
smart contracts
principles and beyond
Blockchain and the Law. March 2022, seminar UCP

Giovanni Sileno, University of Amsterdam. g.sileno@uva.nl

mailto:g.sileno@uva.nl

smart contract

● term introduced by Nick szabo
in the 1996

smart contract

● term introduced by Nick szabo
in the 1996

● ...well before the introduction of
blockchain (2008)

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter" than their paper-based ancestors.

No use of artificial intelligence is implied.

Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter" than their paper-based ancestors.

No use of artificial intelligence is implied.

Smart Contracts Glossary, Nick Szabo (1995)

a bilateral contract is a formal agreement in
which both parties exchange promises to
perform

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter" than their paper-based ancestors.

No use of artificial intelligence is implied.

Smart Contracts Glossary, Nick Szabo (1995)

rules, procedures constraining the interaction

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a
computer network, or in other forms of digital electronics,

thus these contracts are "smarter" than their paper-based ancestors.

No use of artificial intelligence is implied.

Smart Contracts Glossary, Nick Szabo (1995)

rules, procedures constraining the interaction

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter" than their paper-based ancestors.

No use of artificial intelligence is implied.

Smart Contracts Glossary, Nick Szabo (1995)

???

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter" than their paper-based ancestors.

No use of artificial intelligence is implied.

Smart Contracts Glossary, Nick Szabo (1995)

then, smart in what sense?

● According to the vulgata:
○ as the contract will perform exactly as designed
○ it eliminates the need for “trust” amongst the parties
○ ...and traditional third-parties (lawyers, notaries, courts) whose

activity is meant to increase the confidence in the contract

then, smart in what sense?

● According to the vulgata:
○ as the contract will perform exactly as designed
○ it eliminates the need for “trust” amongst the parties
○ ...and traditional third-parties (lawyers, notaries, courts) whose

activity is meant to increase the confidence in the contract

● smart perhaps in the sense of economically profitable? $$$

then, smart in what sense?

● According to the vulgata:
○ as the contract will perform exactly as designed
○ it eliminates the need for “trust” amongst the parties
○ ...and traditional third-parties (lawyers, notaries, courts) whose

activity is meant to increase the confidence in the contract

● smart perhaps in the sense of economically profitable?

crucial critical point to all this enterprise!!!

then, smart in what sense?

● According to the vulgata:
○ as the contract will perform exactly as designed
○ it eliminates the need for “trust” amongst the parties
○ ...and traditional third-parties (lawyers, notaries, courts) whose

activity is meant to increase the confidence in the contract

● smart perhaps in the sense of economically profitable?

$$$how? making breaches prohibitively expensive

crucial critical point to all this enterprise!!!

essential idea: technology as a vault

the possibility of breaching is
prohibitively expensive

ex-ante enforcement

essential idea: technology as a vault

the possibility of breaching is
prohibitively expensive

ex-ante enforcement

● What to protect?
○ (valuable?) digital assets
○ “contracts” (reified as assets)
○ automated performance

tokens!

● How to protect (the content of) a book from invasions, wars, and plagues?

in terms of medieval technology

● How to protect (the content of) a book from invasions, wars, and plagues?
● Copy it, and distribute the copies through a network of monasteries!

in terms of medieval technology

● How to protect (the content of) a book from invasions, wars, and plagues?
● Copy it, and distribute the copies through a network of monasteries!

in terms of medieval technology

If a node is destroyed, a copy is still
maintained in all others!!!

● Typically copying bring errors, exemplars of
the book are never identical

in terms of medieval technology

● Typically copying bring errors, exemplars of
the book are never identical

in terms of medieval technology

technological improvement:
introduce error checking machinery, typically via additional
content used to check integrity

● Typically copying bring errors, exemplars of
the book are never identical

technological improvement:
introduce error checking machinery, typically via additional
content used to check integrity

e.g. glosses
rephrasing
the meaning
of some word

in terms of medieval technology

● Typically copying bring errors, exemplars of
the book are never identical

technological improvement:
introduce error checking machinery, typically via additional
content used to check integrity

e.g. glosses
rephrasing
the meaning
of some word

in terms of medieval technology

double entry
bookkeeping
(Florence,
Venice ~1300)

● Typically copying bring errors, exemplars of
the book are never identical

● Introduce conflict resolution strategies
○ philology provides several methods to

