- )‘(cwpux
S \ — CYBER
X INFRASTRUCTURE

smart contracts

principles and beyond

Blockchain and the Law. March 2022, seminar UCP

Giovanni Sileno, University of Amsterdam. g.sileno@uva.nl


mailto:g.sileno@uva.nl

smart contract

term introduced by Nick szabo
in the 1996

Smart Contracts: Building Blocks for Digital Markets

Copyright (c) 1996 by Nick Szabo
permission to redistribute without alteration hereby granted

Glossary
(This is a partial rewrite of the article which appeared in Extropy #16)
Introduction

The contract, a set of promises agreed to in a "meeting of the minds", is the traditional way to
formalize a relationship. While contracts are primarily used in business relationships (the focus
of this article), they can also involve personal relationships such as marraiges. Contracts are
also important in politics, not only because of "social contract" theories but also because
contract enforcement has traditionally been considered a basic function of capitalist
governments.

Whether enforced by a government, or otherwise, the contract is the basic building block of a
free market economy. Over many centuries of cultural evolution has emerged both the concept
of contract and principles related to it, encoded into common law. Algorithmic information
theory suggests that such evolved structures are often prohibitively costly to recompute. If we
started from scratch, using reason and experience, it could take many centuries to redevelop
sophisticated ideas like property rights that make the modern free market work [Hayek].



smart contract

e term introduced by Nick szabo

in the 1996

e ...well before the introduction of

blockchain (2008)

Smart Contracts: Building Blocks for Digital Markets

Copyright (c) 1996 by Nick Szabo
permission to redistribute without alteration hereby granted

Glossary
(This is a partial rewrite of the article which appeared in Extropy #16)
Introduction

The contract, a set of promises agreed to in a "meeting of the minds", is the traditional way to
formalize a relationship. While contracts are primarily used in business relationships (the focus
of this article), they can also involve personal relationships such as marraiges. Contracts are
also important in politics, not only because of "social contract" theories but also because
contract enforcement has traditionally been considered a basic function of capitalist
governments.

Whether enforced by a government, or otherwise, the contract is the basic building block of a
free market economy. Over many centuries of cultural evolution has emerged both the concept
of contract and principles related to it, encoded into common law. Algorithmic information
theory suggests that such evolved structures are often prohibitively costly to recompute. If we
started from scratch, using reason and experience, it could take many centuries to redevelop
sophisticated ideas like property rights that make the modern free market work [Hayek].

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of



Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter” than their paper-based ancestors.

No use of artificial intelligence is implied.



Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

a bilateral contract is a formal agreement in

which both parties exchange promises to
/ perform
A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter” than their paper-based ancestors.

No use of artificial intelligence is implied.



Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

A Set Of promlses, rules, procedures constraining the interaction

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter” than their paper-based ancestors.

No use of artificial intelligence is implied.



Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

== =
Ep = T |
A set of promises, rules, procedures constraining the interaction :ja:g
including protocols within which the parties perform on the other promis A
The protocols are usually implemented with programs ona ——— ekt

computer network, or in other forms of digital electronics,

thus these contracts are "smarter” than their paper-based ancestors.

No use of artificial intelligence is implied.



Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter” than their paper-based ancestors. ? ‘p ‘p
o o o

No use of artificial intelligence is implied.



Smart Contracts Glossary, Nick Szabo (1995)

“smart contract”

A set of promises,

including protocols within which the parties perform on the other promises.

The protocols are usually implemented with programs on a computer
network, or in other forms of digital electronics,

thus these contracts are "smarter” than their paper-based ancestors.

No use of artificial intelligence is implied.



then, smart in what sense?

e According to the vulgata:
o as the contract will perform exactly as designed
o it eliminates the need for “trust” amongst the parties
o ...and traditional third-parties (lawyers, notaries, courts) whose
activity is meant to increase the confidence in the contract




then, smart in what sense?

e According to the vulgata:
o as the contract will perform exactly as designed
o it eliminates the need for “trust” amongst the parties
o ...and traditional third-parties (lawyers, notaries, courts) whose
activity is meant to increase the confidence in the contract

e smart perhaps in the sense of economically profitable”? $ $ $



then, smart in what sense?

crucial critical point to all this enterprise!!!

