Logic and Knowledge
Representation

Reinforcement learning, Inductive Logic Programming

Description Complexity
15 June 2018

Giovanni Sileno gsileno@enst.fr
Télécom ParisTech, Paris-Dauphine University

DAXUPHINE

BRI UNIVERSITE PARIS

mailto:gsileno@enst.fr

Induction (again) — after Pierce

Induction

Fact: These beans are from this bag.
Fact: These beans are white.

= Hyp. rule: All the beans from this bag are white.

Induction (again) — after Pierce

Induction

Fact: These beans are from this bag.
Fact: These beans are white.

= Hyp. rule: All the beans from this bag are white.

* Induction enables prediction through the settled model.

Induction (again)
3,4,6,8,12, 14, 18, 20, 24, 30, 32, 38,42, ... ??

Possible models?

Induction (again)
3,4,6,8,12, 14, 18, 20, 24, 30, 32, 38,42, ... ??

Possible models:

* numbers n + 1, n prime number — 44, 48, 54, ..

Induction (again)
3,4,6,8,12, 14, 18, 20, 24, 30, 32, 38,42, ... ??

Possible models:
* numbers n + 1, n prime number — 44, 48, 54, ..

* numbers n such that for all k with gcd(n, k) = 1 and
n >k’ n-k*is prime. — 48, 54, 60, ..

* Further observations enable the correction of the model.

https://oeis.org/

Alien environment problem

* Suppose a robot lands on an unknown planet.

— In order to accomplish its mission, it has to
acquire an operational knowledge of:

* what (might) occur
* what its actions
(might) achieve

from its observations!!!

2

Induction

Reinforcement Learning

Nim game

* Two players game

* Each player may take as many
items from a single row in turn

* The one who takes the last item
loses.

Nim game

* How one can learn to win without
knowing the rules?

—recording states encountered
during the play

—updating value of states with final
results (won or lost)

—selecting actions bringing to
winning states

very simple example of reinforcement learning!

Example of reinforcement
learning algorithm

expected immediate

reinforcement expected (long-term) gain
state of the world in performing ain s from a state s'

n*(s) = argmax_(R(s,a) + yV*(d(s,a)))

/ / / transition function:
action

a performed in s
best strategy in s discount factor leads to s

Example of reinforcement
learning algorithm

expected immediate

reinforcement expected (long-term) gain
state of the world in performing ain s from a state s'

n*(s) = argmax_(R(s,a) + yV*(d(s,a)))

/ / / transition function:
action

a performed in s
best strategy in s discount factor leads to s

Q(s, a) = R(s,a) + yV*(§(s,a)) Utility function

expected gain

Q-learning

Q(s, a) = R(s,a) +y V*(8(s,a))
(s,a) +y maxa,(Q(s', a’))
(s,a) +vy maxa,(Q(é(s,a), a'))

R
R

¥ (s) = argmax_Q(s, a)

Q-learning algorithm

Q(s, a) = R(s,a) +vy maxa,(Q(é(s,a), a'))
n*(s) = argmax_Q(s, a)

initialize the table Q(s,a) to zero
observe the current state s.
repeat
choose an action and execute it
receive the reward r
observe the new state s’
update the table Q(s,a) as:
Q(s,a) := r + max_, Q(s’',a’)
s := s’

This was about behaviour,
but what about knowledge?

Induction as generalization...

Version space learning

* Logical approach to binary counter-example

classification » © o
O O
* Search on a predefined 8
O
space of hypotheses: GB o °
HVH v...VH SB
1 2 n o o o
: : positive
* You do not need to maintain example
exemplars! o y
. ... general / /
optimistic boundary o
O O o Q
. . .. specific ©
pessimistic boundary o O

[Dubois, Vincent; Quafafou, Mohamed (2002). "Concept learning with approximation: Rough
version spaces”. RSCTC 2002. Sverdlik, W.; Reynolds, R.G. (1992). "Dynamic version spaces in

machine learning”. TAI '92.]

Using a version space

current example
/ current hypothesis,

reprgsent B . / taken from a
predict from the representation of H .
version space

whether or not E exemplifies H
if correct then retain H
if incorrect then
identify the differences between E and H
use the selected differences to

- generalize H if it is a positive instance
- specialize H if it is a negative instance

candidate elimination algorithm

Machine learning

Machine learning

Machine learning is a process that enables artificial
systems to improve with experience.

/4

what are the criteria?

