

Logic and Knowledge Representation

Reinforcement learning, Inductive Logic Programming

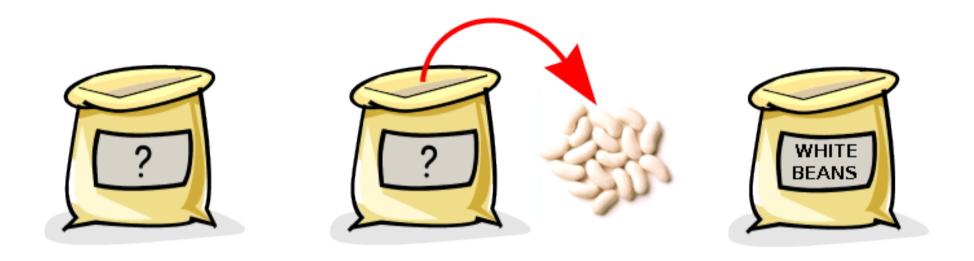
Description Complexity

15 June 2018

Giovanni Sileno gsileno@enst.fr

Télécom ParisTech, Paris-Dauphine University

Induction (again) – after Pierce



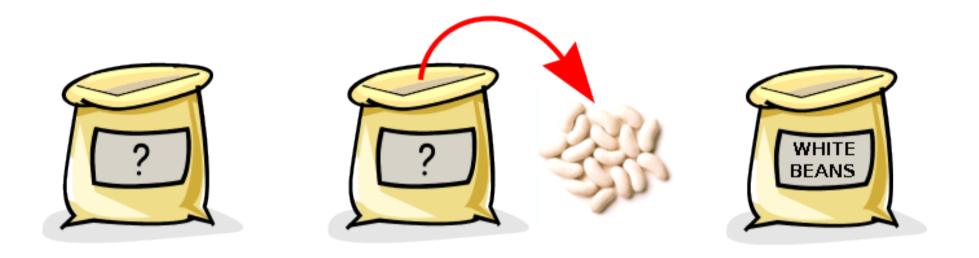
Induction

Fact: These beans are from this bag.

Fact: These beans are white.

⇒ Hyp. rule: All the beans from this bag are white.

Induction (again) – after Pierce



Induction

Fact: These beans are from this bag.

Fact: These beans are white.

⇒ Hyp. rule: All the beans from this bag are white.

Induction enables prediction through the settled model.

Induction (again)

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, ... **??**

Possible models?

Induction (again)

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, ... **??**

Possible models:

• numbers n + 1, n prime number $\rightarrow 44, 48, 54, ...$

Induction (again)

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, ... **??**

Possible models:

- numbers n + 1, n prime number $\rightarrow 44, 48, 54, ...$
- numbers n such that for all k with gcd(n, k) = 1 and $n > k^2$, $n k^2$ is prime. \rightarrow 48, 54, 60, ...

Further observations enable the correction of the model.

Alien environment problem

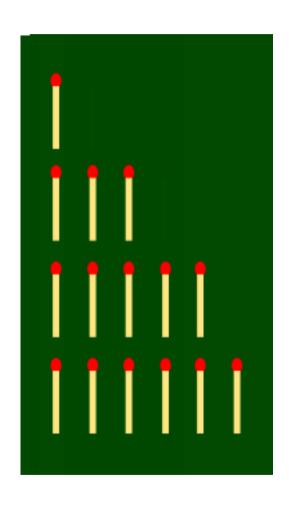
- Suppose a robot lands on an unknown planet.
 - in order to accomplish its mission, it has to acquire an operational knowledge of:

- what (might) occur
- what its actions (might) achieve

from its **observations**!!!

