

Operationalizing Declarative

CAUSAL2020 Workshop on Causal Reasoning and
Explanation in Logic Programming @ ICLP2020

Giovanni Sileno g.sileno@uva.nl
Informatics Institute, University of Amsterdam

a benchmark on Logic Programming Petri Nets (LPPNs)

19 September 2020

and Procedural Knowledge

mailto:g.sileno@uva.nl

● Regulations concern systems of norms, that in abstract,
in a fixed point in time, may be approached atemporally.

● However, when applied, regulations deal with a
continuous flow of events.

● Prototypical encounter: legal cases.
● More general but similar problem: narratives, stories.

Problem: reasoning with cases

While John was walking
his dog, the dog ate
Paul’s flowers.

Problem: reasoning with cases

While John was walking
his dog, the dog ate
Paul’s flowers.

Problem: reasoning with cases

How to entail that John is
responsible to pay Paul?

While John was walking
his dog, the dog ate
Paul’s flowers.

Problem: reasoning with cases

The owner of an animal has to
pay for the damages it produces.
(example of underlying norm)

How to entail that John is
responsible to pay Paul?

While John was walking
his dog, the dog ate
Paul’s flowers.

Problem: reasoning with cases

The owner of an animal has to
pay for the damages it produces.

A conceptual gap exists between the concrete domain
and the legal abstraction that applies on it.

(example of underlying norm)

How to entail that John is
responsible to pay Paul?

While John was
walking his dog, the
dog ate Paul’s flowers.

The owner of an animal has to
pay for the damages it produces.

dogs are
animals

eating an object
destroys the object

destruction is damage

flowers are
objects

While John was
walking his dog, the
dog ate Paul’s flowers.

The owner of an animal has to
pay for the damages it produces.

dogs are
animals

eating an object
destroys the object

destruction is damage

flowers are
objects

some connections are
terminological (e.g.
taxonomical relations)

other provides
causal meaning

Types of Knowledge
● Declarative knowledge, concerning objects (physical,

mental, institutional) and their logical relationships—
typically reified by means of symbols

● Procedural knowledge, concerning patterns of
events/actions, mechanisms, or processes (involving
objects)—often tacit, internalized

We need a notation
to specify both!

● Physical systems can be approached from steady state
(equilibrium) or transient (non-equilibrium, dynamic)
perspectives

● Steady states
descriptions omit
transient
characteristics

ex. Ohm's Law. V = R * I

Perspectives on Modelling

We need a notation
to specify both!

● Possible analogies:
– steady state approach with

● Logic
● Declarative programming

focus on
What

Specifying transients
and steady states

We need a notation
to specify both!

● Possible analogies:
– steady state approach with

● Logic
● Declarative programming

– transient approach
● Process modelling
● Procedural programming

focus on
What

focus on
How

Specifying transients
and steady states

We need a notation
to specify both!

● Possible analogies:
– steady state approach with

● Logic
● Declarative programming

– transient approach
● Process modelling
● Procedural programming

focus on
What

focus on
How

Petri Nets!

Specifying transients
and steady states

We need a notation
to specify both!

focus on
What

focus on
How

Petri Nets!

● Possible analogies:
– steady state approach with

● Logic
● Declarative programming

– transient approach
● Process modeling
● Procedural programming

Answer Set

Programming

Specifying transients
and steady states

focus on
What

focus on
How

Petri Nets!

● Possible analogies:
– steady state approach with

● Logic
● Declarative programming

– transient approach
● Process modeling
● Procedural programming

Answer Set

Programming

LPPNs
logic programming petri nets

Specifying transients
and steady states

+

=

Logic Programming Petri Nets

Logic Programming Petri Net (LPPN)

● An LPPN consists of three components:
– a procedural net (places, transitions)
– a declarative net for places
– a declarative net for transitions

causal
mechanisms

logical dependencies
between objects

logical dependencies
between events

Procedural LPPN
(same as Condition/Event PN)

transition

place

● Petri net: bipartite directed graph made of places
(circles) and transitions (boxes).

transition

place

token

Procedural LPPN
(same as Condition/Event PN)

● tokens may occupy places.

● Execution semantics (token game): if any of its input
places is not occupied, the transition is disabled. It
cannot fire.

Procedural LPPN
(same as Condition/Event PN)

disabled

● Execution semantics (token game): if all of its input
places are occupied, the transition is enabled. It can
fire.

Procedural LPPN
(same as Condition/Event PN)

enabled

● Execution semantics (token game): when the transition
fires it will consume tokens from the input places.

Procedural LPPN
(same as Condition/Event PN)

firing

● Execution semantics (token game): ...and produce tokens
in the output places.

Procedural LPPN
(same as Condition/Event PN)

firing

● For our purposes, this maps to a reactive rule (ECA):

Procedural LPPN
(same as Condition/Event PN)

#t1 : p1, p2 => -p1, -p2, +p3.

