
DPCL: a Language Template 
for Normative Specifications
16 January 2022, ProLaLa @ POPL 2022 

Giovanni Sileno g.sileno@uva.nl Matteo Pascucci 
Thomas van Binsbergen
Tom van Engers

University of Amsterdam

Slovak Academy of Sciences

mailto:g.sileno@uva.nl


from individual devices to 
digital social systems...

Digital Markets

Social networks

Distributed Ledgers

Internet of Things



not instructions, but contracts, regulations, laws…

from “mechanical” to “institutional” 
approaches to computation...

focus on
PERFOMANCE 

focus on
COORDINATING EXPECTATIONS 

Digital Markets
Internet of Things



ok, we need to represent 
normative directives, but how? 



ok, we need to represent 
normative directives, but how? 

1. do we need normative concepts?
2. if yes, which normative concepts    

do we need?
3. what do they “mean”?



1. do we need normative concepts?

programs in themselves 
are mandatory in nature



1. do we need normative concepts?

programs in themselves 
are mandatory in nature

a := 2 + 2    system has to perform 2 + 2… 
?mother(maggie, bart) system has to prove that…
animal :- dog.    system has to make animal true if dog is true 



1. do we need normative concepts?

programs in themselves 
are mandatory in nature

PERFORMANCE 
is expected

the system does what we tell it to do



1. do we need normative concepts?

programs in themselves 
are mandatory in nature

PERFORMANCE 
is expected

vs FAILURE is expected



1. do we need normative concepts?

programs in themselves 
are mandatory in nature

PERFORMANCE 
is expected

VIOLATION
certain components
may not perform 
as required

vs FAILURE is expected



1. do we need normative concepts?

programs in themselves 
are mandatory in nature

PERFORMANCE 
is expected

VIOLATION
certain components
may not perform 
as required

CONFLICT
concurrent 
components
may have 
incompatible
requests

vs FAILURE is expected



1. do we need normative concepts?

programs in themselves 
are mandatory in nature

PERFORMANCE 
is expected

VIOLATION
certain components
may not perform 
as required

CONFLICT
concurrent 
components
may have 
incompatible
requests

vs FAILURE is expected

CENTRAL PROBLEM:
who will declare that 
there is/was indeed a 
failure?



● Control models (e.g. access or usage control)

2. which normative concepts do we need?

example from Apache webserver configuration 



● Deontic logic(s)

2. which normative concepts do we need?



● Hohfeld’s (based on Salmond’s) normative relationships 

duty-holderclaimant

2. which normative concepts do we need?

power-holder power-subject



Control models Deontic Logic(s) Hohfeld’s framework

permission X X X (as liberty)

prohibition X X X (as duty not)

obligation X X (as duty)

power/ability X

1 party 1 party 2 parties

focus on actions situations actions

2. which normative concepts do we need?



● long-standing debate 
● no shared agreement
● new semantics continuously released

3. what normative concepts “mean”?



ok, we need to represent 
normative directives, but how? 

1. do we need normative concepts?
2. if yes, which normative concepts    

do we need?
3. what do they “mean”?

expecting performance vs expecting failures (violations and conflicts)  

control models vs deontic logics 
vs hohfeldian relationships

…long-standing debate. no shared agreement.



ok, we need to represent 
normative directives, but how? 

1. do we need normative concepts?
2. if yes, which normative concepts    

do we need?
3. what do they “mean”?

4. how to specify normative directives?

expecting performance vs expecting failures (violations and conflicts)  

control models vs deontic logics 
vs hohfeldian relationships

…long-standing debate. no shared agreement.



ok, we need to represent 
normative directives, but how? 

1. do we need normative concepts?
2. if yes, which normative concepts    

do we need?
3. what do they “mean”?

4. how to specify normative directives?

expecting performance vs expecting failures (violations and conflicts)  

control models vs deontic logics 
vs hohfeldian relationships

…long-standing debate. no shared agreement.

programmability, readability, (cognitive) accessibility, …?



Success story: ODRL (Open Digital Rights Language)

https://www.w3.org/TR/odrl-model/ 

https://www.w3.org/TR/odrl-model/


ODRL
Information
Model

primacy 
to deontic
categories



{
  "@context": "http://www.w3.org/ns/odrl.jsonld",
  "@type": "Offer",
  "uid": "http://example.com/policy:4444",
  "profile": "http://example.com/odrl:profile:11",
  "permission": [{
    "assigner": "http://example.com/org88",
    "target": {
      "@type": "AssetCollection",
      "source":  "http://example.com/media-catalogue",
      "refinement": [{
        "leftOperand": "runningTime",
        "operator": "lt",
        "rightOperand": { "@value": "60", "@type": "xsd:integer" },
        "unit": "http://qudt.org/vocab/unit/MinuteTime"
      }]
    },
    "action": "play"
  }]
}

