Monitoring and enforcement as a second-order guidance problem

10 December 2020. JURIX 2020 @ Brno/Prague (virtual)

Giovanni Silenoa (g.sileno@uva.nl)
Alexander Boerb, Tom van Engersc

aInformatics Institute, University of Amsterdam, the Netherlands
bKPMG, Amsterdam, the Netherlands
cLeibniz Institute, TNO/University of Amsterdam, the Netherlands
Research context: Digital Market-Places (DMPs) infrastructures

legal norms rules of “society”
DMP policy rules of the “game”
agreements, contracts ad-hoc rules set amongst “players”
transactions “rules” of the infrastructure

Data-sharing infrastructures as DMPs exhibit the double status of computational and socio-economic systems
The developer’s view: Control

- Commander
- Instructions → Operators

Controlled environment (internal)
The user’s view: Guidance

- Decision-maker
- Directives
 - Commander
 - Instructions
 - Operators

Partially-controlled environment (external, micro-level)
The “maintainer”’s view: Second-order guidance

- **Policy-maker**
- Policies → **Decision-maker**
 - Directives → **Commander**
 - Instructions → **Operators**

Partially-controlled environment (external, macro-level)
The “maintainer”’s view: Second-order guidance

- Policy-maker
 - Policies → Decision-maker
 - Directives → Commander
 - Instructions → Operators

Partially-controlled environment (external, macro-level)

Second-order guidance depends on adoption. Enforcement measures are (some of) the means by which the policy-maker can influence adoption.
Example of "second-order" guidance problem
Cyber-attack scenario

- If you suffer of a cyber-attack, share the information with the consortium
- If you are notified of cyber-attack, start defensive maneuvers

Inspired by the SARNET project.
Cyber-attack scenario

- If you suffer of a cyber-attack, share the information with the consortium.
- If you are notified of cyber-attack, start defensive maneuvers.

Defensive maneuvers may carry costs for the service provider.

Sharing may be detrimental if the released data has competitive value.

Inspired by the SARNET project.
Cyber-attack scenario

- If you suffer of a cyber-attack, share the information with the consortium.
- If you are notified of cyber-attack, start defensive maneuvers.

Defensive maneuvers may carry costs for the service provider.

Sharing may be detrimental if the released data has competitive value.

What enforcement measures to apply?

Inspired by the SARNET project.
Types of enforcements
One of the functions of norms is to express **relative preferences** that should guide behaviour.

In context \(C \), action \(A \) is preferred to its omission.
Function of norms

- One of the functions of norms is to express **relative preferences** that should guide behaviour.

 \[\text{In context } C, \text{ action } A \text{ is preferred to its omission.} \]

- Existence of a collective value function, or more plausibly, of a partial order:

 \[C \rightarrow \nu_*(A) > \nu_*(\text{not } A) \quad \Rightarrow \quad C \rightarrow A >_{\nu_*} \text{not } A \]

 - collective value function
 - partial order
Norms per type of enforcement

• Relative expression of preference can be practically implemented in two forms:

Deontic directive

In context C, X has the duty of A, otherwise she will obtain P.

Potestative directive

In context C, X has the power to obtain R by performing A.
Norms per type of enforcement

- Relative expression of preference can be practically implemented in two forms:

Deontic directive
In context C, X has the duty of A, otherwise she will obtain P.

Potestative directive
In context C, X has the power to obtain R by performing A.

By whom?
Implicit reference to some *enforcer*
Formally, punishments and rewards are indistinguishable!

- A contract can be written as:
 - a price of $100 and a **penalty for late performance** of $9
 - a price of $91 and a **bonus for timely performance** of $9.

- In both cases the delivering party
 - takes $100 if it completes performance on time
 - takes $91 if it completes it late.
Formally, punishments and rewards are indistinguishable!

- A contract can be written as:
 - a price of $100 and a **penalty for late performance** of $9
 - a price of $91 and a **bonus for timely performance** of $9.

- In both cases the delivering party
 - takes $100 if it completes performance on time
 - takes $91 if it completes it late.

Are we missing something?
Monitoring requires resources!
(people, expertise, attention, time...)
Monitoring requires resources and can be difficult!
(discriminating true positives from false positives/fakes)
Variables in the interaction

- Agent deliberation
- Action
- Outcome
- Observation
- Provision of enforcement
- Monitoring
- Enforcement
- Reward
- Performance
- C (context)
- D (deliberation)
- A (action)
- O (outcome)
- C (context)
- M (monitoring)
- R (reward)
- P (performance)
- Not R
- Not P
- Not D
- Not A
- Not O

SOS
- Situational occurrence
- Applicability context
The model can be easily enriched with non-linear, circular, non-additive relationships, complex internal models and dynamic aspects (e.g. agent adaptation to norms).

