Exploring structures of
inferential mechanisms through
simplistic digital circuits

25 October 2025, AlIC workshop @ ECAI 2025

10th International Workshop on Atrtificial Intelligence and Cognition

L;(SI Giovanni Sileno el Jean-Louis Dessalles
4@l J.sileno@uva.nl EZipl Jean-louis.dessalles@telecom-paris.fr

University of Amsterdam Télecom Paris



mailto:g.sileno@uva.nl
mailto:jean-louis.dessalles@telecom-paris.fr

Inferential mechanisms in cognitive studies

e Cognitive studies have since long distinguished several types of cognitive mechanisms,
by conducting distinct modelling efforts and different types of experiments.



Inferential mechanisms in cognitive studies

e Cognitive studies have since long distinguished several types of cognitive mechanisms,
by conducting distinct modelling efforts and different types of experiments.

categorization

the process grouping objects,
events, or situations, on the
basis of shared characteristics




Inferential mechanisms in cognitive studies

e Cognitive studies have since long distinguished several types of cognitive mechanisms,
by conducting distinct modelling efforts and different types of experiments.

categorization

the process grouping objects,
events, or situations, on the
basis of shared characteristics

via prototype theory, exemplar theory, rule-based, knowledge-based, Bayesian models...



Inferential mechanisms in cognitive studies

e Cognitive studies have since long distinguished several types of cognitive mechanisms,
by conducting distinct modelling efforts and different types of experiments.

induction

the process drawing general
rules/models from observations




Inferential mechanisms in cognitive studies

e Cognitive studies have since long distinguished several types of cognitive mechanisms,
by conducting distinct modelling efforts and different types of experiments.

induction

the process drawing general
rules/models from observations

3

via associative (co-occurrence), descriptive (similarity), Bayesian models, ...



Inferential mechanisms in cognitive studies

e Cognitive studies have since long distinguished several types of cognitive mechanisms,

by conducting distinct modelling efforts and different types of experiments.
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e The same dispersion can be observed TRADITIONALLY in artificial intelligence,
research and practice.... TODAY, with transformer architectures, there is a
general belief that we can induce essentially all inferential mechanisms from
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still none of these approaches say where all inferential mechanisms come from!
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Restarting from scratch..

e Rather then reverse engineering the brain, we could investigate an inferential
system from its minimal core. But what would that be?

e Intuition: several inferential mechanisms have been reproduced with success
through symbolic Al methods = they SHOULD get some aspect of the cognitive
functions right.

e This is a weaker assumption than hypotheses like Language of Thought
(LoT) or Physical Symbol System (PSS)!



Outline of presentation

e Under which constraints logic rules can be interpreted as valid digital circuits?
o  Which inferential constructs can be constructed from these constraints?

m Generalizing this analysis, we will find an unexpectedly unifying schema!



Let’s take a classic symbolic tool for
computational inference: logic programming
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Let’s take a classic symbolic tool for
computational inference: logic programming

parent (marge, lisa).
parent (marge, bart).
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Going electrical!

e In order to drop implicit assumptions holding with symbolic methods, let’s think in
terms of digital circuits: activation at the end maps just to an electrical
feedforward mechanism!
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Going electrical!

e |t seems easy to associate logic rules to logic ports.

p :- a, b. a
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;S
b AND

e Yet, in propositional logic, the contrapositive holds:

a /\ b— P ﬁ —|p<—>—|a‘\/—|b a assertions of denial (it is the case that not ...)

This dual circuit is not directly implementable!
The output is not a single port, and it is non-deterministic.
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Going electrical!

p:-a,b a
-a :- -p, b
-b :- -p, a b
-b
aAb—-p ﬁ p—"aV b
Semantically, however, logic interacts with
the space of all possible models/states. —-a
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Going electrical!

deterministic machinery
reifying constraints

p :- a, b. a
-a :- -p, b. <) D
-b :- P, a. b b AND
2 D
1{a; -a}l. <EB
-b
1{b; -b}1l. 7
N\
1{p; -pll. AND
combinatorial exploration
=a |
=
ASP syntax, see https://potassco.org/clingo/run/ AND
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What we learn by going electrical? (2)

p :- a, b.
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What we learn

......

p :- a,b
~a :- -p, b
-b :- -p, a
l1{a; -a}l.
1{b; -b}1l.
1{p; -pl}1.

conditionals are not simple operators!

implications are topological!
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What we learn by going electrical? (3)
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Going electrical: conclusions!

p :- a, b. a

Y D
L

b AND

» logic rules as in LP are more sound specifications of activation mechanisms.
Yet, we should not use default negation!

We have some indication on minimal activation mechanisms: inputs can
be composed only with OR “;” and AND “,” .. but what about outputs?



A Suj.te Of dependenCieS ! (abusing the standard LP notation)

p :- a, b.
p :- a; b.
p, 9 :- a.
p; q :- a.



