Unexpectedness and Bayes' rule

6 December 2021, CIFMA workshop

Giovanni Sileno g.sileno@uva.nl

University of Amsterdam

Jean-Louis Dessalles jean-louis.dessalles@telecom-paris.fr

Télécom Paris -- Institut Polytechnique de Paris

We live in a "probabilistic" world /1

• Human experience unfolds in patterns (tendencies, rules, laws, ...) as much as in lack of determinism, even without taking into account quantum mechanics.

We live in a "probabilistic" world /2

 Started by investigating gambling, probability theory has grown to be the most important ingredient of formal accounts dealing with how rational agents (artificial or natural) reason in conditions of *uncertainty*.

We live in a "probabilistic" world /2

- Started by investigating gambling, probability theory has grown to be the most important ingredient of formal accounts dealing with how rational agents (artificial or natural) reason in conditions of *uncertainty*.
- Fundamental basis of Shannon's theory of information.

Bayes' rule

- The probabilistic formula named after Thomas Bayes (**Bayes' rule**) has a special role in this success, as it is used for
 - Bayesian models (e.g. Bayesian networks),
 - Bayesian inference,
 - maximum a posteriori (MAP) estimation in statistics,
 - o core component of machine learning methods (e.g. *variational autoencoders*)
 - 0 ...

Uses of Bayes' rule

- Applications supporting or reproducing human decision-making, e.g.
 - medical diagnosis
 - evidential reasoning (eg. in criminal court settings)

0 ...

- Cognitive models of
 - animal learning
 - visual perception
 - motor control
 - language processing
 - forms of social cognition

0 ...

Uses of Bayes' rule

- Applications supporting or reproducing human decision-making, e.g.
 - medical diagnosis
 - evidential reasoning (eg. in criminal court settings)
 - 0 ...
- Cognitive models of
 - animal learning
 - visual perception
 - motor control
 - language processing
 - forms of social cognition

0 ...

PRESCRIPTIVE accounts: how agents should reason

DESCRIPTIVE accounts: how agents do produce inferences

- clarity of the theoretical framework,
- proven practical value

- clarity of the theoretical framework,
- proven practical value

...and CONs

as a FORMAL system

probability theory relies on a series of axioms, e.g. a *measurable space* of events

- clarity of the theoretical framework,
- proven practical value

...and CONs

as a FORMAL system

probability theory relies on a series of axioms, e.g. a *measurable space* of events

but our experience of the world defies this closure

- clarity of the theoretical framework,
- proven practical value

...and CONs

as a FORMAL system

probability theory relies on a series of axioms, e.g. a *measurable space* of events

but our experience of the world defies this closure

as a MODELLING framework

several cognitive patterns (often called biases or fallacies) are not predicted by probability theory

- clarity of the theoretical framework,
- proven practical value

...and CONs

as a FORMAL system

probability theory relies on a series of axioms, e.g. a *measurable space* of events

but our experience of the world defies this closure

as a MODELLING framework

several cognitive patterns (often called biases or fallacies) are not predicted by probability theory

in particular, there is a mismatch in what humans perceive as *informative* w.r.t. Shannon's notion of information

Simplicity Theory

• Simplicity Theory (ST) is a computational model of cognition whose investigation started by observing the "informativity" mismatch.

NOISE SOURCE: maximally informative following Shannon's theory of information

Simplicity Theory

- Simplicity Theory (ST) is a computational model of cognition whose investigation started by observing the "informativity" mismatch.
- ST predicts diverse human phenomena related to relevance:
 - unexpectedness
 - narrative interest
 - coincidences
 - near-miss experiences
 - emotional interest
 - *responsibility*
- ST has been used for experiments in *artificial creativity*.

• Formally, ST builds upon Algorithmic Information Theory (AIT).