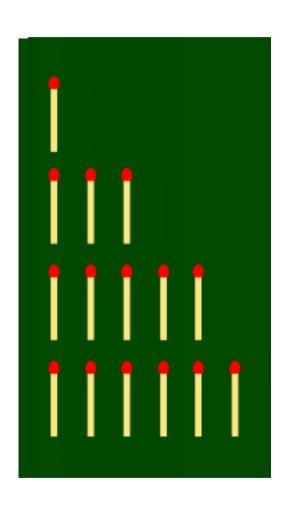
Reinforcement Learning

Nim game



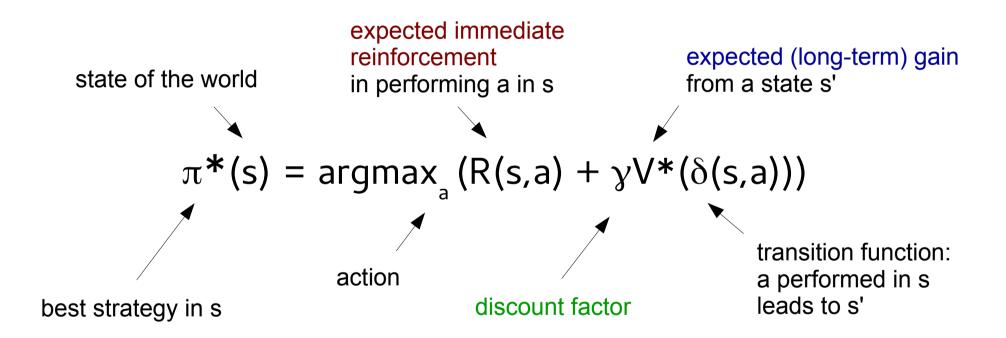
- Two players game
- Each player may take as many items from a single row in turn
- The one who takes the last item loses.

Nim game

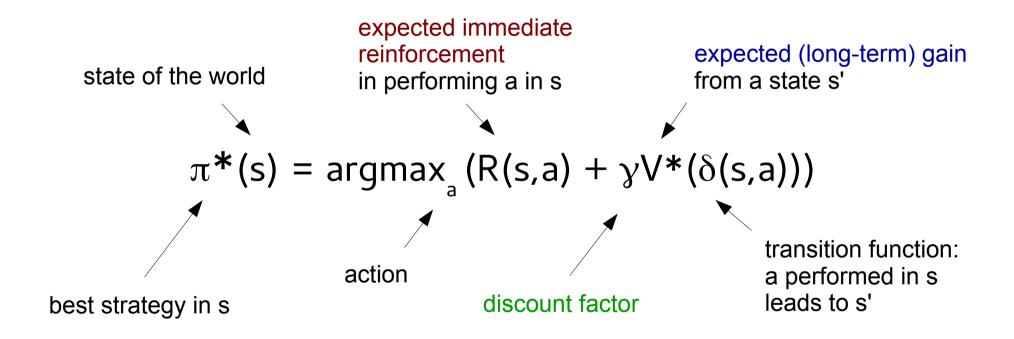


- How one can learn to win without knowing the rules?
 - recording states encountered during the play
 - updating value of states with final results (won or lost)
 - selecting actions bringing to winning states

Example of reinforcement learning algorithm



Example of reinforcement learning algorithm



$$Q(s, a) = R(s,a) + \gamma V*(\delta(s,a))$$

Utility function expected gain

Q-learning

Q(s, a) = R(s,a) +
$$\gamma$$
 V*(δ (s,a))
= R(s,a) + γ max_{a'}(Q(s', a'))
= R(s,a) + γ max_{a'}(Q(δ (s,a), a'))

$$\pi^*(s) = \operatorname{argmax}_a Q(s, a)$$

Q-learning algorithm

```
Q(s, a) = R(s,a) + \gamma max<sub>a'</sub>(Q(\delta(s,a), a'))
\pi*(s) = argmax<sub>a</sub>Q(s, a)
```

```
initialize the table Q(s,a) to zero
  observe the current state s.
  repeat
    choose an action and execute it
  receive the reward r
  observe the new state s'
  update the table Q(s,a) as:
    Q(s,a) := r + max<sub>a</sub>, Q(s',a')
    s := s'
```

