

Towards a Computational
Theory of Action, Causation and
Power for Normative Reasoning

Giovanni Sileno (g.sileno@uva.nl),
Alexander Boer, Tom van Engers

32nd Conference on Legal Knowledge and Information Systems

12 December 2019, Madrid

mailto:g.sileno@uva.nl

Types of normative reasoning
● reasoning with norms: applying norms in the form of directives

and knowledge constructs to interpret reality and decide what
should be concluded or done.

Types of normative reasoning
● reasoning with norms: applying norms in the form of directives

and knowledge constructs to interpret reality and decide what
should be concluded or done.

This is a violation!

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

● internal view:

– whether a norm is valid and
applicable w.r.t. other norms

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

● internal view:

– whether a norm is valid and
applicable w.r.t. other norms

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

is this directive
valid and applicable?

● internal view:

– whether a norm is valid and
applicable w.r.t. other norms

REGULATORY SYSTEM

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

● external views:

– whether the norm is effective in
guiding behaviour

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

● external views:

– whether the norm is effective in
guiding behaviour

REGULATORY SYSTEM

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

● external views:

– whether the norm is effective in
guiding behaviour

REGULATORY SYSTEM

IMPLEMENTATION

IMPLEMENTATION

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

● external views:

– whether the norm is effective in
guiding behaviour

REGULATORY SYSTEM

are violations monitored
and settled?

is legal remedy settled
after violation?

is legal remedy provided?

by WHOM?

IMPLEMENTATION

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

● external views:

– whether the norm is effective in
guiding behaviour

– whether it is efficient in terms of costs

is the implementation
sustainable?

REGULATORY SYSTEM

are violations monitored
and settled?

is legal remedy settled
after violation?

is legal remedy provided?

by WHOM? HOW?

IMPLEMENTATION

Types of normative reasoning
● reasoning about norms: reflecting on, evaluating, assessing,

deciding upon norms

This is a violation!

● external views:

– whether the norm is effective in
guiding behaviour

– whether it is efficient in terms of costs

is the implementation
sustainable?

REGULATORY SYSTEM

are violations monitored
and settled?

is legal remedy settled
after violation?

is legal remedy provided?

by WHOM? HOW?

To effectively apply norms, we need a viable implementation!

Research context:
Digital Market-Places (DMPs)

infrastructures

legal norms

DMP policy

agreements,
contracts

transactions

rules of “society”

rules of the
“game”

ad-hoc rules
set amongst “players”

“rules” of the infrastructure

these are about
what ought to be

(but may be violated)

these are about
what may be
(possibility)

legal norms

DMP policy

agreements,
contracts

transactions

rules of “society”

rules of the
“game”

ad-hoc rules
set amongst “players”

“rules” of the infrastructure

these are about
what ought to be

(but may be violated)

these are about
what may be
(possibility)

operationalizing normative systems boils
down to designing power structures
distributed to computational actors.

Research context:
Digital Market-Places (DMPs)

infrastructures

● ACTION: event driven by an AGENT

● CAUSATION: mechanism producing consequences of events

● POWER: reification of CAUSATION associated to an ACTION

This paper presents a preliminary axiomatization based on
Logic Programming constructs

Relevant concepts

Why Logic Programming?
● practical reasons

– tractability, scalability, programmability

– “general” logic framework (no specific modal logics)

● strategic reasons

– general renewed interest towards LP

– rule-based interpretations of ML black boxes

Action

Brutus

stabbed

killed

murdered

Caesar

task/operation

outcome

intent

Actions: levels of abstraction
● The same event can be described at different levels of

abstraction.

Actions: characterizations

procedural/Behavioural

performs(brutus, stabbing)

productive

brings(brutus, stabbed)

intentional

aims(brutus, stabbing)

● By focusing on a certain action, we can recognize 3
characterizations:

Definition of actions
● behavioural or procedural characterization

does(brutus, stabbing) <-> performs(brutus, stabbing).

● productive characterization (based on a default rule)

does(brutus, killing) <*> brings(brutus, dead).

● intentional or purposive characterization

does(brutus, murdering) <->
aims(brutus, killing), does(brutus, killing).

Definition of actions
● behavioural or procedural characterization

does(brutus, stabbing) <-> performs(brutus, stabbing).

● productive characterization (based on a default rule)

does(brutus, killing) <*> brings(brutus, dead).

● intentional or purposive characterization

does(brutus, murdering) <->
aims(brutus, killing), does(brutus, killing).

the paper presents several axioms linking the different
characterizations...

“Default” mechanism <*>
● If an act has been completed, then performance has occurred:

brings(brutus, stabbed) -> performs(brutus, stabbing).

● performance is completed by default, unless it is known
otherwise:

performs(brutus, stabbing), not neg(brings(brutus,
stabbed)) -> brings(brutus, stabbed).

“Default” mechanism <*>
● If an act has been completed, then performance has occurred:

brings(brutus, stabbed) -> performs(brutus, stabbing).

● performance is completed by default, unless it is known
otherwise:

performs(brutus, stabbing), not neg(brings(brutus,
stabbed)) -> brings(brutus, stabbed).

default negation

strong negation

Perfect/imperfect actions
● Let us consider actions identified by a task description A and an

outcome description R, related by the predicate actionResult/2

● The following qualifications of an action A can be defined as
does(X, A), actionResult(A, R) and these other conditions:

– perfect action: brings(X, R)
– imperfect action: neg(brings(X, R))
– ongoing action: not(brings(X, R))
– successful intention: aims(X, R), brings(X, R)
– failed intention: aims(X, R), neg(brings(X, R))
– ongoing attempt: aims(X, A), not(brings(X, R))

Negated actions
● Actions can be then defined negatively, or better, in terms of

– failure, by relying on the idea of imperfection:

does(X, neg(A)) <-> imperfect(does(X, A)).

