From ProblLog to Complog

From Probabilistic to
Complexity-based Logic Programming

1st October 2023, HYDRA workshop @ ECAI 2023

2nd International Workshop on Hybrid Models for coupling Deductive and Inductive Reasoning

L;(SI Giovanni Sileno el Jean-Louis Dessalles
48l J.sileno@uva.nl gZipl Jean-louis.dessalles@telecom-paris.fr

University of Amsterdam Télecom Paris

mailto:g.sileno@uva.nl
mailto:jean-louis.dessalles@telecom-paris.fr

Logic programming

e Logic programming is a form of declarative programming introduced to reproduce
formal reasoning mechanisms.

Algorithm = Logic + Control [Kowalski, 1979]

SN

Knowledge as an artifact Problem-solving method as reusable process

Example of Prolog program

parent (marge, lisa).

parent (marge, bart). m 3"““
parent (marge, maggie) .
parent (homer, lisa).
parent (homer, bart).
parent (homer, maggie) .
parent (abraham, homer) .
parent (abraham, herb).
parent (mona, homer).
parent (jackie, marge) .
parent (clancy, marge) .
parent (jackie, patty).
parent (clancy, patty).
parent (jackie, selma).
parent (clancy, selma).
parent (selma, ling).

JACKIE

PATTY

child(X,Y) :- parent(Y,X).

?- child(lisa, marge).
true

BART LISA MAGGIE

Extension to probabilistic programs

ProbLog: A Probabilistic Prolog and its Application in Link Discovery Neural probabilistic logic programming in DeepProbLog ()
Check for
Robin Manhaeve #*, Sebastijan Dumanci¢?, Angelika Kimmig?,
Luc De Raedt*, Angelika Kimmig and Hannu Toivonen' Thomas Demeester P! , Luc De Raedt a,1
Machine Learning Lab, Albert-Ludwigs-University Freiburg, Germany
4 KU Leuven, Belgium
b Ghent University - imec, Belgium
Abstract it seems that there are — despite a great potential — still only ARTICLE INFO ABSTRACT
We introduce ProbLor babilistic extensi ¢ few real-life applications of these probabilistic logics. The
€ 1ntroduce Froil , 4 probabilistic extension o 3 3 z
Prolog. A ProbLog pi,grl;m defines a distribition reasons for this might well be that the assumptions are to0 articie pistory: We introduce DeepProbLog, a neural probabilistic logic programming language that

over logic programs by specifying for each clause solvers are often too slow or too limited.
the probability that it belongs to a randomly sam-

independent. The semantics of ProbLog is then de-
fined by the success probability of a query, which
corresponds to the probability that the query suc-
ceeds in a randomly sampled program. The key

tre i hard t th that the : . . . ase B
strong and sometimes hard to manage by the user, or that the Received 26 July 2019) incorporates deep learning by means of neural predicates. We show how existing inference
Received in revised form 1 April 2021 and learning techniques of the underlying probabilistic logic programming language

‘We introduce ProbLog which is — in a sense — the simplest Accepted 3 April 2021

pled program, and these probabilities are mutually probabilistic extension of Prolog one can design. ProbLOg i ayailable online 15 April 2021 ProbLog can be adapted for the new language. We theoretically and experimentally
essentially Prolog where all clauses are labeled with the prob- demonstrate that DeepProbLog supports (i) both symbolic and subsymbolic representations
ability that they are true, and — similar as pD but unlike the Keywords: and inference, (ii) program induction, (iii) probabilistic (logic) programming, and (iv) (deep)
other approaches mentioned — these probabilities are mutu- | “. learning from examples. To the best of our knowledge, this work is the first to propose
allvindenandent Prahl no hac haan mativatad hv tha real_lifa g

contribution of this paper is the intt
effective solver for computing suc
ties. It essentially combines SLD-1
methods for computing the probabi
formulae. Our implementation fu
an approximation algorithm that cor
deepening with binary decision dia
port on experiments in the context
links in real biological networks, a
of the practical usefulness of the apj

L] 14 Jul 2019

Bayesian Synthesis of Probabilistic Programs for Automatic DeepStochLog: Neural Stochastic Logic Programming
Data Modeling '