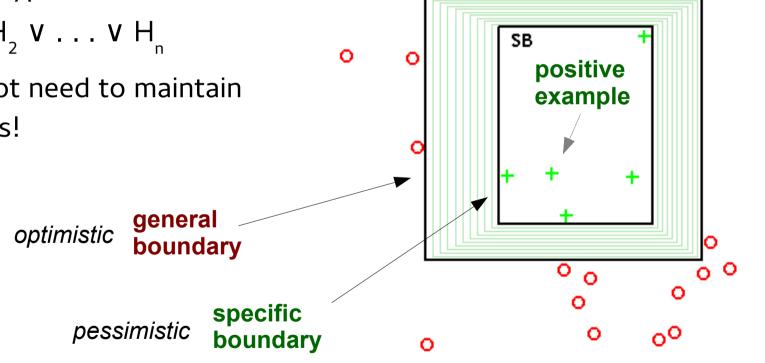
This was about behaviour, but what about knowledge?

Version space learning

- Logical approach to binary classification
- Search on a predefined space of hypotheses:

$$H_1 V H_2 V \dots V H_n$$

You do not need to maintain exemplars!



counter-example

0

О

GB

O

[Dubois, Vincent; Quafafou, Mohamed (2002). "Concept learning with approximation: Rough version spaces". RSCTC 2002. Sverdlik, W.; Reynolds, R.G. (1992). "Dynamic version spaces in machine learning". TAI '92.]

Using a version space

represent E

predict from the representation of H

whether or not E exemplifies H

if correct then retain H

if incorrect then

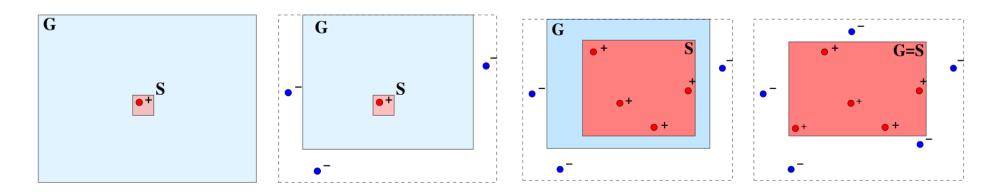
identify the differences between E and H

use the selected differences to

- generalize H if it is a positive instance

- specialize H if it is a negative instance

candidate elimination algorithm



Machine learning

Machine learning

Machine learning is a process that enables artificial systems to improve with experience.

what are the criteria?

Machine learning

Machine learning is a process that enables artificial systems to improve with experience.

- Elements of a learning task
 - Items of Experience, i ∈ I
 - Available Actions: a ∈ A
 - Evaluation: v(a, I)
 - Performer System: b: I → A
 - Learning System: L: $(i_1, a_1, v_1)...(i_n, a_n, v_n) \rightarrow b$

Types of learning problems

batch or offline vs online learning

training phase and testing vs learning while doing

- complete vs partial vs pointwise feedback
 - feedback concerns all vs some vs one performer system
- passive vs active learning
 - observation vs experimentation
- acausal or casual setting
 - presence or not of side-effects: e.g. rain prediction vs behavioural control
- stationary vs non-stationary environment
 - evaluation does or does not change in time

domain X: descriptions

domain Y: predictions

H: hypothesis space

h: target hypothesis

examples

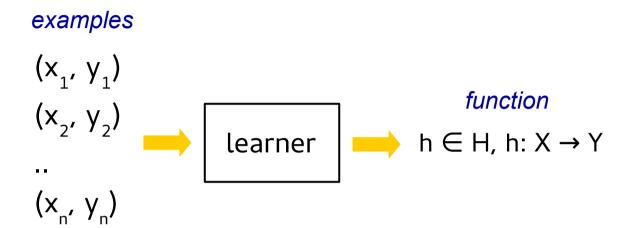
$$(x_1, y_1)$$
 (x_2, y_2)
 (x_1, y_2)
 (x_2, y_2)
 (x_1, y_2)
 (x_2, y_2)
 (x_2, y_2)
 (x_2, y_2)
 (x_2, y_2)
 (x_2, y_2)

domain X: descriptions

domain Y: predictions

H: hypothesis space

h: target hypothesis



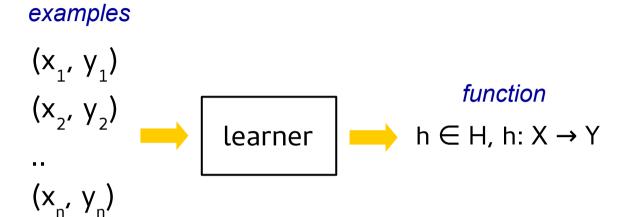
- Many learning methods are available, but studied and used by different communities!
- A few examples...

