The hand-in exercise is the exercise 3.

Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)

Deadline is Wednesday February 20, 23.59.

Please make sure your name and the week number are present in the file name.

Exercise 1: Maxwell theory in differential form notation

In this exercise we assume a flat Lorentzian metric, $g_{\mu\nu} = \eta_{\mu\nu}$. Recall that the current one-form can be written in components as $J = J_\mu dx^\mu = \rho dx^0 + j_i dx^i$.

a. Show that the inhomogeneous Maxwell equations of motion, $\nabla \cdot E = \rho$ and $\nabla \times B - \partial E/\partial t = j$ can be written as $d*F = *J$.

b. What does the equation $d^2 = 0$ imply for ρ and j? Explain that the resulting equation can be interpreted as conservation of charge.

c. To gauge fix the Maxwell gauge symmetry, one often chooses the condition $\partial_\mu A^\mu = 0$. Write this condition in differential form notation.

Exercise 2: Equations of motion for Maxwell theory

Show that the Euler-Lagrange equations for the action $S = \int F \wedge *F + A \wedge *J$ are indeed Maxwell’s homogeneous equations of motion (2.49).

Exercise 3: The Dirac monopole (hand-in exercise)

In this exercise, we will work with three-dimensional polar coordinates (r, θ, ϕ), defined by

\[
\begin{align*}
x &= r \sin \theta \cos \phi \\
y &= r \sin \theta \sin \phi \\
z &= r \cos \theta
\end{align*}
\]

in terms of the cartesian coordinates (x, y, z). Of course, this map is not 1-to-1; in particular, θ and ϕ are only defined up to multiples of 2π. The time coordinate t will not play a role in this exercise, so you may assume we are working on \mathbb{R}^3.

We will consider the field strength

\[
F = \frac{g}{4\pi} \sin \theta \, d\theta \wedge d\phi
\]

with $g \neq 0$.

1
a. Compute \(\int_{S^2} F \), where \(F \) is a two-sphere centered at the origin of \(\mathbb{R}^3 \).

b. Use the previous result and Stokes’ theorem to show that \(F \) can not be a closed form.

c. Naively computing \(dF \), one still seems to find \(dF = 0 \). How can this apparent contradiction with the result of (b) be understood?

d. One way to understand the result of (c) is to compute \(\star F \). Show that indeed \(\star F \) has a singularity at the origin of \(\mathbb{R}^3 \).

Summarizing, we have found that our field strength \(F \) is well-defined and closed only on \((\mathbb{R}^3)^* \equiv \mathbb{R}^3 \setminus \{0, 0, 0\}\). As this manifold is not topologically trivial, we cannot use Poincaré’s lemma to conclude that \(F = dA \) everywhere. However, if we define \(D^+ \) and \(D^- \) as the regions where \(\theta \neq \pi \) and \(\theta \neq 0 \) respectively (that is, \(D^+ \) is \(\mathbb{R}^3 \) excluding the negative \(z \)-axis, and \(D^- \) is \(\mathbb{R}^3 \) excluding the positive \(z \)-axis), these two regions are topologically trivial. On these regions, we now consider the 1-forms

\[
A^+ = \frac{g}{4\pi} (1 - \cos \theta) d\phi, \quad A^- = -\frac{g}{4\pi} (1 + \cos \theta) d\phi
\]

e. (Easy:) Show that \(F = dA^+ \) and \(F = dA^- \) in \(D^+ \) and \(D^- \) respectively.

f. Compute \(A^+ - A^- \). Where is this 1-form defined? In particular: is that space topologically trivial? Can \(A^+ \) be obtained from \(A^- \) using a gauge transformation?

One can slightly generalize the concept of a gauge transformation as follows. In quantum mechanics, one is interested in the wave function \(\psi(x) \) of a particle. Under a transformation of the potential

\[
A \rightarrow A + \omega
\]

with \(\omega \) a closed one-form, the wave function transforms as

\[
\psi(x) \rightarrow \psi(x) \exp \left(i \int_{\gamma} \omega \right)
\]

where \(\gamma \) is a path from an arbitrarily chosen base point to the point to \(x \). A large gauge transformation is a transformation of \(A \) by a one-form \(\omega \) such that the transformation of \(\psi(x) \) is well-defined.

g. In the previous sentence, “well-defined” means that the transformed value of \(\psi(x) \) should not depend on the choice of a path \(\gamma \). Argue that in a topologically trivial space, this condition is automatically satisfied if \(\omega \) is closed.

h. Which additional condition should \(\omega \) satisfy if the space is not topologically trivial? (In particular: if it is not simply connected?)

i. In our example, which condition should \(g \) satisfy so that \(A^+ \) and \(A^- \) are related by a large gauge transformation?
The upshot of this exercise is therefore that, assuming the condition found in (i) is satisfied, our field strength F describes a “good” electromagnetic field configuration on $\mathbb{R}^3 \setminus \{0, 0, 0\}$. The interpretation of this configuration is that there is a “defect” at the singular point in the origin – an object which can be interpreted as a particle.

j. Show that this particle does not have an electric charge, but that by replacing the E-field with the B-field, it can be considered to have a “magnetic charge”. This particle (which has never been observed in nature!) is called the Dirac magnetic monopole.