Machine learning

Machine learning is a process that enables artificial
systems to improve with experience.

* Elements of a learning task

— Items of Experience, i € |

— Available Actions: a € A

— Evaluation: v(a, |

— Performer System: b: | = A

- Learning System: L: (i ,a, v)..(i,a,v)—=b

n n n

Types of learning problems

batch or offline vs online learning

training phase and testing vs learning while doing

complete vs partial vs pointwise feedback

feedback concerns all vs some vs one performer system

passive vs active learning

observation vs experimentation

acausal or casual setting

presence or not of side-effects: e.g. rain prediction vs behavioural control

stationary vs non-stationary environment

evaluation does or does not change in time

Learning a function from examples

domain X: descriptions
domain Y: predictions
H: hypothesis space

h: target hypothesis

examples

(X, y,)
(X, y,)

(x,y)

learner

function
h&H h: X-=>Y

Learning a function from examples

learner

examples
domain X: descriptions : \
domain Y: predictions X Vs
H: hypothesis space (Xz' yz)
h: target hypothesis -

(Xn' yn)

function
h&H h: X-=>Y

* Many learning methods are available, but studied and

used by different communities!
* A few examples...

Learning a function from examples

examples
domain X: descriptions : \
domain Y: predictions X Vs
H: hypothesis space (Xz' yz)
h: target hypothesis -

(Xn' yn)

function
learner h&EH h: X->Y

* Method 1: traditional statistics (regression analysis)

h: R" - R
his a linear function
squared prediction error

15F

Learning a function from examples

learner

examples
domain X: descriptions : \
domain Y: predictions X Vs
H: hypothesis space (Xz' yz)
h: target hypothesis -

(Xn' yn)

* Method 2: traditional pattern recognition

h: R"—> {0, 1, ..., m}
h is a discriminant boundary
right/wrong prediction error

function
h&H h: X-=>Y

Learning a function from examples

_ o examples
domain X: descriptions ()
X4
domain Y: predictions : 1 yl) function
. X,
H: hypothesis space 2 7 learner heH h: X->Y
h: target hypothesis
(x.y)
m m ’”E | :er;‘ ™
— =~ 8-8
= = e e) =
oooooo High I I I I
* Method 3: "symbolic” machine learning

h: {attribute-value vectors} — {0, 1}
h is a boolean function (e.g. a decision tree)

Learning a function from examples

examples
domain X: descriptions : \
domain Y: predictions X Vs
H: hypothesis space (Xz' yz)
h: target hypothesis -

(Xn' yn)

* Method 4: Neural networks

- h:R"—> R

- his a feedforward neural net

learner

Input Layer

Hidden Layer

Output Layer

function
h&H h: X-=>Y

mn

Learning a function from examples

learner

examples
domain X: descriptions : \
domain Y: predictions X Vs
H: hypothesis space (Xz' yz)
h: target hypothesis -

(Xn' yn)

* Method 5: Inductive Logic Programming

- h: {term structure} — {O, 1}

- his a "simple” logic program.

function
h&H h: X-=>Y

Inductive Logic Programming

Symbolic induction

Exemplar Exemplar
of class X of class X

VAN

O

El
E2

What is X?

a group of geometric shapes?
a group of 2 geometric shapes?

Background knowledge

shape

/

polygon ellipsoid

/7 \ \ |\

square triangle pentagon ellipse circle

square(A) & circle(B) & above(A, B)
triangle(C) & square(D) & above(C, D)

a group of 2 geometric shapes with a square?

* Induction as least general generalization of exemplars.

Inductive Logic Programming

* Examples:

cute(X) :- dog(X), small(X), fluffy(X).
cute(X) :- cat(X), fluffy(X).

e Generalisation:
cute(X) :- fluffy(X).

Inductive Logic Programming

Examples:

cute(X) :- dog(X), small(X), fluffy(X).
cute(X) :- cat(X), fluffy(X).

Generalisation:
cute(X) :- fluffy(X).

Background knowledge:

pet(X) :-= cat(X).
pet(X) :- dog(X).
small(X) :- cat(X).

Generalisation:
cute(X) :- pet(X), small(X), fluffy(X).

Inductive Logic Programming

* Examples E are expected to result from background
knowledge B and hypothesis H:

B ANHFE

* |Inverse resolution:

— from example:
cute(X) :- cat(X), fluffy(X).

- from knowledge:

pet(X) :-= cat(X).
small (X) :- cat(X).
Induce:

cute(X) :- pet(X), small(X), fluffy(X).