domain X: descriptions

domain Y: predictions

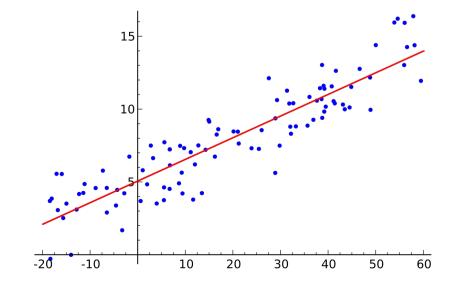
H: hypothesis space

h: target hypothesis



Method 1: traditional statistics (regression analysis)

h: Rⁿ → R
 h is a linear function
 squared prediction error

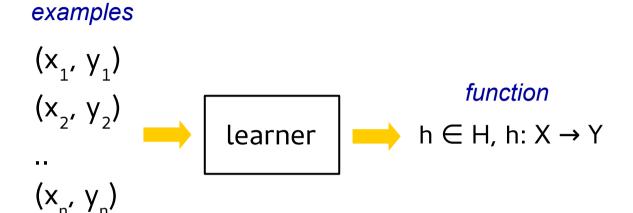


domain X: descriptions

domain Y: predictions

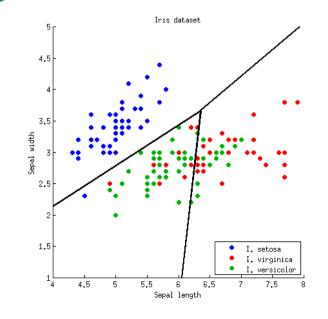
H: hypothesis space

h: target hypothesis



Method 2: traditional pattern recognition

h: $R^n \rightarrow \{0, 1, ..., m\}$ h is a discriminant boundary right/wrong prediction error

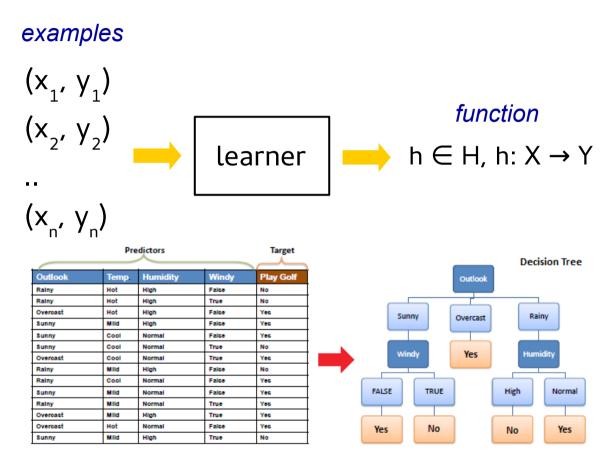


domain X: descriptions

domain Y: predictions

H: hypothesis space

h: target hypothesis



Method 3: "symbolic" machine learning

h: {attribute-value vectors} \rightarrow {0, 1}

h is a boolean function (e.g. a decision tree)

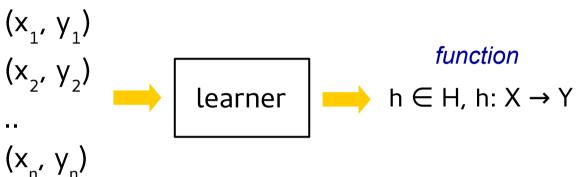
domain X: descriptions

domain Y: predictions

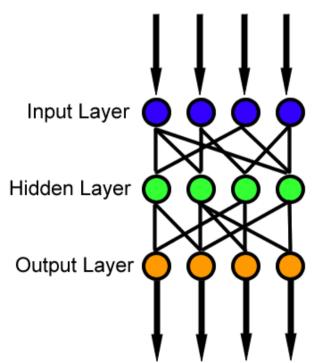
H: hypothesis space

h: target hypothesis

examples



- Method 4: Neural networks
 - h: $R^n \rightarrow R$
 - h is a feedforward neural net