- Formally, ST builds upon Algorithmic Information Theory (AIT).
- In AIT, the *complexity* of a string is the minimal length of a program that, given a certain optional input parameter, produces that string as an output (Kolmogorov complexity)

$$K_{\phi}(x|y) = \min_{p} \left\{ |p| : p(y) = x \right\}$$

$$\underset{\text{target string}}{\stackrel{\text{target string}}{\text{target string}}} additional input in support$$

- Formally, ST builds upon Algorithmic Information Theory (AIT).
- In AIT, the *complexity* of a string is the minimal length of a program that, given a certain optional input parameter, produces that string as an output (Kolmogorov complexity)

how much information is needed for a program constructing the object

$$K_{\phi}(x|y) = \min\{|p|: p(y) = x\}$$

executable program

target string underlying Turing machine additional input in support

how much time or space is needed for running it (algorithmic or time-complexity)

- Formally, ST builds upon Algorithmic Information Theory (AIT).
- In AIT, the *complexity* of a string is the minimal length of a program that, given a certain optional input parameter, produces that string as an output (Kolmogorov complexity)

$$K_{\phi}(x|y) = \min_{p} \left\{ |p| : p(y) = x \right\}$$

$$\underset{\text{target string target str$$

 Kolmogorov complexity is generally incomputable (due to the halting problem), but it is computable on *bounded Turing machines*.

- Formally, ST builds upon Algorithmic Information Theory (AIT).
- In AIT, the *complexity* of a string is the minimal length of a program that, given a certain optional input parameter, produces that string as an output (Kolmogorov complexity)

$$K_{\phi}(x|y) = \min_{p} \left\{ |p| : p(y) = x \right\}$$
executable program
additional input in support
underlying
Turing machine

 Kolmogorov complexity is generally incomputable (due to the halting problem), but it is computable on *bounded Turing machines*.

We denote bounded complexities with C

Unexpectedness

• ST starts from the observation that humans are highly susceptible to *complexity drops*, ie. for them

situations are *relevant* if they are *simpler* to describe than to explain

Unexpectedness

• ST starts from the observation that humans are highly susceptible to *complexity drops*, ie. for them

situations are *relevant* if they are *simpler* to describe than to explain

• Formally, this is captured by the formula of unexpectedness, expressed as divergence of complexity computed on two distinct machines

$$U(s) = C_W(s) - C_D(s)$$

situation
causal complexity
via world machine
 $U(s) = C_W(s) - C_D(s)$
description complexity
via description machine

Unexpectedness

S

• ST starts from the observation that humans are highly susceptible to *complexity drops*, ie. for them

situations are *relevant* if they are *simpler* to describe than to explain

• Formally, this is captured by the formula of unexpectedness, expressed as divergence of complexity computed on two distinct machines

$$U(s) = C_W(s) - C_D(s)$$
ituation
$$C_W \quad \text{world} \rightarrow \text{situation}$$

$$C_W \quad \text{world} \rightarrow \text{situation}$$

$$C_D \quad C_D \quad C_$$

~

Unexpectedness: examples

- **remarkable lottery draws**: 11111 is more unexpected than 64178, even if the lottery is fair
- **coincidences**: meeting by chance an old friend from yours abroad is more unexpected than meeting there any random unknown person.
- deterministic yet unexpected events: e.g. a lunar eclipse

$$U(s) = C_W(s) - C_D(s)$$
situation
$$(C_W)$$

$$(C_W)$$

$$(C_W)$$

$$(C_D)$$

$$($$

Aim of the paper

• Provide further arguments in support to non-probabilistic computational models in cognition, in particular focusing on the following:

conjecture

Bayes' rule is a specific instantiation of a more general template captured in ST by Unexpectedness

Bayes' rule

• From the definition of conditional probability:

$$p(O \cap M) = p(M|O) \cdot p(O) = p(M) \cdot p(O|M)$$

we can obtain the formula of Bayes simply:

$$p(M|O) = \frac{p(M \cap O)}{p(O)} = \frac{p(O|M) \cdot p(M)}{p(O)}$$
observation
often informally rewritten as:
$$posterior = \frac{likelihood \cdot prior}{evidence}$$