“reconstruct” the original source, e.g.
majority of sources, comparative analysis,
provenance history

in terms of medieval technology

● Typically copying bring errors, exemplars of
the book are never identical

● Introduce conflict resolution strategies
○ philology provides several methods to

“reconstruct” the original source, e.g.
majority of sources, comparative analysis,
provenance history

in terms of medieval technology

“consensus” protocol

● distributed ledger + consensus protocol

“blockchain” =

the same ledger is
copied across the
network

● distributed ledger + consensus protocol

“blockchain” =

compressed information (a sort of fingerprint) of the previous block,
if the previous block is modified its hash is not the same

the ledger embeds
machinery to test its
integrity

Bitcoin data structure

● distributed ledger + consensus protocol

“blockchain” =

checks for integrity are
performed across the
network, no central
authority

techniques: Proof of Work (PoW),
Proof of Stake (PoS), etc.

Bitcoin data structure

“smart contract”
= code running on blockchain

“smart contract”
= code running on blockchain

which code? in most cases Ethereum

“smart contract”
= code running on blockchain

which code?

source code
pragma solidity >=0.4.22 <0.6.0;

contract Ballot {
 struct Voter {
 uint weight;
 bool voted;
 address delegate;
 uint vote;
 }

 struct Proposal {
 bytes32 name;
 uint voteCount;
 }

 address public chairperson;

 [...]

“human-readable” instructions
[developer’s view]

in most cases Ethereum

“smart contract”
= code running on blockchain

which code?

source code byte-code
or machine code

compilation

pragma solidity >=0.4.22 <0.6.0;

contract Ballot {
 struct Voter {
 uint weight;
 bool voted;
 address delegate;
 uint vote;
 }

 struct Proposal {
 bytes32 name;
 uint voteCount;
 }

 address public chairperson;

 [...]

“human-readable” instructions low-level instructions
[developer’s view] [user’s view]

in most cases Ethereum

“smart contract”
= code running on blockchain

which code?

source code byte-code
or machine code

compilation

libraries
in byte-code

deployment

pragma solidity >=0.4.22 <0.6.0;

contract Ballot {
 struct Voter {
 uint weight;
 bool voted;
 address delegate;
 uint vote;
 }

 struct Proposal {
 bytes32 name;
 uint voteCount;
 }

 address public chairperson;

 [...]

“human-readable” instructions low-level instructions
[developer’s view] [user’s view]

virtual
machine

on blockchain

in most cases Ethereum

“smart contract” most used meaning
 = immutable low-level instructions

 cloned on each node
 running in a decentralized fashion

what are low-level instructions?

byte-code
or machine code

● Individual primitive operations to be run on the
virtual machine

eg. move a value from memory into a register, move a value from register
to memory, perform operations between register and put value in
register….

what are low-level instructions?

byte-code
or machine code

● Individual primitive operations to be run on the
virtual machine

eg. move a value from memory into a register, move a value from register
to memory, perform operations between register and put value in
register….

what are low-level instructions?

byte-code
or machine code

● Individual primitive operations to be run on the
virtual machine

eg. move a value from memory into a register, move a value from register
to memory, perform operations between register and put value in
register….

memory
(eg. RAM)

input/output
(I/O)

peripherals

central processing
unit (CPU)

registers

von Neumann
architecture

what are low-level instructions?

byte-code
or machine code

● Individual primitive operations to be run on the
virtual machine

eg. move a value from memory into a register, move a value from register
to memory, perform operations between register and put value in
register….

memory
(eg. RAM)

input/output
(I/O)

peripherals

central processing
unit (CPU)

registers

von Neumann
architecture

essentially,
computational “logistics”

and “higher-level”
instructions?

(source code)

https://solidity-by-example.org/app/english-auction/

and “higher-level”
instructions?

(source code)

https://solidity-by-example.org/app/english-auction/

https://solidity-by-example.org/app/english-auction/

and “higher-level”
instructions?

(source code)

https://solidity-by-example.org/app/english-auction/

https://solidity-by-example.org/app/english-auction/

and “higher-level”
instructions?

(source code)

not very different from
computational “logistics”

https://solidity-by-example.org/app/english-auction/

difference between “imperative” and
“declarative” programming languages

difference between “imperative” and
“declarative” programming languages

We have a labyrinth.

