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● Cognitive studies have since long distinguished several types of cognitive mechanisms, 
by conducting distinct modelling efforts and different types of experiments.

induction

abduction 

deductive reasoning

analogical reasoning
causal/diagnostic inference

conceptual merge/blending 
contrast 

categorization 

….
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categorization 

the process grouping objects, 
events, or situations, on the 
basis of shared characteristics

induction

the process drawing general 
rules/models from observations

symbolic AI: rule-based systems, decision trees, formal 
concept analysis (FCA), … sub-symbolic AI: neural 
networks, support vector machines, clustering, …

symbolic AI: inductive logic programming, version-space, and explanation-based learning 
sub-symbolic IA: all machine learning methods (including deep learning and generative AI methods)
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MECHANISTIC 
INTERPRETABILITY reverse engineer 

the neural network 
to identify “circuits” 
implementing 
inferential 
functions

Bereska, Leonard, and Efstratios Gavves. "Mechanistic interpretability for AI safety--a review." 
arXiv preprint arXiv:2404.14082 (2024). https://leonardbereska.github.io/blog/2024/mechinterpreview/ 
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Inferential mechanisms in AI

MECHANISTIC 
INTERPRETABILITY reverse engineer 

the neural network 
to identify “circuits” 
implementing 
inferential 
functions

affinity with Computational Neuro-Science

still none of these approaches say where all inferential mechanisms come from!
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● Rather then reverse engineering the brain, we could investigate an inferential 
system from its minimal core. But what would that be?

● Intuition: several inferential mechanisms have been reproduced with success 
through symbolic AI methods ⇒ they SHOULD get some aspect of the cognitive 
functions right.

● This is a weaker assumption than hypotheses like Language of Thought 
(LoT) or Physical Symbol System (PSS)!

Restarting from scratch…



Outline of presentation

● Under which constraints logic rules can be interpreted as valid digital circuits? 

○ Which inferential constructs can be constructed from these constraints?

■ Generalizing this analysis, we will find an unexpectedly unifying schema!



…
parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
parent(homer, bart).
parent(homer, maggie).
parent(abraham, homer).
parent(abraham, herb).
parent(mona, homer).

child(X,Y) :- parent(Y,X).

?- child(lisa, marge).
true

Let’s take a classic symbolic tool for 
computational inference: logic programming



Let’s take a classic symbolic tool for 
computational inference: logic programming

…
parent(marge, lisa).
parent(marge, bart).
parent(marge, maggie).
parent(homer, lisa).
parent(homer, bart).
parent(homer, maggie).
parent(abraham, homer).
parent(abraham, herb).
parent(mona, homer).

orphan(X) :- not parent(Y, X).

?- orphan(abraham).
true creating 

knowledge
out of “ignorance”

DEFAULT NEGATION



Going electrical!

● In order to drop implicit assumptions holding with symbolic methods, let’s think in 
terms of digital circuits: activation at the end maps just to an electrical 
feedforward mechanism! 
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● It seems easy to associate logic rules to logic ports.

● Yet, in propositional logic, the contrapositive holds:

Going electrical!

p :- a, b. a

b

p

a ∧ b → p ¬p → ¬a ∨ ¬b 

This dual circuit is not directly implementable!
The output is not a single port, and it is non-deterministic.

CLASSIC NEGATION
assertions of denial (it is the case that not …)

AND
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Semantically, however, logic interacts with 
the space of all possible models/states. 
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Going electrical!

p :- a, b.
-a :- -p, b.
-b :- -p, a.

1{a; -a}1.
1{b; -b}1.
1{p; -p}1.

a

b

p

¬a

¬b ¬p

AND

AND

AND

a

b p

deterministic machinery 
reifying constraints

combinatorial exploration

ASP syntax, see https://potassco.org/clingo/run/ 

https://potassco.org/clingo/run/
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state is 
on the 
channels

channels may receive 
opposite signals: invalid status

we should purge
all models with 
contradictions

What we learn by going electrical? (3)
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AND
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b

p

Going electrical: conclusions!

● logic rules as in LP are more sound specifications of activation mechanisms. 
Yet, we should not use default negation!
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b
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Going electrical: conclusions!

● logic rules as in LP are more sound specifications of activation mechanisms. 
Yet, we should not use default negation!

  

We have some indication on minimal activation mechanisms: inputs can 
be composed only with OR “;” and AND “,” .. but what about outputs?



p :- a, b.            
p :- a; b.            
p, q :- a.            
p; q :- a.            

A suite of dependencies! (abusing the standard LP notation)
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1. Conjunction in body



p :- a; b.            p :- a.
p :- b.            

a

b

pa

pb

p

this acts like an 
accumulation bus

2. Disjunction in body



p, q :- a.
p :- a.
q :- a.      

This form is also expressed in the 
contrapositive of (2)

a ∧ b → p ¬p → ¬a ∨ ¬b 

a

p

q

this acts like a 
broadcast bus

3. Conjunction in head



p; q :- a.

This form is also expressed in the 
contrapositive of (1)

a ∨ b → p ¬p → ¬a ∧ ¬b 

a
p

q

(If made deterministic, it would 
be just as form 3.)

4. Disjunction in head

non-deterministic!



p; q :- a.

This form is also expressed in the 
contrapositive of (1)

a ∨ b → p ¬p → ¬a ∧ ¬b 

a
p

q

(If made deterministic, it would 
be just as form 3.)

4. Disjunction in head

But not if interpreted as a XOR!

non-deterministic!



From propositions to predicates…

● So far we considered only the propositional case. However, features are always 
about some entity, just as predicates are always about something. 

● Let us consider how these dependencies would appear in common usages in 
logic programming.

● We will consider two cases:

○ Unary predicates (concerning only a single entity)
○ Binary predicates (relating two distinct entities)
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● Give an entity, we may bind it to other entities

● At rule level, this becomes an existential rule, 
which is not treatable by standard logic 
programming derivation (nor by description 
logic reasoners)

Binary predicates

there is a similar problem with active rules (causal laws!)



Binary predicates (abusing the standard LP notation) 
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3. DESCRIPTION 4. SPECIFICATION

1. COMPREHENSION 2. GENERALIZATION

compression

decompression

via merge

via contrast

via fusion

via detachment

re-encoding quantization

A suite of mechanisms!
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● The first mathematical model of a neuron was the McCulloch-Pitts (MCP) model in 1943, 
which paved the way to the Perceptron and then… to transformers (including LLMs).

… 

● In this paper, rather than trying to make sense of inferential circuits embedded in 
transformers, we looked at known inferential constructs by the lens of simple digital 
circuits… and we found that:

there exists a barebone common structure for inferential mechanisms!

Conclusion



Further results!

● In the paper we have additional results: 

○ an application of a probabilistic interpretation of logic programs predicting 
dependencies across the 4 inferential mechanisms,

○ an elaboration on how learning would work differently for generalization 
and comprehension,

○ an observation on the fact that LLMs mimic a description mechanism 
through a specification one, entailing that they may take contrast wrong. 

○ and yet others considerations!!
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