• In previous works, it has been hypothesized that ST's Unexpectedness offers as *non-extensional* measure of *posterior subjective probability*:

posterior $= 2^{-U}$

 In previous works, it has been hypothesized that ST's Unexpectedness offers as non-extensional measure of posterior subjective probability:

posterior $= 2^{-U}$

U(s)

• Starting from this hypothesis, we looked for a mapping from Unexpectedness to Bayes' rules, and indeed we see that:

$$\log \frac{1}{p(M|O)} = \log \frac{p(O)}{p(O|M) \cdot p(M)} = \log \frac{1}{p(O|M)} + \log \frac{1}{p(M)} - \log \frac{1}{p(O)}$$

 In previous works, it has been hypothesized that ST's Unexpectedness offers as non-extensional measure of posterior subjective probability:

posterior $= 2^{-U}$

• Starting from this hypothesis, we looked for a mapping from Unexpectedness to Bayes' rules, and indeed we see that: problem: 1 parameter with unexpectednes, 2 with posterior $C_W(s)$ $C_D(s)$

 In previous works, it has been hypothesized that ST's Unexpectedness offers as non-extensional measure of posterior subjective probability:

posterior $= 2^{-U}$

• Starting from this hypothesis, we looked for a mapping from Unexpectedness to Bayes' rules, and indeed we see that: problem: 1 parameter with unexpectednes, $p(M|O) = \frac{p(O|M) \cdot p(M)}{p(O)}$ p(O)p(O) $p(O) = \frac{U(s)}{1} = \log \frac{p(O)}{p(O|M) \cdot p(M)} = \log \frac{1}{p(O|M)} + \log \frac{1}{p(M)} - \log \frac{1}{p(O)}$ let's investigate these two terms...

• The causal complexity is the length in bits of the shortest path that, according to the agent's world model, *produces* the situation.

- The causal complexity is the length in bits of the shortest path that, according to the agent's world model, *produces* the situation.
- The causal path is temporally unfolded. The chain rule has the form:

$$C_W(c*s) = C_W(s||c) + C_W(c)$$

sequential composition causal link

(implicit: from the current situation)

- The causal complexity is the length in bits of the shortest path that, according to the agent's world model, *produces* the situation.
- The causal path is temporally unfolded. The chain rule has the form:

$$C_W(c * s) = C_W(s||c) + C_W(c$$

sequential composition causal link
(implicit: from the current situation)

• Being a Kolmogorov complexity, the cause can be omitted if it lies on the shortest path

$$C_W(s) = \min_{c} C_W(c * s) = \min_{c} \left[C_W(s || c) + C_W(c) \right]$$

- The causal complexity is the length in bits of the shortest path that, according to the agent's world model, *produces* the situation.
- The causal path is temporally unfolded. The chain rule has the form:

$$C_W(c * s) = C_W(s || c) + C_W(c)$$
 sequential composition causal link

(implicit: from the current situation)

• Being a Kolmogorov complexity, the cause can be omitted if it lies on the shortest path

$$C_W(s) = \min_c C_W(c * s) = \min_c [C_W(s||c) + C_W(c)]$$

the Unexpectedness formula abstracts the causally explanatory factor

• The description complexity is the length in bits of the shortest program that, leveraging mental resources, *determines* the situation

- The description complexity is the length in bits of the shortest program that, leveraging mental resources, *determines* the situation
 - e.g. determination could correspond to retrieve the situation from memory, so informationally, we need to specify the address where to look at (an *encoding*)

- The description complexity is the length in bits of the shortest program that, leveraging mental resources, *determines* the situation
 - e.g. determination could correspond to retrieve the situation from memory, so informationally, we need to specify the address where to look at (an *encoding*)

 $C_W(s)$

 $\log \frac{1}{p(O|M)} + \log \frac{1}{p(M)}$

 $C_D(s)$

• In the proposed mapping, $C_D(s)$ corresponds to p(O), the probability of observing that situation.

a theoretical link can be then established through **optimal encoding** in Shannon's terms, where probability is **assessed through frequency**.