Thomas Winters*!, Giuseppe Marra*!, Robin Manhaeve!, and Luc De Raedt!?
FERAS A. SAAD, Massachusetts Institute of Technology, USA KU Leuven, Dept. of Computer Science; Leuven.Al, B-3000 Leuven, Belgium,
MARCO F. CUSUMANO-TOWNER, Massachusetts Institute of Technology, USA {firstname.lastname}@kuleuven.be

ULRICH SCHAECHTLE, Massachusetts Institute of Technology, USA 2AASS’ Orebro University, Sweden

MARTIN C. RINARD, Massachusetts Institute of Technology, USA
VIKASH K. MANSINGHKA, Massachusetts Institute of Technology, USA

‘We present new techniques for automatically constructing probabilistic programs for data analysis, interpreta-
tion, and prediction. These techniques work with probabilistic domain-specific data modeling languages that
capture key properties of a broad class of data generating processes, using Bayesian inference to synthesize
probabilistic programs in these modeling languages given observed data. We provide a precise formulation
of Bayesian synthesis for automatic data modeling that identifies sufficient conditions for the resulting syn-
thesis procedure to be sound. We also derive a general class of synthesis algorithms for domain-specific

Abstract
Recent advances in neural symbolic learning, such as DeepProbLog, extend probabilistic
logic programs with neural predicates. Like graphical models, these probabilistic logic programs
define a probability distribution over possible worlds, for which inference is computationally
hard. We propose DeepStochLog, an alternative neural symbolic framework based on stochastic
definite clause grammars, a type of stochastic logic program, which defines a probability
distribution over possible derivations. More specifically, we introduce neural grammar rules

3 Jun 2021

Example of Problog program

0.5 friendof (john, mary).

0.5 friendof (mary, pedro).

0.5 friendof (mary, tom).

0.5 friendof (pedro, tom).

1.0 likes (X, Y) :- friendof (X, Y).

0.8 likes (X, Y) :- friendof (X, 2Z), likes(Z, Y).

evidence (likes (mary, tom)).
query (likes (mary, pedro)).

probability: 0.58333333

Example of Problog program

0.5 friendof (john, mary).

0.5 friendof (mary, pedro).

0.5 friendof (mary, tom).

0.5 friendof (pedro, tom).

1.0 likes (X, Y) :- friendof (X, Y).

0.8 likes (X, Y¥) :- friendof (X, Z), likes(Z, Y).

evidence (likes (mary, tom)).
query (likes (mary, pedro)).

Two interpretations of the output:
probability: 0.58333333 e Mary likes Pedro a bit

e |tis slightly more probable that Mary likes Pedro

Example of Problog program

0.5 :: friendof(john, mary).

0.5 :: friendof (mary, pedro).

0.5 :: friendof (mary, tom).

0.5 :: friendof (pedro, tom).

1.0 :: likes (X, Y) :- friendof (X, Y).

0.8 :: likes (X, Y) :- friendof (X, Z), likes(Z, Y).

matter of description

evidence (likes (mary, tom)). (cf. fuzzy logics)

query (likes (mary, pedro)).

Two interpretations of the output:
probability: 0.58333333 e Mary likes Pedro a bit

e |tis slightly more probable that Mary likes Pedro

=

matter of world (possible extractions)

Example of Problog program

0.5 :: friendof(john, mary).

0.5 :: friendof (mary, pedro). Can we trUIy pass from one
0.5 :: friendof (mary, tom). to the other with no issue?
0.5 :: friendof (pedro, tom).

1.0 :: likes (X, Y) :- friendof (X, Y).

0.8 :: likes (X, Y) :- friendof (X, Z), likes(Z, Y).

matter of description

evidence (likes (mary, tom)). (cf. fuzzy logics)

query (likes (mary, pedro)).

Two interpretations of the output:
probability: 0.58333333 e Mary likes Pedro a bit

e |tis slightly more probable that Mary likes Pedro

=

matter of world (possible extractions)

A fundamental distinction!

Epistemic uncertainty
(not been unveiled/proven yet)

Ontological uncertainty
(not been created/extracted yet)

A fundamental distinction!

Epistemic uncertainty _matter of conditions
(not been unveiled/proven yet) holding in the world
OntOlogical uncertainty : matter of events

(not been created/extracted yet) occurring in the world

A fundamental distinction!