e

e According to the vulgata:
o as the contract will perform exactly as designed
o it eliminates the need for “trust” amongst the parties
o ...and traditional third-parties (lawyers, notaries, courts) whose
activity is meant to increase the confidence in the contract

e smart perhaps in the sense of economically profitable?



then, smart in what sense?

crucial critical point to all this enterprise!!!

e

e According to the vulgata:
o as the contract will perform exactly as designed
o it eliminates the need for “trust” amongst the parties
o ...and traditional third-parties (lawyers, notaries, courts) whose
activity is meant to increase the confidence in the contract

e smart perha

how? making breaches prohibitively expensive $ $ $

in the sense of economically profitable?



essential idea: technology as a wvault

the possibility of breaching is
/ prohibitively expensive

ex-ante enforcement



essential idea: technology as a wvault

tokens!

e What to protect? /
o (valuable?) digital assets
o ‘“contracts” (reified as assets)
o automated performance

the possibility of breaching is
/ prohibitively expensive

ex-ante enforcement



in terms of medieval technology

e How to protect (the content of) a book from invasions, wars, and plagues?




in terms of medieval technology

e How to protect (the content of) a book from invasions, wars, and plagues?
e Copy it, and distribute the copies through a network of monasteries!




in terms of medieval technology

e How to protect (the content of) a book from invasions, wars, and plagues?
e Copy it, and distribute the copies through a network of monasteries!

If a node is destroyed, a copy is still
maintained in all others!!!




in terms of medieval technology

e Typically copying bring errors, exemplars of
the book are never identical

| T CLT e e ]
BEm-ceee et sl

. puinommes hiuey




in terms of medieval technology

e Typically copying bring errors, exemplars of
the book are never identical

/

technological improvement:
introduce error checking machinery, typically via additional
content used to check integrity

‘ (LI [T .‘,,- '-. — o
 puinetimogshivey |
‘ ! .

T nédienfcmp o



in terms of medieval technology

e Typically copying bring errors, exemplars of
the book are never identical

/

technological improvement:
introduce error checking machinery, typically via additional
content used to check integrity

)‘ Il< ,_...T _‘.- ‘h. '!T; ‘
Pz Hiues

o nedicafcap, o

e.g. glosses
rephrasing
the meaning
of some word



in terms of medieval technology

e Typically copying bring errors, exemplars of
the book are never identical

/

technological improvement:
introduce error checking machinery, typically via additional
content used to check integrity

‘ (LI [T .‘,,- '-. — o
 puinetimogshivey |
‘ ! .

e.g. glosses

rephrasing

the meaning double entry

of some word bookkeeping
(Florence,
Venice ~1300)




in terms of medieval technology

e Typically copying bring errors, exemplars of
the book are never identical

nedicndctap o

e Introduce conflict resolution strategies
o philology provides several methods to
“reconstruct” the original source, e.g.
majority of sources, comparative analysis,
provenance history




in terms of medieval technology

e Typically copying bring errors, exemplars of
the book are never identical

“consensus” protocol nedicnfctp o

e Introduce conflict resolution strategies
o philology provides several methods to
“reconstruct” the original source, e.g.
majority of sources, comparative analysis,
provenance history




“blockchain” =

e distributed ledger + consensus protocol

Node A Node B

- -5

Ledger Ledger

Ledger Ledger

=-M -2

Node D Node C

the same ledger is
copied across the
network



“blockchain” =

® distributed ledger + consensus protocol

Block o the ledger embeds
;» Prev Hash || Nonce j frevBash § Nonce machinery to test its
Tx Tx T Tx mtegrlty

compressed information (a sort of fingerprint) of the previous block,
if the previous block is modified its hash is not the same

Bitcoin data structure



“blockchain” =

e distributed ledger + consensus protocol

i Block checks for integrity are
—» Prev Hash Nonce » Prev Hash Nonce | — performed aCross the
Tx Tx Tx Tx network, no central

authority

techniques: Proof of Work (PoW),
Proof of Stake (PoS), etc.

Bitcoin data structure



“smart contract”
= code running on blockchain



“smart contract”
= code running on blockchain

which code? in most cases Ethereum



“smart contract”

= code running on blockchain

which code?

source code

pragma solidity >=0.4.22 <0.6.0;

contract Ballot {
struct Voter {
uint weight;
bool voted;
address delegate;
uint vote;

}
struct Proposal {

bytes32 name;
uint voteCount;

}

address public chairperson;

[...]