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit

I can:

● write down the instructions to perform
(imperative programming)

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit

I can:

● write down the instructions to perform
(imperative programming)

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

I can:

● write down the instructions to perform
(imperative programming)

● write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

I can:

● write down the instructions to perform
(imperative programming)

● write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

I can:

● write down the instructions to perform
(imperative programming)

● write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

I can:

● write down the instructions to perform
(imperative programming)

● write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking

difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

I can:

● write down the instructions to perform
(imperative programming)

● write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking

difference between “imperative” and
“declarative” programming languages

If we accept the “labyrinth” may change,
we need declarative forms of
programming.

difference between “imperative” and
“declarative” programming languages

If we accept the “labyrinth” may change,
we need declarative forms of
programming.

Why they haven’t been considered so far?

…generally computationally more expensive

difference between “imperative” and
“declarative” programming languages

If we accept the “labyrinth” may change,
we need declarative forms of
programming.

Why they haven’t been considered so far?

…generally computationally more expensive

Yet, higher-abstraction constructs are more
intelligible to humans.

● What are the differences with respect to other programs?

“smart contract” most used meaning
 = immutable low-level instructions

 cloned on each node
 running in a decentralized fashion

● What are the gaps with usual contracts?

“smart contract” most used meaning
 = immutable low-level instructions

 cloned on each node
 running in a decentralized fashion

“smart contract” most used meaning
 = immutable low-level instructions

 cloned on each node
 running in a decentralized fashion

a bilateral contract is a formal agreement in
which both parties exchange promises to
perform

● What are the gaps with usual contracts?

contracts vs “smart contracts”

● Readability: parties should understand what the agreement is about

contracts vs “smart contracts”

● Readability: parties should understand what the agreement is about
● Control: parties should maintain autonomy on performance. e.g.

non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

contracts vs “smart contracts”

● Readability: parties should understand what the agreement is about
● Control: parties should maintain autonomy on performance. e.g.

non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

● Amendment, Delegation, Mandate, etc. are all common constructs
applicable on contracts (unless explicitly disabled), but not in smart contracts.

contracts vs “smart contracts”

● Readability: parties should understand what the agreement is about
● Control: parties should maintain autonomy on performance. e.g.

non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

● Amendment, Delegation, Mandate, etc. are all common constructs
applicable on contracts (unless explicitly disabled), but not in smart contracts.

● Regulation: there is not an equivalent of contract law or private law
regulations (a sort of meta-contracts) in smart contracts

contracts vs “smart contracts”

● Readability: parties should understand what the agreement is about
● Control: parties should maintain autonomy on performance. e.g.

non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

● Amendment, Delegation, Mandate, etc. are all common constructs
applicable on contracts (unless explicitly disabled), but not in smart contracts.

● Regulation: there is not an equivalent of contract law or private law
regulations (a sort of meta-contracts) in smart contracts

● Informational model (e.g. normative primitives): contemporary smart
contracts allow to specify imperative instructions driving performance mapping
only to positive duties. What about prohibitions? What about permissions, legal
competences? cf. normative systems, computational theory of law

contracts vs “smart contracts”

● Readability
● Control and ex-post enforcement
● Amendment, Delegation, Mandate
● Regulation
● Informational model

In most practical applications smart contracts depend on offline events, triggered
by oracles. The environment “sets” the pace of execution.

contracts vs “smart contracts”

● Readability
● Control and ex-post enforcement
● Amendment, Delegation, Mandate
● Regulation
● Informational model

However, the “dynamics” of contracts depends not only on
performance-related elements, but also on contextual factors (legal, social,
physical) that modify the contract semantics itself.

● Readability
● Control and ex-post enforcement
● Amendment, Delegation, Mandate
● Regulation
● Informational model

However, the “dynamics” of contracts depends not only on
performance-related elements, but also on contextual factors (legal, social,
physical) that modify the contract semantics itself.

The question is: Can any socio-institutional systems (legal or not) be
sustainable without these capacities?

contracts vs “smart contracts”

contracts vs “smart contracts”
vs digital enforceable contracts?

● Readability
● Control and ex-post enforcement
● Amendment, Delegation, Mandate
● Regulation
● Informational model

However, the “dynamics” of contracts depends not only on
performance-related elements, but also on contextual factors (legal, social,
physical) that modify the contract semantics itself.

The question is: Can any socio-institutional systems (legal or not) be
sustainable without these capacities?