1. Conjunction in body
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2. Disjunction in body

this acts like an
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3. Conjunction in head

.- a. this acts like a
- a. broadcast bus
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P, q:- a 4

This form is also expressed in the

contrapositive of (2)



4. Disjunction in head

non-deterministic!

p; q :- a.
D p

e
U/ 9

This form is also expressed in the

contrapositive of (1
P (1) (If made deterministic, it would

aVbop <:> p—-a A b be just as form 3.)



4. Disjunction in head

non-deterministic!

p; 9 :- a.

A

R

L/

This form is also expressed in the

g9

contrapositive of (1) .
(If ma , It would
aVb-op <:> p—-a A b beJ orm 3

But not if interpreted as a XOR!



From propositions to predicates..

e So far we considered only the propositional case. However, features are always
about some entity, just as predicates are always about something.

e Let us consider how these dependencies would appear in common usages in
logic programming.

e \We will consider two cases:

o Unary predicates (concerning only a single entity)
o Binary predicates (relating two distinct entities)



Unary predicates (abusing the standard LP notation)

p(X) :- a(X), b(X).
p(X) :- a(X); b(X).
p(X), a(X) :- a(X).

p(X); g(X) :- a(X).



Unary predicates

pP(X) :- a(X), b(X).

(1) relation defining new concepts:
angrydog(X) :- dog(X)f angry(X).



Unary predicates

P (%)

- a(X); b(X).

(2) relation defining taxonomical relations:

mammal(X)

;- dog(X); cat(X).
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Unary predicates

P(X), q(X) :- a(X).

(3) relation activating back the source concepts:
dog(X), angry(X) :- angrydog(X).
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Unary predicates

5’@ ?ne&m “"Wﬁjﬁﬁ*
P(X); q(X) :- a(X). sg«"‘@ﬂ@

(4) non-deterministic relation activating alternative choices:
dog(X); cat(X) :- mammal(X).
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e Give an entity, we may bind it to other entities

dog(x) A tail(y) A has(z,y)
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Binary predicates

e Give an entity, we may bind it to other entities

dog(z) A tail(y) A has(z,y)

e Atrule level, this becomes an existential rule,
which is not treatable by standard logic
programming derivation (nor by description
logic reasoners)

Va : dog(z) — Jy : tail(y) A has(x,y) U/

Abdomen \
Forelimbs Hindlimbs
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there is a similar problem with active rules (causal laws!)



Binary predicates (abusing the standard LP notation)

P(x) ‘- Y/ a(x/ Y) ’ Z/ b(x/ Z) .
P(X) :- ¥/ a(X, Y); Z/ b(X, Z).
Y/ p(X, ¥Y), 2/ g(X, 2) :- a(X).

Y/ p(X, Y); Z/ q(X, Z) :- a(X).



Binary predicates

Windshield Wiper

p(X) :- ¥/ a(X, YY), Z/ b(X, 2). i

Air Filter

(1) relation determining a concept by composition:
car(X) :- Y/ engine(Y), Z/ wheels(Z), has(X, Y), has(X, Z).



Binary predicates

P(X) :- ¥/ a(X, Y); 2/ b(X, 2).

(2) specifies an operation of conceptual generalization:
student(X) :- Y/ humanities(Y), studies(X, Y);

Z/ sciences(Z), studies(X,

Z).



Binary predicates

Y/ P(Xr Y)r Z/ q(xr
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(3) reifies mereonomical relations (similarly to a constructor in Object Oriented Programming):

Y/ engine(Y), Z/ wheels(Z), has(X, Y), has(X, Z)

;- car(X).



Binary predicates

Y/ p(X, Y); Z/ q(X, Z) :- a(X).

(4) activates the possible realizations of a concept:
Y/ humanities(Y), studies(X, Y); Z/ sciences(Z), studies(X, Z) :- student(X).



conceptual merge by morphism
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(1) relation defining new concepts: angrier). in logic usually

angrydog(X) :- dog(X), angry(X). operationalized as intersection.

conceptual merge by
aggregation (construct a
whole out of components).

(1) relation determining a concept by composition:
car(X) :- Y/ engine(Y), Z/ wheels(Z), has(X, Y), has(X, Z).



conceptual merge by morphism
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(1) relation defining new concepts: angrier). in logic usually

angrydog(X) :—<g(X), angry (X). operationalized as intersection.
conceptual merge by

COMPREHENSION aggregation (construct a
whole out of components).

(1) relation determiniing a concept by composition:
car(X) :- Y/ engine(Y), Z/ wheels(Z), has(X, Y), has(X, Z).



(2) relation defining taxonomical relations:
mammal(X) :- dog(X); cat(X).