“human-readable” instructions

[developer’s view]

in most cases Ethereum



“smart contract”
= code running on blockchain

which code? in most cases Ethereum

byte-code
or machine code

1 60606040526004361061006d576000357
2 000000: PUSH1 0x60

source code

pragma solidity >=0.4.22 <0.6.0;

contract Ballot { 3 000002: PUSH1 0x40
struct Voter { 4 000004: MSTORE
: : . H H 5 000005: PUSH1 0x04
uint weight; Compl|atI0n & 000007: CALLDATASIZE
bool voted; 7 000008: LT
address delegate; 8 000009: PUSH2 0x006d
uint vote; 000012: JUMPI
} 10 000013: PUSH1 0x00
11 000015: CALLDATALOAD
12 000016: PUSH29 0x0100000000000000
struct Proposal { 13 000046: SWAPL
bytes32 name; 14 000047: DIV
uint voteCount; 15 000048: PUSH4 Oxffffffff
16 000053: AND
}

17 000054: DUPl
000055: PUSH4 0x362186ed

address public chairperson; 000060: EQ
20 000061: PUSH2 0x008d
[...1 21 000064: JUMPI

22 000065: DUP1

“human-readable” instructions low-level instructions

[developer’s view] [user’s view]



“smart contract”
= code running on blockchain

which code? in most cases Ethereum

byte-code
or machine code

1 60606040526004361061006d576000357
2 000000: PUSH1 0x60

source code

pragma solidity >=0.4.22 <0.6.0;

contract Ballot { 3 000002: PUSH1 0x40

struct Voter { 4 000004: MSTORE

uint weight; ilati > 000005: puSAI 0x04 deployment
ght; Comp| ation 6 000007: CALLDATASIZE p y

bool voted; 7 000008: LT
address delegate; 8 000009: PUSH2 0x006d
uint vote; S 000012: JUMPI

} 10 000013: PUSH1 0x00

11 000015: CALLDATALOAD
12 000016: PUSH29 0x0100000000000000

struct Proposal { 13 000046: SWAP1

bytes32 name; 14 000047: DIV
uint voteCount; 15 000048: PUSH4 Oxffffffff
} 16 000053: AND
17 000054: DUP1
18 000055: PUSH4 0x362186ed
address public chairperson; 1 000060: EQ
20 000061: PUSH2 0x008d
[...1 21 000064: JUMPI

22 000065: DpuPl

“human-readable” instructions low-level instructions

[developer’s view] [user’s view]

libraries
in byte-code

virtual
machine
on blockchain



“smart contract” most used meaning
= immutable low-level instructions
cloned on each node
running in a decentralized fashion



what are low-level instructions?

byte-code e Individual primitive operations to be run on the
or machine code . :
virtual machine

1 60606040526004361061006d576000357
2 000000: PUSH1 0x60

3 000002: PUSH1 0x40 . . .
4 000004: MSTORE eg. move a value from memory into a register, move a value from register

Bl ek ool to memory, perform operations between register and put value in

000006 2T register....
8 000009: PUSH2 0x006d

S 000012: JUMPI

10 000013: PUSH1 0x00

11 000015: CALLDATALOAD

12 000016: PUSH29 0x0100000000000000
13 000046: swarl

14 000047: DIV

15 000048: PUSH4 Oxffffffff

16 000053: AND

17 000054: DpuPl

18 000055: PUSH4 0x362186ed

19 000060: EQ

20 000061: PUSH2 0x008d

21 000064: JUMPI

22 000065: DuPl

AAAAFAF. mesmtrAd A__AAAFALCAA



what are low-level instructions?

byte-code e Individual primitive operations to be run on the
or machine code . :
virtual machine

1 60606040526004361061006d576000357
2 000000: PUSH1 0x60

3 000002: PUSH1 0x40 . . .
4 000004: MSTORE eg. move a value from memory into a register, move a value from register

Bl ek ool to memory, perform operations between register and put value in

000006 2T register....
8 000009: PUSH2 0x006d

S 000012: JUMPI

10 000013: PUSH1 0x00

11 000015: CALLDATALOAD

12 000016: PUSH29 0x0100000000000000
13 000046: swarl

14 000047: DIV

15 000048: PUSH4 Oxffffffff

16 000053: AND

17 000054: DpuPl

18 000055: PUSH4 0x362186ed

19 000060: EQ

20 000061: PUSH2 0x008d

21 000064: JUMPI

22 000065: DuPl

AAAAFAF. mesmtrAd A__AAAFALCAA



what are low-level instructions?

byte-code
or machine code
60606040526004361061006d576000357

000000:
000002:
000004:
000005:
000007:
000008:
000009:
000012:
000013:
000015:
000016:
000046:
000047:
000048:
000053:
000054:
000055:
000060:
000061:
000064:
000065:

AAAAFF.