● Constructed from the ASP program:
p6 :- p4, p5.

p5.

Declarative LPPN for places

● Equivalent to
p6 :- p4, p5.

p5.

Declarative LPPN for places

entails
p5.

answer set

● Equivalent to
p6 :- p4, p5.

p4. p5.

Declarative LPPN for places

● Equivalent to
p6 :- p4, p5.

p4. p5.

Declarative LPPN for places

p4. p5. p6.
entails

answer set

● Equivalent to
#t3 :- #t2, p9.

#t4 :- #t2, p8.

#t2. p7. p8.

Declarative LPPN for transitions

● Equivalent to
#t3 :- #t2, p9.

#t4 :- #t2, p8.

#t2. p7. p8.

Declarative LPPN for transitions

#t2. p7. p8. #t4.
entails

answer set

propagation

● Equivalent to
#t3 :- #t2, p9.

#t4 :- #t2, p8.

#t2. p7. p8.

Declarative LPPN for transitions

#t2. p7. p8. #t4.

produces

p11.

entails

answer set

dog. flower. dog-walking. #dog-eats-flower.

animal :- dog.

object :- flower.

damage :- destruction.

#eat-object :- #dog-eats-flower.

#destroy-object :- #eat-object.

#destroy-object : object => -object, +destruction.

while John was walking his dog,
the dog ate Paul’s flowers (“story”)

causal mechanisms

logical dependencies
at level of events

logical dependencies
at level of objects

Initial example (partial model)

Execution semantics

Execution semantics
● The paper presents two semantics:

– a denotational semantics, mapping causal
mechanisms to ASP using Event Calculus → ASP solver

Execution semantics
● The paper presents two semantics:

– a denotational semantics, mapping causal
mechanisms to ASP using Event Calculus

– a hybrid semantics, consisting of 4 steps:
1. solve logical dependencies of objects
2. select one enabled transition to fire
3. solve logical dependencies of events
4. execute the selected firing using the Petri Net

→ ASP solver

→ ASP solver

direct computation

direct computation

Execution semantics
● The paper presents two semantics:

– a denotational semantics, mapping causal
mechanisms to ASP using Event Calculus

– a hybrid semantics, consisting of 4 steps:
1. solve logical dependencies of objects
2. select one enabled transition to fire
3. solve logical dependencies of events
4. execute the selected firing using the Petri Net

→ ASP solver

→ ASP solver

direct computation

direct computation

Question: how they compare in terms of
computational performance?

Execution semantics
● The paper presents two semantics:

– a denotational semantics, mapping causal
mechanisms to ASP using Event Calculus

– a hybrid semantics, consisting of 4 steps:
1. solve logical dependencies of objects
2. select one enabled transition to fire
3. solve logical dependencies of events
4. execute the selected firing using the Petri Net

→ ASP solver

→ ASP solver

direct computation

direct computation

Question: how they compare in terms of
computational performance? Why they should differ?

Experiment

Experiment
● We considered two basic reiterable structures at

process level:
– Serial composition (deterministic)
– Forking (non-deterministic)

● We executed a benchmark on nets obtained by iterating
these basic structures, with one token in the initial place

– for N iterations = 1, 11, …, 91 (serial)
– for N iterations = 1, 2, …, 10 (forking)

Code available at http://github.com/s1l3n0/pypneu

http://github.com/s1l3n0/pypneu

Results
Serial composition

Linear scale

Log scale

time
(ms)

Results
Forking composition

Log scale

Linear scale

time
(ms)

Why this difference? (intuition)

Denotational semantics:
Model execution as search

● Situation Calculus, Event Calculus, Fluent Calculus all
rely on some form of timestamp.

● Causal mechanisms are mapped to logical
dependences between timestamped snapshots

Causation in model => Logical constraints

● Petri nets do not require to reify the global state to
perform execution.

● They are directly mappable to individual instructions in
imperative programs, they utilize some (local) input to
produce some (local) output.

Causation in model => Computational causation

Hybrid semantics:
Model execution as execution

Conclusion
● The paper presents an empirical experiment with LPPNs,

a logic programming-based extension of Petri Nets.
● LPPNs were introduced with a practical goal: a visual

modelling notation, relatively simple for non-experts,
handling declarative and procedural aspects of the
target domain.

● Here the focus has been put on their computational
properties, showing that maintaining the two levels
separated has the potential to bring better
performances. The benchmark needs to be extended.

Conclusion
● The paper presents an empirical experiment with LPPNs,

a logic programming-based extension of Petri Nets.
● LPPNs were introduced with a practical goal: a visual

modelling notation, relatively simple for non-experts,
handling declarative and procedural aspects of the
target domain.

● Here the focus has been put on their computational
properties, showing that maintaining the two levels
separated has the potential to bring better
performances. The benchmark needs to be extended.

● Future developments: extension to predicate logic,
optimization of execution model, “canonic” models

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

