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Logic programming

● Logic programming is a form of declarative programming introduced to reproduce 
formal reasoning mechanisms. 

Algorithm = Logic + Control  [Kowalski, 1979]

Knowledge as an artifact Problem-solving method as reusable process



parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
parent(homer, bart).
parent(homer, maggie).
parent(abraham, homer).
parent(abraham, herb).
parent(mona, homer).
parent(jackie, marge).
parent(clancy, marge).
parent(jackie, patty).
parent(clancy, patty).
parent(jackie, selma).
parent(clancy, selma).
parent(selma, ling).

child(X,Y) :- parent(Y,X).

?- child(lisa, marge).
true

Example of Prolog program



Extension to probabilistic programs



Example of ProbLog program

0.5 :: friendof(john, mary).
0.5 :: friendof(mary, pedro).
0.5 :: friendof(mary, tom).
0.5 :: friendof(pedro, tom).

1.0 :: likes(X, Y) :- friendof(X, Y).
0.8 :: likes(X, Y) :- friendof(X, Z), likes(Z, Y).

evidence(likes(mary, tom)).
query(likes(mary, pedro)).

probability: 0.58333333
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0.5 :: friendof(mary, pedro).
0.5 :: friendof(mary, tom).
0.5 :: friendof(pedro, tom).

1.0 :: likes(X, Y) :- friendof(X, Y).
0.8 :: likes(X, Y) :- friendof(X, Z), likes(Z, Y).

evidence(likes(mary, tom)).
query(likes(mary, pedro)).

probability: 0.58333333
Two interpretations of the output:

● Mary likes Pedro a bit
● It is slightly more probable that Mary likes Pedro

matter of description
(cf. fuzzy logics)

matter of world (possible extractions)

Can we truly pass from one 
to the other with no issue?
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A fundamental distinction! 

Epistemic uncertainty 
(not been unveiled/proven yet)

Ontological uncertainty
(not been created/extracted yet) 

matter of conditions
holding in the world

matter of events
occurring in the world

The passage from conditions to events is a known challenge in AI! 



Conditions vs Events (1)

Yale shooting problem

● In symbolic AI, it became soon clear that it is rather 
difficult to directly reason about events by means of 
deduction. 

● Several axiomatizations have been proposed, the 
most known being Situation Calculus, Event 
Calculus, Fluent Calculus.



Yale shooting problem

% event calculus axioms 
holds(F, T) :- holds(F, 0), not clipped(0, F, T).
holds(F, T2) :- occurs(E, T1), initiates(E, F, T1), T1 < T2, not clipped(T1, F, T2).
clipped(T1, F, T2) :- occurs(E, T), T1 <= T, T < T2, terminates(E, F, T).

● In symbolic AI, it became soon clear that it is rather 
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Yale shooting problem

% event calculus axioms 
holds(F, T) :- holds(F, 0), not clipped(0, F, T).
holds(F, T2) :- occurs(E, T1), initiates(E, F, T1), T1 < T2, not clipped(T1, F, T2).
clipped(T1, F, T2) :- occurs(E, T), T1 <= T, T < T2, terminates(E, F, T).

meta-level predicates about two 
different types of entities:
fluents and events

● In symbolic AI, it became soon clear that it is rather 
difficult to directly reason about events by means of 
deduction.

● Several axiomatizations have been proposed, the 
most known being Situation Calculus, Event 
Calculus, Fluent Calculus. 

Conditions vs Events (1)
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● Formally, Bayesian Networks capture only 
associationistic relationships. The causal reading 
exists only in the mind of the modeler.

● We need to consider a do operator to take into 
account interventions.

● The do operator provides local conterfactuality by 
performing operations on the Bayesian network: it 
cuts the nodes which are parent to the intervened 
node. 

at a meta-level again!

do(Sprinkler=T)

Conditions vs Events (2)

It seems we should not interchange the two dimensions so easily… 
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● Simplicity Theory (ST) is a computational model of cognition which explicitly relies on 
two different machines: one for the “world” (making events occurring), and one for the 
“mind” (determining/unveiling conditions)!



Looking for alternatives...

● Simplicity Theory (ST) is a computational model of cognition which explicitly relies on 
two different machines: one for the “world” (making events occurring), and one for the 
“mind” (determining/unveiling conditions)!

It offers a more principled solution to separate ontological/epistemic uncertainty!