PUSH1 0x60

PUSH1 0x40
MSTORE

PUSH1 0x04
CALLDATASIZE

LT

PUSH2 0x006d
JUMPI

PUSH1 0x00
CALLDATALOAD
PUSH29 0x0100000000000000
SWAP1

DIV

PUSH4 Oxffffffff
AND

DUP1

PUSH4 0x362186ed
EQ

PUSH2 0x008d
JUMPI

DUP1

mrrmrrA A__AAAFCALCA A

Individual primitive operations to be run on the

virtual machine

eg. move a value from memory into a register, move a value from register
to memory, perform operations between register and put value in

register....

memory
(eg. RAM)

input/output
(1/0)
peripherals

i

g

registers

central processing
unit (CPU)

von Neumann
architecture



what are low-level instructions?

byte-code
or machine code
60606040526004361061006d576000357

000000:
000002:
000004:
000005:
000007:
000008:
000009:
000012:
000013:
000015:
000016:
000046:
000047:
000048:
000053:
000054:
000055:
000060:
000061:
000064:
000065:

AAAAFF.

PUSH1 0x60

PUSH1 0x40

MSTORE

PUSH1 0x04

CALLDATASIZE

LT

PUSH2 0x006d

JUMPI

PUSH1 0x00

CALLDATALOAD

PUSH29 0x0100000000000000
SWAP1
DIV
PUSH4
AND
DUP1
PUSH4
EQ
PUSH2
JUMPI
DUP1

Oxffffffff

0x362186ed

0x008d

A_AAAFrAcAa

e Individual primitive operations to be run on the

virtual machine

eg. move a value from memory into a register, move a value from register
to memory, perform operations between register and put value in

register....

memory
(eg. RAM)

input/output
(1/0)
peripherals

i

g

registers

essentially, :'a

computational “logistics”

central processing
unit (CPU)

von Neumann
architecture



and “higher-level”
instructions?

(source code)



and “higher-level”
instructions?

(source code)

A Solidity by Example

version 0.8.10

English Auction

English auction for NFT.
Auction

1. Seller of NFT deploys this contract.
2. Auction lasts for 7 days.

3. Participants can bid by depositing ETH greater than the current highest bidder.

4. All bidders can withdraw their bid if it is not the current highest bid.
After the auction

1. Highest bidder becomes the new owner of NFT.
2. The seller receives the highest bid of ETH.

https://solidity-by-example.org/app/english-auction/

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.10;

interface IERC721 {
function safeTransferFrom(
address from,
address to,
uint tokenId
) external;

function transferFrom(
address,
address,
uint

) external;

i

contract EnglishAuction {
event Start();
event Bid(address indexed sender, uint amount);
event Withdraw(address indexed bidder, uint amount);
event End(address winner, uint amount);

IERC721 public nft;
uint public nftId;

address payable public seller;
uint public endAt;

bool public started;

bool public ended;

address public highestBidder;
uint public highestBid;
mapping(address => uint) public bids;


https://solidity-by-example.org/app/english-auction/

constructor(
address _nft,
uint _nftId,
uint _startingBid

and “higher— level “ nft = IERC721(_nft);

nftId = EnftId:

ins tructi ons ? seller = payable(msg.sender);

highestBid = _startingBid;
(source code) }

function start() external {
require(!started, "started");
' Solidity by Example require(msg.sender == seller, "not seller");
version 0.8.10 .
nft.transferFrom(msg.sender, address(this), nftId);
started = true;

EninSh Auction endAt = block.timestamp + 7 days;

emit Start();

English auction for NFT. }
Auction function bid() external payable {
require(started, "not started");
1. Seller of NFT deploys this contract. require(block.timestamp < endAt, "ended");
2. Auction lasts for 7 days. require(msg.value > highestBid, "value < highest");
3. Participants can bid by depositing ETH greater than the current highest bidder.
4. All bidders can withdraw their bid if it is not the current highest bid. if (highestBidder != address(0)) {
bids[highestBidder] += highestBid;
After the auction b
1. Highest bidder becomes the new owner of NFT. highestBidder = msg.sender;
2. The seller receives the highest bid of ETH. highestBid = msg.value;

- . . emit Bid(msg.sender, msg.value);
https://solidity-by-example.org/app/english-auction/ }


https://solidity-by-example.org/app/english-auction/

and “higher-level”
instructions?