ODRL
example

roughly: permission to org88 to play assets in collection with running length < 60 min

json
data
structure



{
  "@context": "http://www.w3.org/ns/odrl.jsonld",
  "@type": "Offer",
  "uid": "http://example.com/policy:4444",
  "profile": "http://example.com/odrl:profile:11",
  "permission": [{
    "assigner": "http://example.com/org88",
    "target": {
      "@type": "AssetCollection",
      "source":  "http://example.com/media-catalogue",
      "refinement": [{
        "leftOperand": "runningTime",
        "operator": "lt",
        "rightOperand": { "@value": "60", "@type": "xsd:integer" },
        "unit": "http://qudt.org/vocab/unit/MinuteTime"
      }]
    },
    "action": "play"
  }]
}

ODRL
example

roughly: permission to org88 to play assets in collection with running length < 60 min

json
data
structure

almost any IT practitionner is 
able to read through it



DPCL: in a nutshell

● JSON-like syntax  
● with foundational ontological intuitions expressed in 

○ LKIF-core and cognitive linguistics: objects vs events 
○ LPS: transformational rules vs reactive rules

● finer representational granularity given by Hohfeld’s framework, 
● expressed in frames as in FLINT/eFLINT, but with more & simpler frames
● bottom-line informational model rather than a full-fledged formal semantics



DPCL: in a nutshell

● JSON-like syntax  
● with foundational ontological intuitions expressed in 

○ LKIF-core and cognitive linguistics: objects vs events 
○ LPS: transformational rules vs reactive rules

● finer representational granularity given by Hohfeld’s framework, 
● expressed in frames as in FLINT/eFLINT, but with more & simpler frames
● bottom-line informational model rather than a full-fledged formal semantics

● yet, semantics can be partially defined by rewriting rules 
● we are exploring an alternative standpoint to the usual types/instances 

extensional semantics, but more in line to qualification acts
● we are integrating a conditional preferential ordering to manage conflicts



DPCL: entities

We follow the common-sensical distinction:

● states: condition, object, agent
● (transition) events: 

○ primitive events: #action
○ production/removal events: +object, -object
○ qualification/disqualification events: object in group, …



DPCL: parameters and refinements

Any entity can be refined via some parameter, eg. in the case of actions:

#give {
agent: john
item: apple
recipient: paul

}

#eat {
agent: paul
item: apple

}



DPCL: power frame 

power {
holder: priest
action: #marry { patient: [john, paul] }
consequence: +married(john, paul)

}



DPCL: power frame 

power {
holder: priest
action: #marry { patient: [john, paul] }
consequence: +married(john, paul)

}

a power reifies an
(institutional) causal mechanism 

conditioned by qualification of agent 
conditioned by procedure of action
affecting a limited domain of competence



DPCL: duty frame

duty {
holder: john
counterparty: university
action: #teach { recipient: student }
violation: john.online is False

}



DPCL: duty frame

duty {
holder: john
counterparty: university
action: #teach { recipient: student }
violation: john.online is False

}

a duty reifies an expectation (of 
“good”) for the counterparty 



DPCL: duty frame

duty {
holder: john
counterparty: university
action: #teach { recipient: student }
violation: john.online is False

}

sometimes violations may be defined independently of the content of the duty

a duty reifies an expectation (of 
“good”) for the counterparty 



DPCL: prohibition frame

prohibition {
holder: john
action: #go { destination: swimming }
termination: ~winter

}



DPCL: prohibition frame

prohibition {
holder: john
action: #go { destination: swimming }
termination: ~winter

}

another example of “semantic neutrality”: not all logics consider the 
“prohibition to do A” the same as the “obligation of not doing A” 

sometimes normative directives have terminating conditions 
independent of performance 



DPCL: conditioning rules

● Transformational rules (as long as the premise is true, the conclusion is true):

raining -> wet
bike -> vehicle 

● Reactive rules (when the antecedent occurs, the consequent occurs):

#rain => +wet
#raise_hand => +bet



DPCL: conditioning rules

● Transformational rules (as long as the premise is true, the conclusion is true):

raining -> wet
bike -> vehicle 

● Reactive rules (when the antecedent occurs, the consequent occurs):

#rain => +wet
#raise_hand => +bet

● Contexts are generally involved in transformational rules:

auction -> { #raise_hand => +bet } 



DPCL, example: library regulation

student or staff can register as member of the library by using their id card.

power {
holder: student | staff
action: #register { instrument: holder.id_card }
consequence: holder in member

}



DPCL, example: library regulation

any member can borrow a book for a certain time (e.g. 1 month).