Explanation-Based Generalization

Explanation-based Generalization

telephone(T) :- connected(T), partOf(T, D),
dialingDevice (D), emitsSound(T).

connected(X) :- hasWire(X, W), attached(wW, wall).
connected(X) :- feature(X, bluetooth).
connected(X) :- feature(X, wifi).

connected(X) :- partOf(X, A), antenna(A),

hasProtocol (X, gsm).

dialingDevice(DD) :- rotaryDial(DD).
dialingDevice(DD) :- frequencyDial(DD).
dialingDevice(DD) :- touchScreen(DD),

hasSoftware(DD,DS), dialingSoftware(DS).

emitsSound(P) :- hasHP(P).
emitsSound(P) :- feature(P, bluetooth).

Explanation-based Generalization

example (myphone, Features) :-
Features = [silver(myphone),

belongs (myphone, jld),
partOf (myphone, tc), touchScreen(tc),
partOf (myphone, a), antenna(a),
hasSoftware(tc, sl), game(sl),
hasSoftware(tc, s2),
dialingSoftware(s2),
feature (myphone,wifi),
feature(myphone,bluetooth),
hasProtocol (myphone, gsm),
beautiful (myphone)].

* Features activated during the proof:

[feature(myphone, bluetooth), partOf(myphone, tc),
touchScreen(tc), hasSoftware(tc, s2),
dialingSoftware(s2), feature(myphone, bluetooth)]

Explanation-based Generalization

* Features activated during the proof:

[feature(myphone, bluetooth), partOf(myphone, tc),
touchScreen(tc), hasSoftware(tc, s2),
dialingSoftware(s2), feature(myphone, bluetooth)]

Explanation-based Generalization

* Features activated during the proof:
[feature(myphone, bluetooth), partOf(myphone, tc),

touchScreen(tc), hasSoftware(tc, s2),
dialingSoftware(s2), feature(myphone, bluetooth)]

* From the trace, by generalizing shared constants:

C001(X) :- feature(X, bluetooth), partOf(X, Y),
touchScreen(Y), hasSoftware(Y, Z), dialingSoftware(Z).

Explanation-based Generalization

Features activated during the proof:
[feature(myphone, bluetooth), partOf(myphone, tc),

touchScreen(tc), hasSoftware(tc, s2),
dialingSoftware(s2), feature(myphone, bluetooth)]

From the trace, by generalizing shared constants:

C001(X) :- feature(X, bluetooth), partOf(X, Y),
touchScreen(Y), hasSoftware(Y, Z), dialingSoftware(Z).

By grouping predicates that do not depend on X:

C002(Y) :- touchScreen(Y), hasSoftware(Y, 2),
dialingSoftware(Z).

Explanation-based Generalization

Features activated during the proof:
[feature(myphone, bluetooth), partOf(myphone, tc),

touchScreen(tc), hasSoftware(tc, s2),
dialingSoftware(s2), feature(myphone, bluetooth)]

From the trace, by generalizing shared constants:

C001(X) :- feature(X, bluetooth), partOf(X, Y),
touchScreen(Y), hasSoftware(Y, Z), dialingSoftware(Z).

By grouping predicates that do not depend on X:

C002(Y) :- touchScreen(Y), hasSoftware(Y, 2),
dialingSoftware(Z).

COO1 then becomes

C001(X) :- feature(X, bluetooth), partOf(X, Y), C002(Y).

Description Complexity

Informal definition of
Kolmogorov complexity

Andrei Kolmogorov

* The complexity of an object corresponds to the minimal length
of a computer program producing this object.

[informal reduction of a presentation by Pierre-Alexandre Murena (Télécom ParisTech)]

http://complexity.enst.fr/LKR/Docs/SlidesComplexityPAM2017.pdf

Informal definition of
Kolmogorov complexity

Andrei Kolmogorov

* The complexity of an object corresponds to the minimal length
of a computer program producing this object.

* A finite string like "aaa...” is not very complex:

for i=1..n:
print a

Informal definition of
Kolmogorov complexity

Andrei Kolmogorov

* The complexity of an object corresponds to the minimal length
of a computer program producing this object.

* A finite string like "aaa...” is not very complex:

for i=1..n:
print a

* |Is m complex?

n/4=1-1/3+1/5-1/7+1/9— ..