- The description complexity is the length in bits of the shortest program that, leveraging mental resources, *determines* the situation
 - e.g. determination could correspond to retrieve the situation from memory, so informationally, we need to specify the address where to look at (an *encoding*)

 $C_W(s)$

 $\log \frac{1}{n(O|M)} + \log \frac{1}{n(M)}$

 $C_D(s)$

• In the proposed mapping, $C_D(s)$ corresponds to p(O), the probability of observing that situation.

a theoretical link can be then established through **optimal encoding** in Shannon's terms, where probability is *assessed through frequency.*

 Complexity is however a more general measure, as it allows us to consider compositional effects (eg. à la Gestalt) via adequate mental operations

Bayes' rule vs Unexpectedness

- Bayes' rule is a specific instantiation of ST's Unexpectedness that:
 - makes a candidate "cause" explicit and does not select automatically the best one
 - takes a frequentist-like approach for encoding observables.

Why is this relevant?

- Unexpectedness is a more generally applicable measure.
- In the paper we show that it can be used to build:
 - an informational principle of framing
 - a model of derived likelihood
 - an explanation of the prosecutor's fallacy

• Let us consider an additional prior in Bayes' formula, a sort of 'environmental context'. Following probability theory we have two equivalent formulations for the posterior:

$$p(M|O,E) = \frac{p(M \cap O|E)}{p(O|E)} = \frac{p(M \cap O \cap E)}{p(O \cap E)}$$

• Let us consider an additional prior in Bayes' formula, a sort of 'environmental context'. Following probability theory we have two equivalent formulations for the posterior:

$$p(M|O,E) = \frac{p(M \cap O|E)}{p(O|E)} = \frac{p(M \cap O \cap E)}{p(O \cap E)}$$

• These formulations are **not equivalent** when expressed in complexity terms! $C_W(c * s || e) - C_D(s | e)$ $C_W(e * c * s) - C_D(e * s)$

• Let us consider an additional prior in Bayes' formula, a sort of 'environmental context'. Following probability theory we have two equivalent formulations for the posterior:

$$p(M|O, E) = \frac{p(M \cap O|E)}{p(O|E)} = \frac{p(M \cap O \cap E)}{p(O \cap E)}$$

hese formulations are **not equivalent** when expressed in complexity terms!
$$C_W(c * s||e) - C_D(s|e) \qquad C_W(e * c * s) - C_D(e * s)$$

abstracting c as before
$$C_W(s||e) - C_D(s|e) \equiv U(s||e) \qquad C_W(e * s) - C_D(e * s) = U(e * s)$$

• Let us compute the difference between the two formulations:

 $U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$

• Let us compute the difference between the two formulations:

$$U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$$

• Two distinct chain rules apply on the world and description machines:

 $C_W(e * s) = C_W(e) + C_W(s||e)$ $C_D(e * s) \le C_D(e) + C_D(s|e)$

Let us compute the difference between the two formulations:

$$U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$$

Two distinct chain rules apply on the world and description machines:

 $C_W(e * s) = C_W(e) + C_W(s||e)$ $C_D(e * s) \le C_D(e) + C_D(s|e)$

describing *e* and *s* together may be simpler than fully determining one term before the other (cf. informed search)

the temporal constraint is dropped

• Let us compute the difference between the two formulations:

 $U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$

applying the chain rules...

$$U(e * s) - U(s||e) \ge C_W(e) - C_D(e) = U(e)$$

• Let us compute the difference between the two formulations:

 $U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$

applying the chain rules...

$$U(e * s) - U(s||e) \ge C_W(e) - C_D(e) = U(e)$$

a necessary condition for which the two formulations may be equivalent is that the contextual prior is *not* unexpected. $U(e) \approx 0$

• Let us compute the difference between the two formulations:

 $U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$

applying the chain rules...

$$U(e * s) - U(s||e) \ge C_W(e) - C_D(e) = U(e)$$

a necessary condition for which the two formulations may be equivalent is that the contextual prior is *not* unexpected. $U(e) \approx 0$

shared facts, defaults, and also improbable but descriptively complex situations

• Let us compute the difference between the two formulations:

 $U(e * s) - U(s||e) = C_W(e * s) - C_D(e * s) - C_W(s||e) + C_D(s|e)$

applying the chain rules...

$$U(e * s) - U(s||e) \ge C_W(e) - C_D(e) = U(e)$$

a necessary condition for which the two formulations may be equivalent is that the contextual prior is *not* unexpected. $U(e) \approx 0$

shared facts, defaults, and also

informational principle of framing

all contextual situations which are not unexpected provide grounds to be neglected; the remaining situations provide the "relevant" context for the situation in focus.