Epistemic uncertainty

(not been unveiled/proven yet)

Ontological uncertainty

(not been created/extracted yet)

matter of conditions
holding in the world

matter of events
occurring in the world

The passage from conditions to events is a known challenge in Al!

Conditions vs Events (1)

In symbolic Al, it became soon clear that it is rather
difficult to directly reason about events by means of
deduction.

Several axiomatizations have been proposed, the
most known being Situation Calculus, Event
Calculus, Fluent Calculus.

Yale shooting problem

Conditions vs Events (1)

e |n symbolic Al, it became soon clear that it is rather
difficult to directly reason about events by means of
deduction.

e Several axiomatizations have been proposed, the
most known being Situation Calculus, Event
Calculus, Fluent Calculus.

Yale shooting problem

% event calculus axioms

holds(F, T) :- holds(F, 0), not clipped(0, F, T).

holds (F, T2) :- occurs(E, Tl), initiates(E, F, Tl), Tl < T2, not clipped(T1l, F, T2).
clipped(Tl, F, T2) :- occurs(E, T), Tl <= T, T < T2, terminates(E, F, T).

Conditions vs Events (1)

e |n symbolic Al, it became soon clear that it is rather

difficult to directly reason about events by means of gr—
deduction.

e Several axiomatizations have been proposed, the L1
most known being Situation Calculus, Event
Calculus, Fluent Calculus.

Yale shooting problem

meta-level predicates about two
different types of entities:
fluents and events

% event calculus axioms
holds(F, T) :- , 0), not clipped(0, F, T).

holds (F, T2) :- occurs(E, Tl), initiates(E, F, Tl), Tl < T2, not clipped(T1, F, T2).
clipped(Tl, F, T2) :- occurs(E, T), Tl <= T, T < T2, terminates(E, F, T).

Conditions vs Events (2)

e Formally, Bayesian Networks capture only e =
associationistic relationships. The causal reading (c.oudy \ S
exists only in the mind of the modeler. o \ ?
(;pnnk!er) / Rain i 1

-(s T) P(ser) \ /
T | e o.’
v | e

WetGrass r—J < n_ m-n -p(w .l ™
\ /S T 7 [0w oor
S—— | 7 & 09 04
F T
ror

Conditions vs Events (2)

’((T)P(CH‘

e Formally, Bayesian Networks capture only SEHE
associationistic relationships. The causal reading {:’ {.ou;,\. < e, o
exists only in the mind of the modeler. / S 5 —

. . / Spnnkler) / Rain \\1

e \We need to consider a do operator to take into SRR

account interventions. ; ";’;" "1,"\ / _
__- i \ 095 001

WetGrass \r—/ s = ‘»m-n nw o

Conditions vs Events (2)

KURC)

Formally, Bayesian Networks capture only e e ?

associationistic relationships. The causal reading do (sprinkler=r) c'.;,;“ < fonen o
exists only in the mind of the modeler. ‘X\ \ —_—
We need to consider a do operator to take into /_/fp""m/\’ (.
account interventions. _ s \ wmrw\:é e
The do operator provides local conterfactuality by = ‘»”— i

performing operations on the Bayesian network: it
cuts the nodes which are parent to the intervened
node.

Conditions vs Events (2)

HEaT) WEsF) |

e Formally, Bayesian Networks capture only S
associationistic relationships. The causal reading de(sprinkler=n) :\ Oy) e o e
exists only in the mind of the modeler. e \ 5 —
e i
. . Sprinkler Rain)
e \We need to consider a do operator to take into R S
account interventions. kS "1,"\ = \,/ - .
22 B (o) :T—":,,"
e The do operator provides local conterfactuality by = |4 53 '

performing operations on the Bayesian network: it

cuts the nodes which are paren e intervened
node.

at a meta-level again!

Conditions vs Events (2)

Formally, Bayesian Networks capture only e

associationistic relationships. The causal reading do(sprinkler=t) (PR e e oy

exists only in the mind of the modeler. > Sl \"_,' —

We need to consider a do operator to take into QSP""W\' (e -)

account interventions. - e "1,"\ ,{ B
ol Boe ; WetGras; /'if PN WT

The do operator provides local conterfactuality by o F =

performing operations on the Bayesian network: it

cuts the nodes which are paren e intervened
node.

It seems we should not interchange the two dimensions so easily...

at a meta-level again!