(source code)

A Solidity by Example
version 0.8.10

English Auction

English auction for NFT.

Auction

1. Seller of NFT deploys this contract.
2. Auction lasts for 7 days.

3. Participants can bid by depositing ETH greater than the current highest bidder.

4. All bidders can withdraw their bid if it is not the current highest bid.

After the auction

1. Highest bidder becomes the new owner of NFT.
2. The seller receives the highest bid of ETH.

https://solidity-by-example.org/app/english-auction/

function withdraw() external {
uint bal = bids[msg.sender];
bids[msg.sender] = 0;
payable(msg.sender).transfer(bal);

emit Withdraw(msg.sender, bal);

}

function end() external {
require(started, "not started");
require(block.timestamp >= endAt, "not ended");
require('ended, "ended");

ended = true;

if (highestBidder != address(0)) {
nft.safeTransferFrom(address(this), highestBidder, nftId);
seller.transfer(highestBid);

} else {
nft.safeTransferFrom(address(this), seller, nftId);

I

emit End(highestBidder, highestBid);

not very different from
computational “logistics”


https://solidity-by-example.org/app/english-auction/

difference between “imperative” and
“declarative” programming languages



difference between “imperative” and
“declarative” programming languages

We have a labyrinth.




difference between “imperative” and
“declarative” programming languages

||
EEE EEEN =

| HEBE
—p- | ] | =I= || = ||
H EEEEEEE

We have a labyrinth. We know entry and exit

4l EEEEEEEEEE B
] ||

L L L]
||

]
|
|
]
Y/
|
|

H B |
lllllh= AEEEE EEE EEEEE EEE



difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit

| can:

e write down the instructions to perform
(imperative programming)




“imperative” and
“declarative” programming languages

difference between

L Illﬂ‘ﬁ

||
||
||
||
. Al r
[ | | )
ENEEEE |EE EEN |

write down the instructions to perform

(imperative programming)

We have a labyrinth. We know entry and exit
[

| can:



difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

| can:

e write down the instructions to perform
(imperative programming)

e write down the initial point, the exit point,

the labyrinth walls, and let the
computer to find the way (declarative
programming)




difference between “imperative” and
“declarative” programming languages

ENEEE EEEEEEEEE
H _H B ]
EEE E BEE ENE B

u EEEN
| AEEEE =Il [ = =
We have a labyrinth. We know entry and exit.

| can:

e write down the instructions to perform
(imperative programming)

e write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking




difference between “imperative” and
“declarative” programming languages

EEEEE =IIIIIII
EEE EEE
H N
We have a labyrinth. We know entry and exit.

| can:

e write down the instructions to perform
(imperative programming)

e write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking




difference between “imperative” and
“declarative” programming languages

We have a labyrinth. We know entry and exit.

_

| can:

e write down the instructions to perform
(imperative programming)

e write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

4
‘.
w5

b

H B

H B

H B
H B
H B
H N
[ |
H N
H B
H N

via some problem-solving strategy, eg. trial and
error with backtracking



difference between “imperative” and
“declarative” programming languages

EEEEE ENEEEEEEE
H N N
EEE § EEE EEE
B H N
el »
We have a labyrinth. We know entry and exit. §”——_ § EEEEEEE
| . AEEEE EmE B

| can:

e write down the instructions to perform
(imperative programming)

e write down the initial point, the exit point,
the labyrinth walls, and let the
computer to find the way (declarative
programming)

via some problem-solving strategy, eg. trial and
error with backtracking



difference between “imperative” and
“declarative” programming languages

ENEEE EEEEEEEEE
HE EH N ]
ENE EEE
H N
=Il | =
If we accept the “labyrinth” may change,
we need declarative forms of
programming.