domain X: descriptions

domain Y: predictions

H: hypothesis space

h: target hypothesis

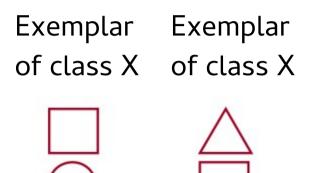
Method 5: Inductive Logic Programming

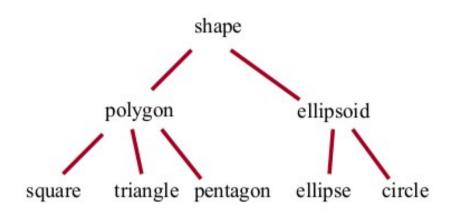
 (x_n, y_n)

- h: $\{\text{term structure}\} \rightarrow \{0, 1\}$
- h is a "simple" logic program.

Symbolic induction

Background knowledge





```
E1 = square(A) & circle(B) & above(A, B)
E2 = triangle(C) & square(D) & above(C, D)
```

What is X?

- a group of geometric shapes?
- a group of 2 geometric shapes?
- a group of 2 geometric shapes with a square?

Induction as least general generalization of exemplars.

• Examples:

```
cute(X) :- dog(X), small(X), fluffy(X).
cute(X) :- cat(X), fluffy(X).
```

• Generalisation:

```
cute(X) :- fluffy(X).
```

• Examples:

```
cute(X) :- dog(X), small(X), fluffy(X).
cute(X) :- cat(X), fluffy(X).
```

Generalisation:

```
cute(X) :- fluffy(X).
```

Background knowledge:

```
pet(X) :- cat(X).

pet(X) :- dog(X).

small(X) :- cat(X).
```

Generalisation:

```
cute(X) := pet(X), small(X), fluffy(X).
```

 Examples E are expected to result from background knowledge B and hypothesis H:

```
B \land H \models E
```

Inverse resolution:

```
- from example:
    cute(X) :- cat(X), fluffy(X).
- from knowledge:
    pet(X) :- cat(X).
    small(X) :- cat(X).
induce:
```

cute(X) := pet(X), small(X), fluffy(X).

Explanation-based Generalization

```
telephone(T) :- connected(T), partOf(T, D),
   dialingDevice(D), emitsSound(T).
connected(X) :- hasWire(X, W), attached(W, wall).
connected(X) :- feature(X, bluetooth).
connected(X) :- feature(X, wifi).
connected(X) :- partOf(X, A), antenna(A),
  hasProtocol(X, qsm).
dialingDevice(DD) :- rotaryDial(DD).
dialingDevice(DD) :- frequencyDial(DD).
dialingDevice(DD) :- touchScreen(DD),
  hasSoftware(DD,DS), dialingSoftware(DS).
emitsSound(P) :- hasHP(P).
emitsSound(P) :- feature(P, bluetooth).
```

Explanation-based Generalization

Features activated during the proof:

```
[ feature(myphone, bluetooth), partOf(myphone, tc),
  touchScreen(tc), hasSoftware(tc, s2),
  dialingSoftware(s2), feature(myphone, bluetooth) ]
```

Features activated during the proof:

```
[ feature(myphone, bluetooth), partOf(myphone, tc),
  touchScreen(tc), hasSoftware(tc, s2),
  dialingSoftware(s2), feature(myphone, bluetooth) ]
```

Features activated during the proof:

```
[ feature(myphone, bluetooth), partOf(myphone, tc),
  touchScreen(tc), hasSoftware(tc, s2),
  dialingSoftware(s2), feature(myphone, bluetooth) ]
```

From the trace, by generalizing shared constants:

```
C001(X) :- feature(X, bluetooth), partOf(X, Y),
touchScreen(Y), hasSoftware(Y, Z), dialingSoftware(Z).
```