Derived likelihood

• Following ST, we do not have direct access to the causal complexity, as we need always to pass through a descriptive step to identify what to compute. $U(s) = C_W(s) - C_D(s)$

Derived likelihood

- Following ST, we do not have direct access to the causal complexity, as we need always to pass through a descriptive step to identify what to compute. $U(s) = C_W(s) C_D(s)$
- So, how can we estimate likelihood? Counting back the description complexity! $C_W^U(s||c) = U(s||c) + C_D(s|c)$

• Consider the estimation of the likelihood that the wall changes colour if I close the door:

• Consider the estimation of the likelihood that the wall changes colour if I close the door:

$$C_D pprox 0$$

$$C_W \gg 0$$

because these elements are just in front of me because this never occurred

• Consider the estimation of the likelihood that the wall changes colour if I close the door:

 $C_D \approx 0$

$$C_W \gg 0$$

because this never occurred

 $U \approx C_W \gg 0$

it is implausible (if it occurred)

$$C_W^U = U + C_D \gg 0$$

it is improbable (to occur)

because these elements are just in front of me

• Consider the estimation of the likelihood that the wall changes colour if I close the door:

 $C_D \approx 0$

because these

in front of me

elements are just

$$C_W \gg$$

because this never occurred

0

$$U \approx C_W \gg$$

0

it is implausible (if it occurred)

$$C_W^U = U + C_D \gg 0$$

it is improbable (to occur)

• The likelihood that a stone in the world moves if I close the door:

• Consider the estimation of the likelihood that the wall changes colour if I close the door:

 $C_D pprox 0$ because these elements are just in front of me $C_W \gg 0$

$$U \approx C_W \gg$$

0

it is implausible (if it occurred)

$$C_W^U = U + C_D \gg 0$$

it is improbable (to occur)

• The likelihood that a stone in the world moves if I close the door:

$$C_D \gg 0 \qquad C_W \gg 0$$

because I need to specify of which stone I am talking

because this never occurred

• Consider the estimation of the likelihood that the wall changes colour if I close the door:

 $C_D pprox 0$ because these elements are just in front of me $C_W \gg 0$

because this never occurred

 $U \approx C_W \gg 0$

it is implausible (if it occurred)

$$C_W^U = U + C_D \gg 0$$

it is improbable (to occur)

The likelihood that a stone in the world moves if I close the door:

$$C_D \gg 0$$

 $C_W \gg 0$

$$U \approx 0$$

it is plausible (if it occurred)

 $C_W^U = U + C_D \gg 0$

it is improbable (to occur)

because I need to specify of which stone I am talking because this never occurred

Consider the estimation of the likelihood that the wall changes colour if I close the door:

 $C_D \approx 0$ because these elements are just in front of me

 $C_W \gg 0$

because this never occurred

because this never

it is implausible (if it occurred)

 $U \approx C_W \gg 0$ $C_W^U = U + C_D \gg 0$

it is improbable (to occur)

The likelihood that a stone in the world moves if I close the door.

$$C_D \gg 0$$

because I need to

stone I am talking

specify of which

$$C_W \gg 0$$

 $U \approx 0$

it is plausible (if it occurred)

$$C_W^U = U + C_D \gg 0$$

it is improbable (to occur)

NOTE: If the stone e.g. is in the room or was already described, we return to the first case!

occurred

Prosecutor's fallacy

• Suppose that, following forensic studies, the probability that a certain DNA evidence appears if the defendant is guilty is deemed very high.