\

A

1

|

r
{

| 4

A

==




difference between “imperative” and
“declarative” programming languages

: :

EEE E NN EEE B

Yy HENE

l____4' =I= [ = N

If we accept the “labyrinth” may change, !r—"i H EEEEEEE
we need declarative forms of | HANEEE EEE N

programming.

Why they haven’t been considered so far?

e e el R

...generally computationally more expensive

||

\

A

1

|

r
[

| 4

A

L_ —i
INE Al




difference between “imperative” and
“declarative” programming languages

: :

HEEN H ENN EEN N

iy EEE

el =

If we accept the “labyrinth” may change, !r—"i H EEEEEEE
we need declarative forms of |/ ANEEE EEN N

programming.

Why they haven’t been considered so far?

...generally computationally more expensive

e e el R

Yet, higher-abstraction constructs are more
intelligible to humans.

TN



“smart contract” most used meaning
= immutable low-level instructions
cloned on each node
running in a decentralized fashion

e \What are the differences with respect to other programs?



“smart contract” most used meaning
= immutable low-level instructions
cloned on each node
running in a decentralized fashion

e \What are the gaps with usual contracts?



“smart contract” most used meaning
= immutable low-level instructions
cloned on each node
running in a decentralized fashion

e \What are the gaps with usual contracts?

a bilateral contract is a formal agreement in
which both parties exchange promises to
perform



contracts vs “smart contracts”

e Readability: parties should understand what the agreement is about



contracts vs “smart contracts”

e Readability: parties should understand what the agreement is about

e Control: parties should maintain autonomy on performance. e.g.
non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post



contracts vs “smart contracts”

e Readability: parties should understand what the agreement is about

e Control: parties should maintain autonomy on performance. e.g.
non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

e Amendment, Delegation, Mandate, etc. are all common constructs
applicable on contracts (unless explicitly disabled), but not in smart contracts.



contracts vs “smart contracts”

e Readability: parties should understand what the agreement is about

e Control: parties should maintain autonomy on performance. e.g.
non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

e Amendment, Delegation, Mandate, etc. are all common constructs
applicable on contracts (unless explicitly disabled), but not in smart contracts.

e Regulation: there is not an equivalent of contract law or private law
regulations (a sort of meta-contracts) in smart contracts



contracts vs “smart contracts”

e Readability: parties should understand what the agreement is about

e Control: parties should maintain autonomy on performance. e.g.
non-foreseeable conditions may cause justifiable release of duty, that can be
assessed only ex-post

e Amendment, Delegation, Mandate, etc. are all common constructs
applicable on contracts (unless explicitly disabled), but not in smart contracts.

e Regulation: there is not an equivalent of contract law or private law
regulations (a sort of meta-contracts) in smart contracts

e Informational model (e.g. normative primitives): contemporary smart
contracts allow to specify imperative instructions driving performance mapping

only to positive duties. What about prohibitions? What about permissions, legal
competences? cf. normative systems, computational theory of law



contracts vs “smart contracts”

Readability

Control and ex-post enforcement
Amendment, Delegation, Mandate
Regulation

Informational model

1/0

In most practical applications smart contracts depend on offline events, triggered
by oracles. The environment “sets” the pace of execution.



contracts vs “smart contracts”

Readability

Control and ex-post enforcement
Amendment, Delegation, Mandate
Regulation

Informational model

1/0

However, the “dynamics” of contracts depends not only on
performance-related elements, but also on contextual factors (legal, social,
physical) that modify the contract semantics itself.



contracts vs “smart contracts”

0/0 reset

e Readability Qe

e Control and ex-post enforcement o ﬂ @
e Amendment, Delegation, Mandate ° @ @

e Regulation e w

e Informational model P O

1/0

However, the “dynamics” of contracts depends not only on
performance-related elements, but also on contextual factors (legal, social,
physical) that modify the contract semantics itself.

The question is: Can any socio-institutional systems (legal or not) be
sustainable without these capacities?



contracts vs "“smart contracts”
vs digital enforceable contracts?

0/0 reset

e Readability Oe

e Control and ex-post enforcement o m @
e Amendment, Delegation, Mandate e @ @

e Regulation ° w

e Informational model ) @

1/0

However, the “dynamics” of contracts depends not only on
performance-related elements, but also on contextual factors (legal, social,
physical) that modify the contract semantics itself.

The question is: Can any socio-institutional systems (legal or not) be
sustainable without these capacities?