OBJECTIVE: going beyond static payoff tables.
Simplified economic flows

<table>
<thead>
<tr>
<th>Authority</th>
<th>Agent X (addressee)</th>
<th>Collectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring cost: $m_p \cdot P(M) \cdot N$</td>
<td>Certification cost: c_r</td>
<td>Aggregated effects of performance: $(1 - \text{PNC}^e) \cdot P(C) \cdot N \cdot e_*$</td>
</tr>
<tr>
<td>Punishment benefit: $-p \cdot N_p$</td>
<td>Punishment cost: p</td>
<td>Aggregated effects of non-performance: $\text{PNC}^e \cdot P(C) \cdot N \cdot f_*$</td>
</tr>
<tr>
<td>Reward cost: $r \cdot N_R$</td>
<td>Reward benefit: $-r$</td>
<td></td>
</tr>
<tr>
<td>Costs per transaction (including amortized costs)</td>
<td>Non-normative effects of performance: e_X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-normative effects of non-performance: f_X</td>
<td></td>
</tr>
</tbody>
</table>

- **Number of agents**
- **(aggregated) potential of non-compliance**
Observations on Sustainability

$$(1 - \text{PNC}^e) \cdot e_* - \text{PNC}^e \cdot f_* \geq m_p \cdot \frac{P(M)}{P(C)} - p \cdot P(P|\text{not A}) \cdot \text{PNC}^e + r \cdot P(R|A) \cdot (1 - \text{PNC}^e)$$
Observations on Sustainability

\[(1 - \text{PNC}^e) \cdot e_* - \text{PNC}^e \cdot f_* \geq m_p \cdot \frac{P(M)}{P(C)} - p \cdot P(P \mid \text{not } A) \cdot \text{PNC}^e + r \cdot P(R \mid A) \cdot (1 - \text{PNC}^e)\]

- Cases in which **sticks have to be preferred**:
 - If people are **generally compliant**, too many “carrots” make the system not sustainable.
 - Punishment works already if there is a **perceived threat of punishment**, in which case \(P(M)\) can be kept sufficiently low at some moments.

Observations on Sustainability

\[
(1 - \text{PNC}^e) \cdot e_* - \text{PNC}^e \cdot f_* \geq m_p \cdot \frac{P(M)}{P(C)} - p \cdot P(P|\text{not A}) \cdot \text{PNC}^e + r \cdot P(R|A) \cdot (1 - \text{PNC}^e)
\]

- **Cases in which carrots have to be preferred:**
 - **singling out** problem: unequal distribution of burden across agents \(P(C) \sim 0\)
 - **specification problem**: difficult definition of the expected behaviour, which increases \(m_p\) in order to have adequate increase of \(P(\text{not O}|\text{not A})\).

Observations on Sustainability

\[(1 - \text{PNC}^e) \cdot e_* - \text{PNC}^e \cdot f_* \geq m_p \cdot \frac{P(M)}{P(C)} - p \cdot P(P|\text{not } A) \cdot \text{PNC}^e + r \cdot P(R|A) \cdot (1 - \text{PNC}^e)\]

- Cases in which carrots have to be preferred:
 - when agents are deemed by default non-compliant.

Observations on Sustainability

\[(1 - \text{PNC}^e) \cdot e_* - \text{PNC}^e \cdot f_* \geq m_p \cdot \frac{P(M)}{P(C)} - p \cdot P(P|\text{not A}) \cdot \text{PNC}^e + r \cdot P(R|A) \cdot (1 - \text{PNC}^e)\]

- **Cases in which carrots have to be preferred:**
 - when **agents are deemed by default non-compliant.**
 - increasing punishment is an alternative, but a rational choice for the agent would be to attempt **avoidance** behaviour (i.e. avoiding applicable conditions)
 - If applicability cannot be escaped, avoidance goes at meta-level, contesting the authority issuing the norm (eroding consensus)

Back to the initial problem...
Cyber-attack scenario

- **If you suffer of a cyber-attack, share the information with the consortium**

- **Beginning of the attack:**

 $P(\text{attack})$ low → **singling out** problem

 unknown attack → **specification** problem

 → **“carrots”**

 Sharing may be detrimental if the released data has competitive value

Inspired by the SARNET project.
Cyber-attack scenario

- *If you suffer of a cyber-attack, share the information with the consortium*

- Beginning of the attack:
 - $P(attack)$ low
 - Singling out problem
 - Unknown attack
 - Specification problem

- Generalized attack
 - Higher $P(attack)$
 - Known attack
 - "sticks"

- "carrots"

Sharing may be detrimental if the released data has competitive value

Inspired by the SARNET project.
Cyber-attack scenario

• If you suffer of a cyber-attack, share the information with the consortium

• Beginning of the attack:
 \[P(\text{attack}) \text{ low} \quad \rightarrow \quad \text{singling out problem} \]
 unknown attack \quad \rightarrow \quad \text{specification problem}

• Generalized attack
 higher P(\text{attack}) \quad \rightarrow \quad \text{“sticks”}
 known attack

• If releasing information too expensive for the individual
 expected general non-compliance

*Inspired by the SARNET project.
Conclusion

- Our research targets aspects of social-technical systems that cannot be treated by game-theoretical approaches based on static pay-off tables.

- With adequate values for the environmental parameters, and sound models (including non-linear, circular, etc.), the proposed template can be used to suggest policy parameters for monitoring and enforcement by means of optimization by simulation techniques,

GOAL: an integrated design platform for policy-making.
Monitoring and enforcement as a second-order guidance problem

10 December 2020. JURIX 2020 @ Brno/Prague (virtual)

Giovanni Silenoa (g.sileno@uva.nl)
Alexander Boerb, Tom van Engersc

a Informatics Institute, University of Amsterdam, the Netherlands
b KPMG, Amsterdam, the Netherlands
c Leibniz Institute, TNO/University of Amsterdam, the Netherlands