Disentangling Deontic Positions and Abilities: a Modal Analysis

14 October 2020, 35th CILC Conference @ Rende (virtual)

Giovanni Sileno <u>g.sileno@uva.nl</u> University of Amsterdam Matteo Pascucci <u>matteo.pascucci@savba.sk</u> Slovak Academy of Sciences

From individual devices to digital social systems...

Social networks

Distributed Ledgers

Digital Markets

...from "mechanical" to institutional approaches to computation...

detail of Babbage's Analytical Engine

(finite) Turing machine

the medieval port of Genoa, flourishing with the introduction of insurances, contract options and other mechanisms of risk management

Contribution of the paper

- a language of multimodal logic with
 - alethic operators (w.r.t. *simultaneous* nodes)
 - temporal operators (w.r.t. *successive* nodes)
 - deontic operators

involving **no** form of quantification

capturing Hohfeld's framework of normative positions

- first results on rendering fundamental coordination mechanisms
- proofs of soundness and completeness

Normative specifications (I): Control Models

```
Order Deny,Allow
Deny from all
Allow from example.org
```

example from Apache webserver configuration

Normative specifications (II): Deontic Logic

Normative specifications (III): Hohfeld's framework

Types of normative specifications: Comparison

	Control models	Deontic Logic	Hohfeld's framework
permission	Х	Х	Х
prohibition	Х	Х	Х
obligation		X	Х
power/ability			X
	1 party	1 party	2 parties
focus on	actions	situations	actions

Performer vs Observer perspectives

Ability

- Analytical literature
 - Brown [1988]
 - Brown [1992]
 - eg. Horty & Belnap [1995]
- Psychological literature
 - eg. Chemero [2003]
- Robotic literature
 - Sahin et al. [2007]
- initiates in Event Calculus

focus on situations

$$A(x,\phi) =_{def} \Diamond \blacksquare(x,\phi)$$

$$A(x,\phi) =_{def} \Diamond [x:dstit]\phi$$

focus on behaviour/actions

there is an analytical gap w.r.t. ability defined on actions!

Proposed Language

Configurations and propositions

We consider a special object "*" for the *whole system*.
 Configurations of the whole can be used to introduce 0-ary predicates in the language:

raining $=_{def}$ is(*, raining)

• Vice versa, we can associate configurations of the whole system with the propositional formulas describing them:

 $is(*, S_{\phi}) \leftrightarrow \phi$

[Φ is here constrained not to contain any $i_{s}(*,...)$ to avoid recursion]

Ability as directed change
it is possible for the agent
to perform the action
has_ability
$$(x, \alpha, S_{\phi}) =_{def} \diamond \text{performs}(x, \alpha) \land \diamond \neg \text{is}(*, S_{\phi}) \land$$

in all simultaneous
alternatives...
if the agent
performs the
action
if the agent
performs the
action
if the agent
performs the
action
if the agent
performs the
and the target
outcome is not
present in all successive
nodes
if the agent
performs the
and the target
outcome is not
present in all successive
nodes
if the agent
performs the
action
if the agent
performs the
and the target
outcome is not
present
in all successive
nodes

we define similarly **negative ability** (inhibiting an outcome)..

Disability as uncontrollability

has_disability $(x, \alpha, S_{\phi}) =_{def} \neg has_ability(x, \alpha, S_{\phi})$ $\land \neg has_neg_ability(x, \alpha, S_{\phi})$

 Disability, positive and negative abilities can be used to introduce further notions as enabling and disabling actions, *interference*, etc.

Normative components

• We extend the language by allowing a finite prefixing sequence of deontic operators of the type $_xO_y$ (directed obligation)

 ${}_{x}O_{y}\phi \quad \longleftrightarrow \quad \phi \text{ is obligatory}$ for x (duty-holder) w.r.t. y (claimant or claim-holder)

• We use the standard definitions of prohibition and permission: $_{x}F_{y}\phi =_{def} _{x}O_{y}\neg \phi \quad _{x}P_{y}\phi =_{def} \neg_{x}O_{y}\neg \phi$

Axiomatic Calculus

- We consider a calculus specified by the following axioms/rules:
- A0 All substitution instances of tautologies of the Propositional Calculus;
 R0 Modus Ponens;
- A1-R1 **S5**-principles for the operator \Box ;
- A2-R2 K-principles for the operator \blacksquare ;
- R3 To infer $(_x O_y \phi \leftrightarrow _x O_y \psi)$ from $(\phi \leftrightarrow \psi)$, for any $x, y \in AGE$.
- $A3 \qquad \Box \boxplus \phi \to \boxplus \Box \phi;$
- $A4 \qquad \diamondsuit \boxplus \bot \to \Box \boxplus \bot;$
- $A5 \qquad _x O_y \phi \to \Diamond \oplus \phi.$
 - Proven to be sound and complete w.r.t. its standard models.