Looking for alternatives...

e Simplicity Theory (ST) is a computational model of cognition which explicitly relies on
two different machines: one for the “world” (making events occurring), and one for the
“‘mind” (determining/unveiling conditions)!

Looking for alternatives...

e Simplicity Theory (ST) is a computational model of cognition which explicitly relies on
two different machines: one for the “world” (making events occurring), and one for the
“‘mind” (determining/unveiling conditions)!

mm) |t offers a more principled solution to separate ontological/epistemic uncertainty!

Simplicity Theory: Motivation

According to Shannon’s theory of information:

I(x)=—log P(x)

Simplicity Theory: Motivation

According to Shannon’s theory of information:

I(x)=-log P(x)

NOISE SOURCE
maximally informative

Simplicity Theory: Motivation

According to Shannon’s theory of information:

I(x)=-log P(x)

NOISE SOURCE
maximally informative

but this mismatches
relevance judgments
given by humans

Simplicity Theory: Unexpectedness

e In contrast to standard information theory, ST starts from the observation that
humans are highly susceptible to complexity drops, ie. for them

situations are relevant if they are simpler to describe than to explain

Simplicity Theory: Unexpectedness

e In contrast to standard information theory, ST starts from the observation that
humans are highly susceptible to complexity drops, ie. for them

situations are relevant if they are simpler to describe than to explain

e Formally, this is captured by the formula of unexpectedness, expressed as
divergence of complexity computed on two distinct machines

U(s) =Cw(s) — Cp(s)

/ \

causal complexity description complexity
via world machine via description machine

Simplicity Theory: Unexpectedness

e In contrast to standard information theory, ST starts from the observation that
humans are highly susceptible to complexity drops, ie. for them

situations are relevant if they are simpler to describe than to explain

e Formally, this is captured by the formula of unexpectedness, expressed as
divergence of complexity computed on two distinct machines

Cw
U(S) - Cw(s) — CD(S) - o _—
world — situation
/ \ o
causal complexity description complexity -

via world machine via description machine situation <— mind

Simplicity Theory: Unexpected

e In contrast to standard information theory, ST starts from f§ <1
humans are highly susceptible to complexity drops, ie. for s

situations are relevant if they are simpler to describe th

e Formally, this is captured by the formula of unexpectedne
divergence of complexity computed on two distinct machi

o “Delphin island”
U(S) — CW(S) — CD(S) - XV — in Sardinia
world — situation
/ \ s
causal complexity description complexity -

via world machine via description machine situation <— mind

Simplicity Theory: Unexpected

e In contrast to standard information theory, ST starts from f§ (i° |
humans are highly susceptible to complexity drops, ie. for s

situations are relevant if they are simpler to describe th

e Formally, this is captured by the formula of unexpectedne
divergence of complexity computed on two distinct machi

o “Delphin island”
U(S) — CW(S) — CD(S) - XV — in Sardinia
ya world — situation
situation / \ Cp
causal complexity description complexity -

via world machine via description machine situation <— mind

Simplicity Theory: Unexpected

situation/ / \

In contrast to standard information theory, ST starts from t§ i
humans are highly susceptible to complexity drops, ie. for s

situations are relevant if they are simpler to describe th

Formally, this is captured by the formula of unexpectedne
divergence of complexity computed on two distinct machi

“Delphin island”

U(s) = Cw(s) — Cp(s) S in Sardinia

world — situation

Cp

causal complexity description complexity

via world machine via description machine situation <— mind

functionally similar to posterior subjective probability

How to compute complexity?

e In algorithmic information theory (AIT), the complexity of a string is the
minimal length of a program that, given a certain optional input parameter,
produces that string as an output (Kolmogorov complexity)

Ky(zly) = min {|p| : p(y) = =}

p
/ \ ™~ executable program

target strin additional input in s ort
underlying g ng " nput in supp

Turing machine

How to compute complexity?

