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● Human experience unfolds in patterns (tendencies, rules, laws, …) as much as 
in lack of determinism, even without taking into account quantum mechanics.

We live in a “probabilistic” world /1



● Started by investigating gambling, probability theory has grown to be the most 
important ingredient of formal accounts dealing with how rational agents 
(artificial or natural) reason in conditions of uncertainty.
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● Started by investigating gambling, probability theory has grown to be the most 
important ingredient of formal accounts dealing with how rational agents 
(artificial or natural) reason in conditions of uncertainty.

● Fundamental basis of Shannon’s theory of information. 

We live in a “probabilistic” world /2



● The probabilistic formula named after Thomas Bayes (Bayes’ rule) has a special role 
in this success, as it is used for
○ Bayesian models (e.g. Bayesian networks), 
○ Bayesian inference,
○ maximum a posteriori (MAP) estimation in statistics, 
○ core component of machine learning methods (e.g. variational autoencoders)
○ …

Bayes’ rule



● Applications supporting or reproducing human decision-making, e.g.
○ medical diagnosis
○ evidential reasoning (eg. in criminal court settings)
○ …

● Cognitive models of
○ animal learning 
○ visual perception 
○ motor control
○ language processing 
○ forms of social cognition 
○ …
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Uses of Bayes’ rule

PRESCRIPTIVE accounts:
how agents should reason

DESCRIPTIVE accounts:
how agents do produce inferences
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● clarity of the theoretical framework, 
● proven practical value 

PROs of probability theory 

…and CONs

as a FORMAL system
probability theory relies on a series of axioms,
e.g. a measurable space of events

as a MODELLING framework 
several cognitive patterns (often called biases or fallacies) 
are not predicted by probability theory 

but our experience of the 
world defies this closure

in particular, there is a mismatch in what humans perceive as 
informative w.r.t. Shannon’s notion of information



● Simplicity Theory (ST) is a computational model of cognition whose 
investigation started by observing the “informativity” mismatch. 

Simplicity Theory

NOISE SOURCE:
maximally informative following
Shannon’s theory of information 



● Simplicity Theory (ST) is a computational model of cognition whose 
investigation started by observing the “informativity” mismatch.

● ST predicts diverse human phenomena related to relevance:
○ unexpectedness
○ narrative interest
○ coincidences 
○ near-miss experiences 
○ emotional interest
○ responsibility

● ST has been used for experiments in artificial creativity.

Simplicity Theory
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● Formally, ST builds upon Algorithmic Information Theory (AIT). 

● In AIT, the complexity of a string is the minimal length of a program that, given 
a certain optional input parameter, produces that string as an output 
(Kolmogorov complexity)

Simplicity Theory: formal background

underlying 
Turing machine

target string additional input in support

executable program  

● Kolmogorov complexity is generally 
incomputable (due to the halting 
problem), but it is computable on 
bounded Turing machines.

We denote bounded 
complexities with     
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Unexpectedness: examples

● remarkable lottery draws: 11111 is more unexpected than 64178, even if the 
lottery is fair

● coincidences: meeting by chance an old friend from yours abroad is more 
unexpected than meeting there any random unknown person. 

● deterministic yet unexpected events: e.g. a lunar eclipse

causal complexity
via world machine

description complexity
via description machine

situation



Aim of the paper

Bayes’ rule is a specific instantiation of a more general 
template captured in ST by Unexpectedness

● Provide further arguments in support to non-probabilistic computational 
models in cognition, in particular focusing on the following:

conjecture



Bayes’ rule

● From the definition of conditional probability:  

we can obtain the formula of Bayes simply:

model
observation

often informally rewritten as:
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Unexpectedness as posterior

● In previous works, it has been hypothesized that ST’s Unexpectedness offers 
as non-extensional measure of posterior subjective probability: 

● Starting from this hypothesis, we looked 
for a mapping from Unexpectedness to 
Bayes’ rules, and indeed we see that:

problem: 1 parameter with unexpectednes, 
  2 with posterior

let’s investigate these two terms…
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Causal complexity

● The causal complexity is the length in bits of the shortest path that, according to the 
agent's world model, produces the situation.