Prosecutor's fallacy

- Suppose that, following forensic studies, the probability that a certain DNA evidence appears if the defendant is guilty is deemed very high.
- The **prosecutor's fallacy** occurs when the probability that the defendant is guilty (given that there is DNA evidence) is also concluded to be comparatively high.

 $p(O|M) \approx 1 \rightsquigarrow p(M|O) \approx 1$ [Prosecutor's fallacy]

Prosecutor's fallacy

- Suppose that, following forensic studies, the probability that a certain DNA evidence appears if the defendant is guilty is deemed very high.
- The **prosecutor's fallacy** occurs when the probability that the defendant is guilty (given that there is DNA evidence) is also concluded to be comparatively high.

 $p(O|M) \approx 1 \rightsquigarrow p(M|O) \approx 1$ [Prosecutor's fallacy]

$$p(M|O) = \frac{p(M \cap O)}{p(O)} = \frac{p(O|M) \cdot p(M)}{p(O)}$$
this is a fallacy as it neglects the base rates

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

$$\begin{array}{ll} U_c(s) = C_W(c \ast s) - C_D(s) & \quad U(s) = \min_d U_d(s) \\ & & \text{maps to} \\ & & p(M|O) \end{array}$$

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

$$U_c(s) = C_W(c * s) - C_D(s)$$
 $U(s) = \min_d U_d(s)$
maps to
posterior
 $p(M|O)$
Applying the chain rule:

$$U_{c}(s) = C_{W}(c * s) - C_{D}(s) = C_{W}(s||c) + C_{W}(c) - C_{D}(s)$$

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

$$U_c(s) = C_W(c * s) - C_D(s) \qquad U(s) = \min_d U_d(s)$$

• Applying the chain rule:

$$egin{aligned} U_c(s) &= C_W(c st s) - C_D(s) = C_W(s||c) + C_W(c) - C_D(s) \ &pprox 0 \ ext{because} \ p(O|M) &pprox 1 \end{aligned}$$

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

$$U_c(s) = C_W(c * s) - C_D(s) \qquad U(s) = \min_d U_d(s)$$

If the procurator finds plausible that the suspect is guilty:

$$U(c) = C_W(c) - C_D(c) \approx 0$$

• Applying the chain rule:

 $U_c(s) = C_W(c * s) - C_D(s) = C_W(s||c) + C_W(c) - C_D(s)$ $pprox \mathbf{0} \approx \mathbf{0} \approx C_D(c)$

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

Considering the limited number of suspects

$$U_c(s) = C_W(c * s) - C_D(s) \qquad U(s) = \min_d U_d(s)$$

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

$$U_c(s) = C_W(c * s) - C_D(s) \qquad U(s) = \min_d U_d(s)$$

• Let us reframe the problem in terms of complexity, introducing the definition of *causally constrained unexpectedness*, computed before the selection of the best cause in unexpectedness:

$$U_c(s) = C_W(c * s) - C_D(s) \qquad U(s) = \min_d U_d(s)$$

• Applying the chain rule:

$$U_c(s) = C_W(c * s) - C_D(s) = C_W(s||c) + C_W(c) - C_D(s) \quad \approx 0$$

 $C_W(s||c) \approx 0 \iff U_c(s) \approx 0$ [Prosecutor's fallacy]

Conclusions

- The proposed conjecture provides further arguments in support to non-probabilistic computational models of cognition.
- A complexity-based account allows distinguishing between relevant and irrelevant contextual elements, while the probabilistic account treats them equally.
- Remaining open questions is how the underlying machines should be defined.
- Yet, the abstraction level of algorithmic information theory is already relevant to draw insights on cognitive processes, as we have shown here eg. with the analysis of the prosecutor's fallacy.

Unexpectedness and Bayes' rule

6 December 2021, CIFMA workshop

Giovanni Sileno g.sileno@uva.nl

University of Amsterdam

Jean-Louis Dessalles jean-louis.dessalles@telecom-paris.fr

Télécom Paris -- Institut Polytechnique de Paris