In algorithmic information theory (AIT), the complexity of a string is the
minimal length of a program that, given a certain optional input parameter,
produces that string as an output (Kolmogorov complexity)

NP-Hard

how much information is needed for a how much time or space is AN,
program constructing the object needed for running it g
(Kolmogorov complexity) (algorithmic

or time-complexity)

P = NP

How to compute complexity?

e In algorithmic information theory (AIT), the complexity of a string is the
minimal length of a program that, given a certain optional input parameter,
produces that string as an output (Kolmogorov complexity)

e Kolmogorov complexity is generally
incomputable (due to the halting

K¢(:U|y) = min {lpl : p(y) — :B} problem), but it is computable on
/ \ p bounded Turing machines.

executable program

underlying target string additional input in support We denote bounded
Turing machine complexities with C'

From Problog to Complog: intuition

e Rather than computing probability, we compute unexpectedness by
measuring complexity on two different machines, causal and descriptive.

U(s) = Cw(s) — Cb(s)

/ \

causal complexity description complexity
via world machine via description machine

From Problog to Complog: intuition

e Rather than computing probability, we compute unexpectedness by
measuring complexity on two different machines, causal and descriptive.

U(s) =Cw(s) — Cp(s)

e For simple machines, the computation of / \
Kolmogorov complexity can be seen as _ . _
. causal complexity description complexity
min-path search on graphs: via world machine via description machine

Ky (xly) = min {|p| : p(y) = z}

p
/ \ ™~ executable program

target strin additional input in s ort
underlying g ng " nput in supp

Turing machine

CompLog: main characteristics

CompLog: main characteristics (1)

e A complexity-based program consists of a world model (with causal
relationships, centered on events), and a mental model (with associationistic
relationships, including logical, centered on conditions).

Syntax for conditions/events

At=0 At >0

AX

#x

Condition Immediate event

g
%

+x

Production event

—X

Consumption event

Ax#0

Syntax for conditions/events

AX

]
S

Ax#0

At=0 At >0
X #x
Condition Immediate event

+x

Production event

—X

Consumption event

+x

CompLog: main characteristics (2)

e The world and mental models can be represented as two networks, with different
search algorithms, connecting to two different characterization of computation

o Productive vs Epistemic

Productive vs epistemic

e Let us consider computation as a
binary colouring task on a graph

e (Queries are expressed as goal nodes,
possibly with an order (*)

Productive vs epistemic

e Let us consider computation as a
binary colouring task on a graph

e (Queries are expressed as goal nodes,
possibly with an order (*)

Epistemic
(no consumption)

C(x) = 4
C(x *y) =17
C(<x, y>) = 6

Productive vs epistemic

e Let us consider computation as a
binary colouring task on a graph

e (Queries are expressed as goal nodes,
possibly with an order (*)

Epistemic Productive

(no consumption) (with consumption)
C(x) = 4 C(#x) = 4

C(x *y) =7 C(Hx * #y) = 7

C(<x, y>) = 6 C(<#x, #y>) =7

Productive vs epistemic

e Let us consider computation as a
binary colouring task on a graph

e (Queries are expressed as goal nodes,
possibly with an order (*)

what about
catalysts?
Epistemic Productive /
(no consumption) (with consumption)
C(x) = 4 C(#x) = 4
C(x *y) =7 C(Hx * #y) = 7

C(<x, y>) = 6 C(<#x, #y>) =7

From declarative to active rules

e declarative rule (if condition then conclusion)

X > V. % prolog/ASP style y :- Xx.

From declarative to active rules

e declarative rule (if condition then conclusion)
X > V. % prolog/ASP style y :- Xx.
e active rule (if antecedent then consequent)

#push => +light. #x => #y.
+x => +y. % with no consumption
+x => +y, —-x . % with consumption

From declarative to active rules

e declarative rule (if condition then conclusion)
X > V. % prolog/ASP style y :- Xx.
e active rule (if antecedent then consequent)

#push => +light. #x => #y.
+x => +y. % with no consumption
+x => +y, —-x . % with consumption

e active rule in ECA template (when event in condition then action).

#push : electricity => +light.

Program augmentation

e Given a declarative program....

-> X.
> v.
> v.
-> X.

K X N N N K X

Program augmentation

e Given a declarative program....

e \We can transform it in
an active program with

race conditions:
-> X.

-> Y. => +X.

-> vy. => +y.

-> X. => +z.
+z => +X.
+z => +y.
+x => +y.
+y => +X.

K X N N N K X

Program augmentation

e Given a declarative program....