● The causal path is temporally unfolded. The chain rule has the form:

● Being a Kolmogorov complexity, the cause can be omitted if it lies on the shortest path

sequential composition causal link
(implicit: from the current situation)

the Unexpectedness formula abstracts the causally explanatory factor
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Description complexity

● The description complexity is the length in bits of the shortest program that, 
leveraging mental resources, determines the situation

○ e.g. determination could correspond to retrieve the situation from memory, so 
informationally, we need to specify the address where to look at (an encoding)

● In the proposed mapping,             corresponds to          , the probability of observing 
that situation.

a theoretical link can be then established through optimal encoding in 
Shannon’s terms, where probability is assessed through frequency.

● Complexity is however a more general measure, as it allows us to consider 
compositional effects (eg. à la Gestalt) via adequate mental operations



Bayes’ rule vs Unexpectedness

● Bayes’ rule is a specific instantiation of ST’s Unexpectedness that:

○ makes a candidate “cause” explicit and does not select automatically the best one

○ takes a frequentist-like approach for encoding observables.



Why is this relevant?

● Unexpectedness is a more generally applicable measure.

● In the paper we show that it can be used to build:

○ an informational principle of framing

○ a model of derived likelihood 

○ an explanation of the prosecutor’s fallacy
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● Let us consider an additional prior in Bayes’ formula, a sort of ‘environmental context’.
Following probability theory we have two equivalent formulations for the posterior:

● These formulations are not equivalent when expressed in complexity terms!

All prior is posterior of some other prior

abstracting c as before 
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● Let us compute the difference between the two formulations:

● Two distinct chain rules apply on the world and description machines:

All prior is posterior of some other prior

describing e and s together may be 
simpler than fully determining one 
term before the other 
(cf. informed search)

the temporal 
constraint is dropped
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● Let us compute the difference between the two formulations:

a necessary condition for which the two formulations may be 
equivalent is that the contextual prior is not unexpected. 

All prior is posterior of some other prior

applying the chain rules…

informational principle of framing
all contextual situations which are not unexpected provide grounds to be neglected; 
the remaining situations provide the “relevant” context for the situation in focus.

shared facts, defaults, and also 
improbable but descriptively complex situations
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● Following ST, we do not have direct access to the causal complexity, as we need always 
to pass through a descriptive step to identify what to compute. 

● So, how can we estimate likelihood? Counting back the description complexity!

Derived likelihood
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● Consider the estimation of the likelihood that the wall changes colour if I close the door:

● The likelihood that a stone in the world moves if I close the door:

Derived likelihood: examples

because these 
elements are just 
in front of me

because this never
occurred 

it is implausible
(if it occurred)

it is improbable
(to occur)

because I need to
specify of which 
stone I am talking

because this never
occurred 

it is plausible
(if it occurred)

it is improbable
(to occur)

NOTE: If the stone e.g. is in the room or 
was already described, we return to the first case!
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● Suppose that, following forensic studies, the probability that a certain DNA evidence 
appears if the defendant is guilty is deemed very high.
 

● The prosecutor’s fallacy occurs when the probability that the defendant is guilty (given 
that there is DNA evidence) is also concluded to be comparatively high.

Prosecutor’s fallacy

this is a fallacy as it 
neglects the base rates 
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● Let us reframe the problem in terms of complexity, introducing the definition of causally 
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● Applying the chain rule:
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● The proposed conjecture provides further arguments in support to non-probabilistic 
computational models of cognition. 

● A complexity-based account allows distinguishing between relevant and irrelevant 
contextual elements, while the probabilistic account treats them equally. 

● Remaining open questions is how the underlying machines should be defined. 

● Yet, the abstraction level of algorithmic information theory is already relevant to draw 
insights on cognitive processes, as we have shown here eg. with the analysis of the 
prosecutor’s fallacy.

 

Conclusions
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