Features activated during the proof:

```
[ feature(myphone, bluetooth), partOf(myphone, tc),
  touchScreen(tc), hasSoftware(tc, s2),
  dialingSoftware(s2), feature(myphone, bluetooth) ]
```

From the trace, by generalizing shared constants:

```
C001(X) :- feature(X, bluetooth), partOf(X, Y),
touchScreen(Y), hasSoftware(Y, Z), dialingSoftware(Z).
```

By grouping predicates that do not depend on X:

```
C002(Y) :- touchScreen(Y), hasSoftware(Y, Z),
    dialingSoftware(Z).
```

Features activated during the proof:

```
[ feature(myphone, bluetooth), partOf(myphone, tc),
  touchScreen(tc), hasSoftware(tc, s2),
  dialingSoftware(s2), feature(myphone, bluetooth) ]
```

From the trace, by generalizing shared constants:

```
C001(X) :- feature(X, bluetooth), partOf(X, Y),
touchScreen(Y), hasSoftware(Y, Z), dialingSoftware(Z).
```

By grouping predicates that do not depend on X:

```
C002(Y) :- touchScreen(Y), hasSoftware(Y, Z),
    dialingSoftware(Z).
```

C001 then becomes

```
C001(X):- feature(X, bluetooth), partOf(X, Y), C002(Y).
```

Description Complexity

Informal definition of Kolmogorov complexity

Andrei Kolmogorov

 The complexity of an object corresponds to the minimal length of a computer program producing this object.

Informal definition of Kolmogorov complexity

Andrei Kolmogorov

- The complexity of an object corresponds to the minimal length of a computer program producing this object.
- A finite string like "aaa..." is not very complex:

```
for i=1..n: print a
```

Informal definition of Kolmogorov complexity

Andrei Kolmogorov

- The complexity of an object corresponds to the minimal length of a computer program producing this object.
- A finite string like "aaa..." is not very complex:

• Is π complex?

$$\pi/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - \dots$$

Informal definition of Kolmogorov complexity

Andrei Kolmogorov

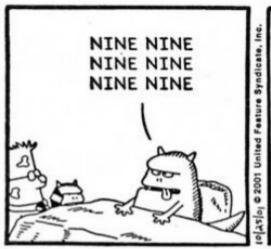
- The complexity of an object corresponds to the minimal length of a computer program producing this object.
- A finite string like "aaa..." is not very complex:

• Is π complex?

$$\pi/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - \dots$$

Kolmogorov complexity is incomputable.

Randomness



Randomness

Are both these sequences equally random?

Ray Solomonoff

Randomness and compression

Ray Solomonoff

Are both these sequences equally random?

• A finite sequence is said to be **random** if it is *incompressible*, i.e. if its *shortest description* is the sequence itself.

Deduction

Gregory Chaitin

 Deduction generally works from the general to the particular

general premise

and particular premise → particular conclusion

all animals eat fido is an animal → fido eats.

general premises → less general conclusion

all animals eat cats are animals → cats eat.

Deduction and compression

Gregory Chaitin

- Deduction generally works from the general to the particular
- Intuition: A formal system is a compression of the set of theorems it can prove.

Deduction and compression

Gregory Chaitin

- Deduction generally works from the general to the particular
- Intuition: A formal system is a compression of the set of theorems it can prove.

Understanding is compressing.

Minimum Description Length as inductive principle

- The MDL principle states that:
 the best theory to describe observed data is the one which
 minimizes the sum of the description length (in bits) of:
 - the theory description
 - the data encoded from the theory

Hofstadter's problems

problems of analogy

ABC: ABD:: IJK: x

RST: RSU:: RRSSTT: x

ABC: ABD:: BCA: x

ABC: ABD:: AABABC: x

IJK: IJL:: IJJKKK: x

Hofstadter's problems

problems of analogy

```
ABC : ABD :: IJK : x
```

RST: RSU:: RRSSTT: x

ABC: ABD:: BCA: x

ABC: ABD:: AABABC: x

IJK: IJL:: IJJKKK: x

```
// ABC : ABD :: IJK : IJL
let(alphabet, shift, ?, sequence, 3),
  let(mem,, ?, next_block, mem,, ?, last, increment),
  mem,,, next_block, mem,, 8;

// ABC : ABD :: IJK : IJD
let(alphabet, shift, ?, sequence, 3),
  let(mem,, ?, next_block, mem,, ?, last, 'd'),
  mem,,, next_block, mem,, 8;
```