Simplicity Theory: Motivation

According to Shannon’s theory of information:
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NOISE SOURCE
maximally informative

According to Shannon’s theory of information:

but this mismatches 
relevance judgments 

given by humans

Simplicity Theory: Motivation
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● In contrast to standard information theory, ST starts from the observation that 
humans are highly susceptible to complexity drops, ie. for them

situations are relevant if they are simpler to describe than to explain  

● Formally, this is captured by the formula of unexpectedness, expressed as 
divergence of complexity computed on two distinct machines

causal complexity
via world machine

description complexity
via description machine

situation

Simplicity Theory: Unexpectedness

“Delphin island” 
in Sardinia

functionally similar to posterior subjective probability



● In algorithmic information theory (AIT), the complexity of a string is the 
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≠how much information is needed for a 
program constructing the object
(Kolmogorov complexity)

how much time or space is 
needed for running it 
(algorithmic 
or time-complexity)
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minimal length of a program that, given a certain optional input parameter, 
produces that string as an output (Kolmogorov complexity)

How to compute complexity?



● In algorithmic information theory (AIT), the complexity of a string is the 
minimal length of a program that, given a certain optional input parameter, 
produces that string as an output (Kolmogorov complexity)

How to compute complexity?

underlying 
Turing machine

target string additional input in support

executable program

● Kolmogorov complexity is generally 
incomputable (due to the halting 
problem), but it is computable on 
bounded Turing machines.

We denote bounded 
complexities with     



● Rather than computing probability, we compute unexpectedness by 
measuring complexity on two different machines, causal and descriptive.

From ProbLog to CompLog: intuition
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● Rather than computing probability, we compute unexpectedness by 
measuring complexity on two different machines, causal and descriptive.

From ProbLog to CompLog: intuition

causal complexity
via world machine

description complexity
via description machine

underlying 
Turing machine

target string additional input in support

executable program

● For simple machines, the computation of 
Kolmogorov complexity can be seen as 
min-path search on graphs:
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CompLog: main characteristics (1)

● A complexity-based program consists of a world model (with causal 
relationships, centered on events), and a mental model (with associationistic 
relationships, including logical, centered on conditions).
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Syntax for conditions/events

Δt > 0Δt = 0

Δx = 0

Δx ≠ 0

Immediate eventCondition

x #x

+x

-x
Production event

Consumption event

x

+x -x

#x



CompLog: main characteristics (2)

● A complexity-based program consists of a world model (with causal 
relationships, centered on events), and a mental model (with associationistic 
relationships, including logical, centered on conditions).

● The world and mental models can be represented as two networks, with different 
search algorithms, connecting to two different characterization of computation

○ Productive vs Epistemic
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● Queries are expressed as goal nodes, 
possibly with an order (*)
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Productive vs epistemic

C(#x) = 4
C(#x * #y) = 7
C(<#x, #y>) = 7

● Let us consider computation as a 
binary colouring task on a graph 

● Queries are expressed as goal nodes, 
possibly with an order (*)

Productive
(with consumption)

C(x) = 4
C(x * y) = 7
C(<x, y>) = 6

Epistemic 
(no consumption)

what about 
catalysts?
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From declarative to active rules

● declarative rule (if condition then conclusion)

x −> y. % prolog/ASP style y :- x.

● active rule (if antecedent then consequent)

#push => +light.

● active rule in ECA template (when event in condition then action):

#push : electricity => +light.

#x => #y.
+x => +y. % with no consumption
+x => +y, −x . % with consumption
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Program augmentation

● Given a declarative program….

x.
y.
z.
z −> x.
z −> y.
x −> y.
y −> x.

or with no race conditions:

: => +x.
: => +y.
: => +z.
: z => +x.
: z => +y.
: x => +y.
: y => +x.

● We can transform it in 
an active program with
race conditions: 

=> +x.
=> +y.
=> +z.
+z => +x.
+z => +y.
+x => +y.
+y => +x.

here we capture 
the catalyst case, and the 
relation with ergodicity 
(as asymptotic growth)





CompLog: main characteristics (3)

● A complexity-based program consists of a world model (with causal 
relationships), and a mental model (with associationistic relationships, 
including logical).

● The two models can be represented as two networks, with different search 
algorithms, connecting to two different characterization of computations

○ Productive characterization: with consumption of resources  
○ Epistemic characterization: no consumption of resources

● Unexpectedness (related to posterior probability) becomes the primary target of 
inference. Priors are derived by adding back the determination cost.
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1 :: z −> y.
3 :: x −> y.
3 :: y −> x.

Cd(x) = 4
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Cd(<x, y>) = 6
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Example program 4 :: x.
4 :: y.
4 :: z.
1 :: z −> x.
1 :: z −> y.
3 :: x −> y.
3 :: y −> x.