= e \We can transform it in
Z an active program with
z —> x. race conditions: or with no race conditions:
z —>Y. => +x. 1 => +x.
X =>Y. => +y. D => +4y.
y —> X. => +z. P => +zZ.
+z => +X. 1 Z => +Xx.
tz => +y. Doz => +y.
tx => +y. D ox => +y.

+y => +X. 1y => +x.

Program augmentation

_ _ here we capture
e Given a declarative program.... the catalyst case, and the

relation with ergodicity

X. o (as asymptotic growth)
e We can transform it in
Z an active program with
2 —> x. race conditions: or with no rage conditions:
zZ -> Y. => +Xx. : => +X.
x —> vy. => +y. . => +ty.
y —> x. => +z. o => +zZ.
+z => +x. :Z => +x.
+z => +y. => +y

1 Z
+x => +y. I X => +y.
+y => +x.)Y

CompLog

web editor >

()
=
(=5
@

output

11
V. Vv
X< < X

< X|N|[N R RS
| | s aean
v V ee'ae'ae
wwkkiN< x

% generative model constructed from declarative model
=>4 1 +X.

=>4 :: +y.
=>4 :: +z.
1z =>1:: +x.
tz=>1 1 4y,
DX => 3 o4y,
Ty => 3 i 4X.

[Parse] [Separate] [Augment] [Reset]

See examples ...

Complog: main characteristics (3)

e Unexpectedness (related to posterior probability) becomes the primary target of
inference. Priors are derived by adding back the determination cost.

Example program

WWEFERFE&ND
& X N N NK ¥
I
v
"

Cd(x) = 4
Cd(x * y) =
Cd(<x, y>)

Example program 4 :: x. 4 :: +x.
4 :: vy. 4 :: +y.
4 :: z. 4 :: +z.
1 :: z -> x. 1 :: +z > +x.
1 :: z > y. 1 :: +z > +y.
3 :: x > vy. 3 :: +x -> +y.
3 1y —> x. 3 :: +y —> +x.
cd(x) = 4 Cw(+x) = 4
Cd(x *y) =7 Cw(+x * +y) =7

Cd(<x, y>) = 6 Cw(<+x, +y>) =7

Example program 4 :: x. 4 :: +x.
4 :: vy. 4 :: +y.
4 :: z. 4 :: +z.
1 :: z -> x. 1 :: +z > +x.
1 :: z > y. 1 :: +z > +y.
3 :: x > vy. 3 :: +x -> +y.
3 1y —> x. 3 :: +y —> +x.
cd(x) = 4 Cw(+x) = 4
Cd(x *y) =7 Cw(+x * +y) =7
Cd(<x, y>) = 6 Cw(<+x, +y>) =7
U(x) =0

U(x *y) =0
U(kx, y>) =1

Example program

WWEFERFE&ND
& X N N NK ¥
I
v

L T

Cd(x) = 4
Cd(x * y) =7
Cd(<x, y>) = 6

U(x) =0

U(x *y) =0
U(kx, y>) =1 ///

4 +x.

4 +y.

4 +z.

1 +z -> +x.
1 +z -> +y.
3 +x -> +y.
3 +y —> +x.
Cw(+x) = 4

Cw(+x * +y) =7
Cw(<+x, +y>) =7

base for learning?
perhaps we should
introduce a new
situation z that
aggregates x and y?

ComplLog: implementation

- - - COMPLOG PROGRAM
Derivation wvia ASP

cost(s, x, 4).
cost(s, y, 4).

EXPLORATION cost(s, z, 4).

cost(z, x, 1).

% every outgoing edge from a reached node is a path cost(z, y, 1).
path (X, Y) :- reached(X, N), edge(X, Y). cost(x, y, 3).

cost(y, x, 3).
% a starting node qualifies as reached start(s) .
reached (X, 0) :- start(X).

goal (x). goal(y) .
% all goals should be reached
:- goal(Y), not reached(Y, _).

OPTIMIZATION

totalcost(T) :- T = #sum{C, X, Y : path(X, Y), cost(X,Y,C)}.
#minimize {T: totalcost(T)}.

% IF non-sequential search
{ reached(Y, N) } :- path(X, Y), reached(X, N).

o°

ELSE IF sequential search

CONSTRAINTS reached(Y, N + 1) } :- path(X, Y), reached(X, N), N < 10.

-~

% IF race conditions (interleaved semantics)
:- reached (X, N), reached(Y, N), X '= Y.