- Let us apply the MDL principle to decide x:
 - we need to settle a description language with a set of operators manipulating strings.
 - we interpret the data through the description language
 - we compute the complexity of the hypothetical organizations

Hofstadter's problems

problems of analogy

ABC: ABD:: IJK: x

RST: RSU:: RRSSTT: x

ABC: ABD:: BCA: x

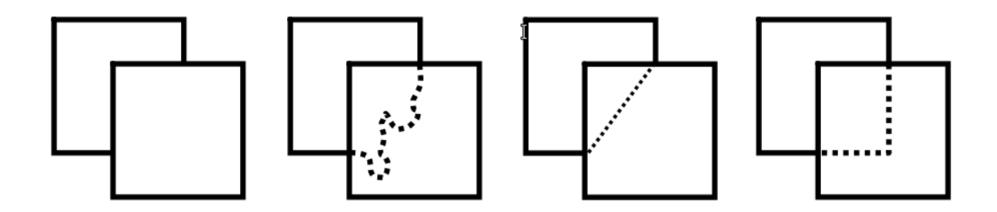
ABC: ABD:: AABABC: x

IJK: IJL:: IJJKKK: x

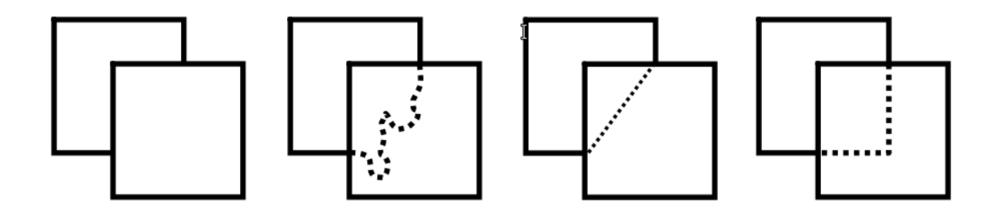
Problem	Solution	Propor- tion	Com- plexity
IJK	IJL	93%	37
16.0 ± 0.085 s	IJD	2.9%	38
BCA	BCB	49%	42
$21.7 \pm 0.12 s$	BDA	43%	46
AABABC	AABABD	74%	33
$23.8 \pm 0.12 s$	AACABD	12%	46
IJKLM	IJKLN	62%	40
$24.7 \pm 0.22 s$	IJLLM	15%	41
123	124	96%	27
6.39 ± 0.074 s	123	3%	31
KJI	KJJ	37%	43
$18.6 \pm 0.13 \text{ s}$	LJI	32%	46
135	136	63%	35
$9.93 \pm 0.10 s$	137	8.9%	37
BCD	BCE	81%	35
$21.9 \pm 0.30 s$	BDE	5.9%	44

Problem	Solution	Propor- tion	Com- plexity
IJKKK	IJJLLL	40%	52
$13.7 \pm 0.11 s$	IJKKL	25%	53
XYZ	XYA	85%	40
11.2 ± 0.093 s	XYZ	4.4%	34
122333	122444	40%	56
$10.0 \pm 0.098 s$	122334	31%	49
RSSTTT	RSSUUU	41%	54
10.4 ± 0.072 s	RSSTTU	31%	55
IJKKK	IJJLLL	41%	52
8.67 ± 0.071 s	IJKKL	28%	53
AABABC	AABABD	72%	33
12.2 ± 0.12 s	AACABD	12%	46
MRRJJJ	MRRJJK	28%	64
$22.1 \pm 0.18 s$	MRRKKK	19%	65
147	148	69%	36
$13.6 \pm 0.20 s$	1410	10%	38

Similar problem...



Similar problem...



..and many many others.