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○ it eliminates the need for “trust” amongst the parties
○ ...and traditional third-parties (lawyers, notaries, courts) whose 

activity is meant to increase the confidence in the contract 

● smart perhaps in the sense of economically profitable?  

$$$how? making breaches prohibitively expensive

crucial critical point to all this enterprise!!!
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essential idea: technology as a vault

the possibility of breaching is
prohibitively expensive

ex-ante enforcement

● What to protect?
○ (valuable?) digital assets
○ “contracts” (reified as assets)
○ automated performance

tokens!
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If a node is destroyed, a copy is still 
maintained in all others!!!
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e.g. glosses
rephrasing
the meaning
of some word

in terms of medieval technology

double entry 
bookkeeping
(Florence, 
Venice ~1300)
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● distributed ledger + consensus protocol 

“blockchain” =

checks for integrity are 
performed across the 
network, no central 
authority

techniques: Proof of Work (PoW),
Proof of Stake (PoS), etc.

Bitcoin data structure
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“smart contract” 
= code running on blockchain

which code?

source code byte-code 
or machine code

compilation

libraries
in byte-code

deployment

pragma solidity >=0.4.22 <0.6.0;

contract Ballot {
    struct Voter {
        uint weight; 
        bool voted;  
        address delegate; 
        uint vote;   
    }

    struct Proposal {
        bytes32 name;   
        uint voteCount; 
    }

    address public chairperson;

    [...]

“human-readable” instructions low-level instructions
[developer’s view] [user’s view]

virtual
machine

on blockchain

in most cases Ethereum



“smart contract” most used meaning
 = immutable low-level instructions

  cloned on each node
  running in a decentralized fashion 
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what are low-level instructions?

byte-code 
or machine code

● Individual primitive operations to be run on the 
virtual machine

eg. move a value from memory into a register, move a value from register 
to memory, perform operations between register and put value in 
register….

memory
(eg. RAM)

input/output 
(I/O) 

peripherals

central processing 
unit (CPU)

registers

von Neumann 
architecture

essentially,
computational “logistics”
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https://solidity-by-example.org/app/english-auction/ 

and “higher-level”
instructions?

(source code)

not very different from
computational “logistics”

https://solidity-by-example.org/app/english-auction/
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difference between “imperative” and 
“declarative” programming languages

If we accept the “labyrinth” may change, 
we need declarative forms of 
programming.

Why they haven’t been considered so far?

…generally computationally more expensive

Yet, higher-abstraction constructs are more 
intelligible to humans.
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a bilateral contract is a formal agreement in 
which both parties exchange promises to 
perform

● What are the gaps with usual contracts? 
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● Informational model (e.g. normative primitives): contemporary smart 
contracts allow to specify imperative instructions driving performance mapping 
only to positive duties. What about prohibitions? What about permissions, legal 
competences? cf. normative systems, computational theory of law
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contracts vs “smart contracts”
vs digital enforceable contracts?

  
● Readability
● Control and ex-post enforcement
● Amendment, Delegation, Mandate
● Regulation
● Informational model 

However, the “dynamics” of contracts depends not only on 
performance-related elements, but also on contextual factors (legal, social, 
physical) that modify the contract semantics itself. 

The question is: Can any socio-institutional systems (legal or not) be 
sustainable without these capacities? 