N\

GENERALIZATION

(2) specifies an operation of conceptual generalization:
student(X) :- Y/ humanities(Y), studies(X, Y); Z/ sciences(Z), studies(X, Z).



fusion

(2) relation defining taxonomical fe.la‘tions;--~-~---~---
mammal(X) :- dog(X); cat(X).

N
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(2) specifies an operation of conceptual generalization:
student(X) :- Y/ humanities(Y), studies(X, Y); Z/ sciences(Z), studies(X, Z).
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fusion
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mammal(X) :- dog(X); cat(X).
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(2) specifies an operation of conceptual generalization:
student(X) :- Y/ humanities(Y), studies(X, Y); Z/ sciences(Z), studies(X, Z).



(3) relation activating back the source concepts:
dog(X), angry(X) :- angrydog(X).
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Y/ engine(Y), Z/ wheels(Z), has(X, Y), has(X, Z) :- car(X).



(3) relation activating back the source concepts:
dog(X), angry(X) :- angrydog(X).
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DESCRIPTION

(3) reifies mereonomical relations (similarly to a contructor in OOP):
Y/ engine(Y), Z/ wheels(Z), has(X, Y), has(X, Z) :- car(X).



(4) non-deterministic relation activating alternative choices:
dog(X); cat(X) :- mammal(X).
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SPECIFICATION

(4) activates the possible realizations of a concept:
Y/ humanities(Y), studies(X, Y); Z/ sciences(Z), studies(X, Z) :- student(X).



(4) non-deterministic relation activating alternative choices:
dog(X); cat(X) :- mammal(X).

| “filling the gaps” mechanism
(including text completion, as in LLM)

SPECIFICATION

(4) activates the possible realizations of a concept:
Y/ humanities(Y), studies(X, Y); Z/ sciences(Z), studies(X, Z) :- student(X).
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A suite of mechanisms!

decompression

via contrast via detachment
3. DESCRIPTION 4. SPECIFICATION
un-packing zooming-in
VS VS
packing zooming-out
1. COMPREHENSION 2. GENERALIZATION
via merge via fusion

re-encoding compression quantization



Conclusion

e The first mathematical model of a neuron was the McCulloch-Pitts (MCP) model in 1943,
which paved the way to the Perceptron and then... to transformers (including LLMs).
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Conclusion

e The first mathematical model of a neuron was the McCulloch-Pitts (MCP) model in 1943,
which paved the way to the Perceptron and then... to transformers (including LLMs).
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and now we’re trying to understand what they do!

Observed model Hypothetical disentangled modél



Conclusion

1 % neutrality(+Matrix,+Exprs,-Exprs): the function N(X)
2 neutrality(AttM, X, Y) :-

A 3 mv_mult(AttM, X, Z), % RT(X)
B Q 4 maplist(bnot, Z, Y).
5
6 % innocuousity(+Matrix,+Exprs,-Exprs): the function Z(X)
7 innocuousity(AttM, X, Y) :-
LU 8 transpose(AttM, AttM_t), X% transpose operation
C 9 mv_mult(AttM_t, X, Z). % R~ (X)
10 maplist(bnot, Z, Y).
11
12 % defense(+Matrix,+Exprs,-Exprs): the function F(X)

13 defense(AttM, X, Y) :-
14 neutrality(AttM, X, 2),
15 neutrality(AttM, Z, Y).

In this paper, rather than trying to make sense of inferential circuits embedded in

[ J
transformers, we looked at known inferential constructs by the lens of simple digital

circuits...



Conclusion

1 % neutrality(+Matrix,+Exprs,-Exprs): the function N(X)
2 neutrality(AttM, X, Y) :-

A 3 mv_mult(AttM, X, Z), % RT(X)
B Q 4 maplist(bnot, Z, Y).
5
6 % innocuousity(+Matrix,+Exprs,-Exprs): the function Z(X)
7 innocuousity(AttM, X, Y) :-
LU 8 transpose(AttM, AttM_t), X% transpose operation
C 9 mv_mult(AttM_t, X, Z). % R~ (X)
10 maplist(bnot, Z, Y).
11
12 % defense(+Matrix,+Exprs,-Exprs): the function F(X)

13 defense(AttM, X, Y) :-
14 neutrality(AttM, X, 2),
15 neutrality(AttM, Z, Y).

In this paper, rather than trying to make sense of inferential circuits embedded in
transformers, we looked at known inferential constructs by the lens of simple digital

circuits... and we found that:

‘ there exists a barebone common structure for inferential mechanisms!




Further results!

In the paper we have additional results:

(@)

an application of a probabilistic interpretation of logic programs predicting
dependencies across the 4 inferential mechanisms,

an elaboration on how learning would work differently for generalization
and comprehension,

an observation on the fact that LLMs mimic a description mechanism
through a specification one, entailing that they may take contrast wrong.

and yet others considerations!!
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