4 :: +x.
4 :: +y.
4 :: +z.
1 :: +z −> +x.
1 :: +z −> +y.
3 :: +x −> +y.
3 :: +y −> +x.

Cw(+x) = 4
Cw(+x * +y) = 7
Cw(<+x, +y>) = 7

Cd(x) = 4
Cd(x * y) = 7
Cd(<x, y>) = 6

U(x) = 0
U(x * y) = 0
U(<x, y>) = 1

base for learning?
perhaps we should 
introduce a new 
situation z that 
aggregates x and y?



CompLog: implementation



Derivation via ASP

% every outgoing edge from a reached node is a path
path(X, Y) :- reached(X, N), edge(X, Y).

% a starting node qualifies as reached
reached(X, 0) :- start(X).

% all goals should be reached
:- goal(Y), not reached(Y, _).

totalcost(T) :- T = #sum{C, X, Y : path(X, Y), cost(X,Y,C)}.
#minimize {T: totalcost(T)}.

% IF non-sequential search 
{ reached(Y, N) } :- path(X, Y), reached(X, N).

% ELSE IF sequential search
{ reached(Y, N + 1) } :- path(X, Y), reached(X, N), N < 10. 

% IF race conditions (interleaved semantics)
:- reached(X, N), reached(Y, N), X != Y.

cost(s, x, 4).
cost(s, y, 4).
cost(s, z, 4).
cost(z, x, 1).
cost(z, y, 1).
cost(x, y, 3).
cost(y, x, 3).
start(s).

goal(x). goal(y).

EXPLORATION

COMPLOG PROGRAM

OPTIMIZATION

CONSTRAINTS

}



CompLog: examples of application



Finding the most relevant description!

eagle -> bird.
pigeon -> bird.
canary -> bird.
tiger -> mammal.
dog -> mammal.
cat -> mammal.
dog -> pet.
cat -> pet.
canary -> pet.

12 :: #eagle. 
3 :: #pigeon.
7 :: #canary.
12 :: #tiger.
3 :: #dog.
3 :: #cat.

4 :: eagle. 
4 :: pigeon.
6 :: canary.
4 :: tiger.
3 :: dog.
3 :: cat.

eg. from frequency of 
presence in the 
communications

eg. from frequency of actual encounters



Finding the most relevant description!

eagle -> bird.
pigeon -> bird.
canary -> bird.
tiger -> mammal.
dog -> mammal.
cat -> mammal.
dog -> pet.
cat -> pet.
canary -> pet.

12 :: #eagle. 
3 :: #pigeon.
7 :: #canary.
12 :: #tiger.
3 :: #dog.
3 :: #cat.

eg. from frequency of 
presence in the 
communications

eg. from frequency of actual encounters

4 :: eagle. 
4 :: pigeon.
6 :: canary.
4 :: tiger.
3 :: dog.
3 :: cat.

by computing the various unexpectedness we can settle on what is 
the best descriptor (min U) of the current situation, eg. given 
#pigeon, we may say bird



Disjunction?

% declarative model with disjunction (as in ProbLog)
2 :: die1; 2 :: die2; 2 :: die3; 2 :: die4. 
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Disjunction?

% declarative model with disjunction (as in ProbLog)
2 :: die1; 2 :: die2; 2 :: die3; 2 :: die4. 

% correspondent procedural model with race conditions
2 :: => die1. 2 :: => die2. 2 :: => die3. 2 :: => die4.

(exclusive) disjunction in probability specification 
conveys implicitly the presence of race conditions!



Negation?
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Negation?

% declarative model with disjunction (as in ProbLog)
2 :: die1; 2 :: die2; 2 :: die3; 2 :: die4. 

query ~die1.

die1 die2 die3 die4

● We first compute the complexity of die1.
● We then remove die1 from the graph.
● We compute the node with the best 

complexity, eg. die2.
● If needed, we can proceed incrementally, 

negating die2 and so on, aggregating the 
complexities.

2
2 2

2

possibility of sequential, approximated computation!



Conclusions

● We presented a novel framework for automated inference in context of uncertainty based 
on Simplicity Theory, relying on the computation of two distinct Kolmogorov complexities 
by means of min-path search.

● Three additional practical reasons motivates continuing the exploration:

● Integration potential: Enabling by design the distinction of descriptive and causal 
dimensions, it supports support the development of dedicated tools;

● Efficiency: because of the greedy search related to the minimization of complexity, 
we hypothesize that it is faster than a probabilistic equivalent system;

● Cognitive modeling soundness: the framework can mimic cognitive mechanisms 
observable in humans.
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