CompLog: examples of application

Finding the most relevant description!

eagle -> bird. eg. from frequency of eg. from frequency of actual encounters
pigeon -> bird. presence in the
canary -> bird. communications 12 :: #eagle.

tiger -> mammal. 3 :: #pigeon.

dog -> mammal. 4 :: eagle. 7 :: fcanary.
cat -> mammal . 4 :: pigeon. 12 :: #tiger.
dog -> pet. 6 canary. 3 :: #dog.
cat -> pet. 4 tiger. 3 :: #cat.
canary -> pet. 3 dog.

3 cat.

Finding the most relevant description!

eagle -> bird. eg. from frequency of eg. from frequency of actual encounters
pigeon -> bird. presence in the
canary -> bird. communications 12 :: #eagle.

tiger -> mammal. 3 :: #pigeon.

dog -> mammal. 4 :: eagle. 7 :: #canary.
cat -> m al. 4 - plgeon. 12 :: #tlger.
dog -> pet. 6 canary. 3 :: #dog.
cat -> pet. 4 tiger. 3 :: #eat.
canary -> pet. 3 dog.

3 cat.

by computing the various unexpectedness we can settle on what is
the best descriptor (min U) of the current situation, eg. given

#pigeon, we may say bird

Disjunction?

% declarative model with disjunction (as in ProbLlog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

% correspondent procedural model with race conditions
2 :: => diel. 2 :: => die2. 2 :: => die3. 2 :: => died.

Disjunction?

% declarative model with disjunction (as in ProbLlog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

% correspondent procedural model with race conditions
2 :: => diel. 2 :: => die2. 2 :: => die3. 2 :: => died.

(exclusive) disjunction in probability specification
conveys implicitly the presence of race conditions!

Negation?
% declarative model with disjunction (as in ProbLlog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

query ~diel.

e We first compute the complexity of diel.

2 2 C(diel) = 2
2 2

diel die2 die3 die4d

Negation?

% declarative model with disjunction (as in ProbLlog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

query ~diel.

e We first compute the complexity of diel.
e We then remove diel from the graph.

diel die2 die3 die4d

Negation?

% declarative model with disjunction (as in ProbLog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

query ~diel.

e We first compute the complexity of diel.
e We then remove diel from the graph.
2 e We compute the node with the best
2 complexity, eg. die2.

C(~diel) = C(die2) = 2
diel die2 die3 die4d

Negation?

% declarative model with disjunction (as in ProbLog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

query ~diel.

e We first compute the complexity of diel.

We then remove diel from the graph.

We compute the node with the best

complexity, eg. die2.

e |If needed, we can proceed incrementally,
negating die2 and so on, aggregating the
complexities.

diel die2 die3 die4d

Negation?

% declarative model with disjunction (as in ProbLog)
2 :: diel; 2 :: die2; 2 :: die3; 2 :: died.

query ~diel.

e We first compute the complexity of diel.

We then remove diel from the graph.

e We compute the node with the best
complexity, eg. die2.

e |If needed, we can proceed incrementally,
negating die2 and so on, aggregating the
complexities.

diel die2 die3 die4d

- possibility of sequential, approximated computation!

Conclusions

e \We presented a novel framework for automated inference in context of uncertainty based
on Simplicity Theory, relying on the computation of two distinct Kolmogorov complexities
by means of min-path search.

e Three additional practical reasons motivates continuing the exploration:

e Integration potential: Enabling by design the distinction of descriptive and causal
dimensions, it supports support the development of dedicated tools;

e Efficiency: because of the greedy search related to the minimization of complexity,
we hypothesize that it is faster than a probabilistic equivalent system;

e Cognitive modeling soundness: the framework can mimic cognitive mechanisms
observable in humans.

From ProblLog to Complog

From Probabilistic to
Complexity-based Logic Programming

1st October 2023, HYDRA workshop @ ECAI 2023

2nd International Workshop on Hybrid Models for coupling Deductive and Inductive Reasoning

L;(SI Giovanni Sileno el Jean-Louis Dessalles
48l J.sileno@uva.nl gZipl Jean-louis.dessalles@telecom-paris.fr

University of Amsterdam Télecom Paris

mailto:g.sileno@uva.nl
mailto:jean-louis.dessalles@telecom-paris.fr