Hohfeld's original framework

opposite

only actions performed by the duty-holder duty: $_{x}DT_{y}(\alpha) =_{def x}O_{y}$ performs (x, α) claim-right: $_{y}CR_{x}(\alpha) =_{def x}DT_{y}(\alpha)$ privilege (liberty): $_{x}PR_{y}(\alpha) =_{def x}P_{y}$ performs (x, α) no-claim: $_{y}NC_{x}(\alpha) =_{def x}PR_{y}(\alpha) \land _{x}P_{y} \neg \text{performs}(x, \alpha)$

only creation of obligations

Claim $\xleftarrow{}$ Duty

No-Claim \longleftrightarrow Privilege

opposite

power:
$$_{x}POW_{y}(\alpha, \phi) =_{def} has_ability(x, \alpha, S_{_{y}O_{x}\phi})$$

liability: $_{y}LBL_{x}(\alpha, \phi) =_{def x}POW_{y}(\alpha, \phi)$
disability: $_{x}DIS_{y}(\alpha, \phi) =_{def} has_disability(x, \alpha, S_{_{y}O_{x}\phi})$
immunity: $_{y}IMM_{x}(\alpha, \phi) =_{def x}DIS_{y}(\alpha, \phi)$

Hohfeld's extended framework

correlative

any formula Claim $\xleftarrow{}$ Duty duty: $_{x}DT_{y}(\phi) =_{def x}O_{y}\phi$ opposite opposite claim-right: $_{u}CR_{x}(\phi) =_{def} _{x}DT_{u}(\phi)$ privilege (liberty): $_{x}PR_{y}(\phi) =_{def} _{x}P_{y}\phi \wedge _{x}P_{y}\neg \phi$ no-claim: $_{y}NC_{x}(\phi) =_{def} _{x}PR_{y}(\phi)$ No-Claim \longleftrightarrow Privilege any conjunction of normative positions Power $\xleftarrow{\text{correlative}}{\longleftarrow}$ Liability power: $_{x}POW(\alpha, \phi') =_{def} has_ability(x, \alpha, S_{\phi'})$ opposite opposite liability: $_{u}LBL_{x}(\alpha, \phi') =_{def x}POW_{u}(\alpha, \phi')$ disability: $_xDIS_y(\alpha, \phi') =_{def} has_disability(x, \alpha, S_{\phi'})$ immunity: $_{u}IMM_{x}(\alpha, \phi') =_{def x}DIS_{u}(\alpha, \phi')$ Disability $\leftarrow \rightarrow$ Immunity

Examples of use: Sale contract

 $_{y}POW(offer,$ $_{x}POW(accept,$ $_{x}DT_{y}(pert)$

$$_{x}DT_{y}(performs(x, pay)) \land _{y}DT_{x}(performs(y, deliver)))$$

Examples of use: Data protection

 $_{x}DT_{y}(\neg performs(x, process)) \land$ $_{x}POW(collect_consent, _{x}PR_{y}(performs(x, process)))$

Examples of use: Exclusive delegation

 $_{x}POW(\alpha,\phi) \land$ $_{x}POW(delegate, _{y}POW(\alpha,\phi) \land _{x}DIS(\alpha,\phi))$

Conclusion

- The paper reports on a research effort unifying insights from modal logic and normative systems, having in mind applications of complex cyber infrastructures and socio-technical systems.
- **Key message:** deep entrenchment between deontic and potestative categories, and the second ones are required to model complex coordination constructs (e.g. delegation).
- **Future developments**: investigation of enforcement mechanisms, of the relation of power with conditional obligations, introduction of objects/agents roles and more complex forms of refined actions.

Disentangling Deontic Positions and Abilities: a Modal Analysis

14 October 2020, 35th CILC Conference @ Rende (virtual)

Giovanni Sileno <u>g.sileno@uva.nl</u> University of Amsterdam Matteo Pascucci <u>matteo.pascucci@savba.sk</u> Slovak Academy of Sciences