power {
holder: member
action: #borrow { item: book }
consequence: +borrowing {

    lender: library
    borrower: member
    item: book
    timeout: now() + 1m 

}
}

reference to 
compound, parametrized 
institutional object



DPCL, example: library regulation

by borrowing, the borrower can be requested in any moment to return the item.

borrowing(lender, borrower, item, timeout) {
 

power {
    holder: lender
    action: #request_return { item: item } 
    consequence: +duty {
        holder: borrower
        counterparty: lender
        action: #return { item: item }
    }

} 

compound, parametrized 
institutional object
(other examples: ownership)



DPCL, example: library regulation

the borrower has the duty to return the item within the given date.

duty d1 {
    holder: borrower
    counterparty: lender
    action: #return { item: item }
    violation: now() > timeout % illustrative

}



if the borrower does not return it, (s)he may be fined.

+d1.violation => +power {
    holder: lender
    action: #fine
    consequence: +fine(borrower, lender)

}
 
} reactive conditional

DPCL, example: library regulation



“Lingua franca”, and rewriting

● As the informational model of DPCL covers most common constructs and 
concepts observable in normative languages, one could in principle:

○ re-specify existing normative directives almost literally

○ utilize rewriting rules to re-encode certain constructs into others

○ cross-compile the transformed model into a target “policy” tool 
(interpreting it according to its own semantics), eg. BGP policies for 
routing, a deontic reasoner, etc.



Rewriting example: all is about power!

● All conditions (e.g. preconditions, violation, termination) implicitly refers to a 
power that may (should?) be assigned to someone. 

● This is an actual step in policy operationalization in administrative settings.



Rewriting example: all is about power!

● Unfolding a violation construct to the power to declare that violation…

prohibition p { 
action: #smoke

}

p -> {
#smoke => +power {

holder: *
action: #declare_violation { item: p }
consequence: p.violated

}
}



Rewriting example: all is about power!

● More in general any duty comes with two powers: one to declare fulfilment, 
another one to declare violation.

duty d { 
holder: john
counterparty: paul
action: #pay
violation: timeout

}



Rewriting example: all is about power!

● More in general any duty comes with two powers: one to declare fulfilment, 
another one to declare violation.

duty d { 
holder: john
counterparty: paul
action: #pay
violation: timeout

}

d -> {
#pay => +power {

holder: paul
action: #declare_fulfillment { item: d }
consequence: d.fulfilled

}
timeout => +power {

holder: paul
action: #declare_violation { item: d }
consequence: d.violated

}
}

here we assign these 
powers to the counterparty, 
the claimant



Rewriting example: rules as duties & powers 

● Transformational rules can be seen not only as “epistemic” duties (about 
producing knowledge), but also as powers!

bike -> vehicle

vehicle :- bike.    
system has to make vehicle true if bike is true 

Logic rules as goals



Rewriting example: rules as duties & powers 

● Transformational rules can be seen not only as “epistemic” duties (about 
producing knowledge), but also as powers!

bike -> vehicle

bike -> {
duty { 

holder: * 
action: +vehicle 

} 
power {

holder: *
action: #state { item: vehicle }
consequence: +vehicle

}
}

mandatory view

ability view



Rewriting example: rules as duties & powers 

● Transformational rules can be seen not only as “epistemic” duties (about 
producing knowledge), but also as powers!

bike -> vehicle

bike -> {
duty { 

holder: * 
action: +vehicle 

} 
power {

holder: *
action: #state { item: vehicle }
consequence: +vehicle

}
}

mandatory view

ability view

LESS IMPORTANT IN
A SOCIAL COORDINATION
SETTING!



Rewriting example: maintenance duties

● Unfolding maintenance duties (about states of affairs) 
in terms of duties of actions

duty d1 { 
target: g1

}

d1 -> {
~g1 -> duty { action: +g1 } 
g1 -> prohibition { action: -g1 }

}

maintenance duty

achievement duty

avoidance duty



Perspectives

● Working on languages for computational regulatory functions is a highly 
relevant and urgent topic. 

● Very dispersed literature, opinions, standpoints. In the years, new generations 
of researchers and practitioners often restarted from scratch to try to solve 
old, partially resolved problems. 

● Ideally, as a community, we should start by creating grounds and 
infrastructures to compare and organize all these experiences. 



Perspectives

● Practical standpoint of modelling practitioners (generally not logicians, nor 
expert programmers) is generally not taken into account. 

● Besides, normative systems have characteristics that make them very 
different from standard computer engineering/science perspectives.

● DPCL started as an experiment in the design of a programming language 
motivated by these alternative practical requirements. So far, lots of ideas!

● First prototype of interpreter in course of development.