Informal definition of
Kolmogorov complexity

Andrei Kolmogorov

* The complexity of an object corresponds to the minimal length
of a computer program producing this object.

* A finite string like "aaa...” is not very complex:

for i=1..n:
print a

* |Is m complex?

n/4=1-1/3+1/5-1/7+1/9— ..

Kolmogorov complexity is incomputable.

Randomness

TOUR OF ACCOUNTING

NINE NINE f:’gfl THAT'S THE
OVER HERE NINE NINE SURE PROBLEM
WE HAVE OUR NINE NINE THATS WITH RAN-
GENERATOR. :IEEE?EE

18as|s) © 2001 United Fasture Syndicate, ine.

Randomness

* Are both these sequences equally random? Ray Solomonoff

00000000000001111111111111
10010011011000111010110010

R andomness and compression

* Are both these sequences equally random? Ray Solomonoff

00000000000001111111111111
10010011011000111010110010

* A finite sequence is said to be random if it is incompressible,
l.e. if its shortest description is the sequence itself.

Deduction

. Gregory Chaitin
* Deduction generally works

from the general to the particular

general premise
and particular premise — particular conclusion

all animals eat
fido is an animal -» fido eats.

general premise
and less general premises — less general conclusion

all animals eat
cats are animals - cats eat.

Deduction and compression

. Gregory Chaitin
* Deduction generally works

from the general to the particular

* Intuition: A formal system is a compression of the set of
theorems it can prove.

Deduction and compression

Gregory Chaitin

* Deduction generally works
from the general to the particular

* Intuition: A formal system is a compression of the set of
theorems it can prove.

Understanding is compressing.

Minimum Description Length as
inductive principle

* The MDL principle states that:
the best theory to describe observed data is the one which
minimizes the sum of the description length (in bits) of:
— the theory description
— the data encoded from the theory

Hofstadter’s problems

problems of analogy
ABC:ABD : UK:x <

RST : RSU :: RRSSTT : x
ABC : ABD :: BCA : x
ABC : ABD :: AABABC : x
|JK : 1JL 2z [JJKKK : x

Hofstadter’s problems

problems of analogy
ABC:ABD : UK:x <

RST) RSU Ve RRSSTT . X // ABC : ABD :: IJK : IJL
let (alphabet, shift, ?, sequence, 3),
ABC . ABD = BCA " X let (mem,, ?, next_block, mem,, 7, last, increment),
) ") mem,,, next_block, mem,, 8;
ABC : ABD X AABABC - X // ABC : ABD :: IJK : IJD
. .. . let (alphabet, shift, 7, sequence, 3),
|J|< . IJL . |JJI<I<I< . X let (mem,, 7, next_block, mem,, 7, last, ‘d’),
mem,,, next_block, mem,, 8;

* Let us apply the MDL principle to decide x:
— we need to settle a description language
with a set of operators manipulating strings.
— we interpret the data through the
description language
- we compute the complexity of the
hypothetical organizations

Hofstadter’s problems

problems of analogy
ABC:ABD : UK:x <

RST : RSU :: RRSSTT : x
ABC : ABD :: BCA : x
ABC : ABD :: AABABC : x
|JK : 1JL 2z [JJKKK : x

Problem Solution | Propor- | Com- Problem Solution | Propor- | Com-

tion plexity tion plexity
IJK L 93% 37 LJJKKK INNLLL 40% 52
16000855 oD 2.9% 38 1370115 IJJKEL 25% 33
BCA BCB 49% 42 XYZ XYA 83% 40
2170125 BDA 43% 46 11200933 XYZ 4.4% 34
AABABC AABABD T4% 33 122333 122444 40% 56
2380125 | AACABD 12% 46 10000985 122334 31% 49
IJKLM LJELN 62% 40 RSSTTT RSSUUU 41% 54
2470225 IOLLM 15% 41 10400725 RSS5TTU 31% 35
123 124 6% 27 LIJKKK LIJLLL 41% 52
6390074 123 3% 31 86700715 INJKKL 28% 53
Kl K1l 37% 43 AABAEBC AABABD 72% 33
i86x013s LI 32% 46 J122x0.125s AACABD 12% 46
135 136 63% 35 MRRJIIJ MRRIIK 28% 64
993=010s 137 8.9% 37 2210185 | MRREEKK 19% 65
BCD BCE 1% 33 147 148 69% 36
2190305 EDE 5.9% 44 136020 1410 10% 38

Similar problem...

Similar problem...

..and many many others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

