a clause
head and Body with the corresponding clause body.

Meta-programming in Prolog

* Using it for something more useful: trace of proofl
prove(true) :- 1!,
prove([Goall, Goal2]) :- !

prove (Goall),
prove (Goal2).

4

prove (Goal) :-
write(’'Call: ‘), write(Goal), nl,
clause(Goal, Body),
prove(Body),
write('Exit: '), write(Goal), nl.

clause/2 is a built-in predicate true if Goal can be unified with a clause
head and Body with the corresponding clause body.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