– omission, as not initiated execution:

neg(does(X, A)).

Causation

Causation
● Reactive rules, represented e.g. in the form of a event-condition-

action (ECA) rule, provide a primitive computational construct
reifying symbolic causation:

performs(X, A) : initiates(A, R) => +R. % initiation of r
performs(X, A) : terminates(A, R) => -R. % termination of r

Causation
● Reactive rules, represented e.g. in the form of a event-condition-

action (ECA) rule, provide a primitive computational construct
reifying symbolic causation:

performs(X, A) : initiates(A, R) => +R. % initiation of r
performs(X, A) : terminates(A, R) => -R. % termination of r

● Why ECA rules? What if we make explicit the temporal annotation
and express causation as logical dependency?

performs(X, A, T), initiates(A, R), neg(holds(R, T-1)) ->
holds(R,T).
performs(X, A, T), terminates(A, R), holds(R, T-1)) ->
neg(holds(R,T)).

Causation
● Reactive rules, represented e.g. in the form of a event-condition-

action (ECA) rule, provide a primitive computational construct
reifying symbolic causation:

performs(X, A) : initiates(A, R) => +R. % initiation of r
performs(X, A) : terminates(A, R) => -R. % termination of r

● Why ECA rules? What if we make explicit the temporal annotation
and express causation as logical dependency?

performs(X, A, T), initiates(A, R), neg(holds(R, T-1)) ->
holds(R,T).
performs(X, A, T), terminates(A, R), holds(R, T-1)) ->
neg(holds(R,T)).

...wrong! Missing inertia and other properties, etc. we
need to refer to Event Calculus or similar machinery!

Power

Modeling power
● Power—of an agent X towards an object Y to obtain a

consequence R (concerning Y) by performing an action A—can be
seen as the reification of a causal mechanism:

power(X, Y, A, R) <-> [performs(X, A) => +R(Y)].

Modeling power
● Power—of an agent X towards an object Y to obtain a

consequence R (concerning Y) by performing an action A—can be
seen as the reification of a causal mechanism:

power(X, Y, A, R) <-> [performs(X, A) => +R(Y)].

● The biconditional can be nested in the reactive rule...

performs(X, A) : power(X, Y, A, R) => +R(Y).

Modeling power
● Power—of an agent X towards an object Y to obtain a

consequence R (concerning Y) by performing an action A—can be
seen as the reification of a causal mechanism:

power(X, Y, A, R) <-> [performs(X, A) => +R(Y)].

● The biconditional can be nested in the reactive rule...

performs(X, A) : power(X, Y, A, R) => +R(Y).

the initiates/2 predicate seen above is nothing
else than a coarser description of power/4 !!

Modeling power
● Power—of an agent X towards an object Y to obtain a

consequence R (concerning Y) by performing an action A—can be
seen as the reification of a causal mechanism:

power(X, Y, A, R) <-> [performs(X, A) => +R(Y)].

● The biconditional can be nested in the reactive rule...

performs(X, A) : power(X, Y, A, R) => +R(Y).

● The paper elaborates on related concepts as ability,
susceptibility, negative power, etc.

the initiates/2 predicate seen above is nothing
else than a coarser description of power/4 !!

● Problem: set protection measures against interference as for
freedom of speech. But what is interference?

Example of application: Interference

Example of application: Interference
● Problem: set protection measures against interference as for

freedom of speech. But what is interference?

● An action IA interferes with an action A if, when the first is
performed, it inhibits the outcome usually expected for
performing the second.

● Problem: set protection measures against interference as for
freedom of speech. But what is interference?

● An action IA interferes with an action A if, when the first is
performed, it inhibits the outcome usually expected for
performing the second.

● Interference can be expressed in terms of power!

Example of application: Interference

Structural interference
● Problem: set protection measures against interference as for

freedom of speech. But what is interference?

● An action IA interferes with an action A if, when the first is
performed, it inhibits the outcome usually expected for
performing the second.

● Interference can be expressed in terms of power!

% structural interference (disabling, specified at event
level)

power(Z, power(X, Y, A, R), IA, neg)
<-> [performs(Z, IA) => +neg(power(X, Y, A, R)).]

Contingent interference
● Problem: set protection measures against interference as for

freedom of speech. But what is interference?

● An action IA interferes with an action A if, when the first is
performed, it inhibits the outcome usually expected for
performing the second.

● Interference can be expressed in terms of power!

% contingent interference (at object level, neglecting T)

power(Z, power(X, Y, A, R), IA, neg)
<-> [not performs(Z, IA) -> power(X, Y, A, R).

performs(Z, IA) -> neg(power(X, Y, A, R)).]

Conclusions
● For operationalization, normative systems need to seen as

social infrastructures.

...

Conclusions
● For operationalization, normative systems need to seen as

social infrastructures.

design of power structures is a crucial step!

...

Conclusions
● For operationalization, normative systems need to seen as

social infrastructures.

design of power structures is a crucial step!

● The paper presents our starting point for an axiomatization of
power structures in a LP setting. Future work will refine and
extend it to a wider number of institutional patterns (ex-ante vs
ex-post, punishment vs reward-based enforcement, delegation,
etc.) and concepts (recklessness, negligence, etc.).

...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

