
Eager and Memory-Based Non-Parametric Stochastic Search Methods
for Learning Control

Victor Barbaros1, Herke van Hoof1, Abbas Abdolmaleki2 and David Meger1

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Direct policy search has shown to be a successful
method to optimize robot controller parameters. However,
defining a good parametric form for the controller can be
challenging for complex problems. Non-parametric methods
provide a flexible alternative and are thus a promising tool
in robot skill learning. In this paper, we investigate two non-
parametric methods based on similar principles but utilizing
differing computing schedules: an eager learner and a memory-
based learner. We compare the methods experimentally on two
different control problems. Furthermore, we define and evaluate
a new ‘hybrid’ controller that combines the strong points of
both of these methods.

I. INTRODUCTION
Policy search has been shown to be a successful rein-

forcement learning approach for acquiring robot skills [1].
In particular, direct policy search methods attempt to find a
good parameter vector for a controller without relying on an
estimate of a value function. These abstract parameters are
often mapped indirectly to low-level actions. For example,
our parameters might be the gains of a PD controller.

In this paper, we will focus on episode-based policy search
[1]–[5]. In this paradigm, a measure of quality called return
is associated with each parameter vector. This return can,
for example, be specified as the cumulative value of a reward
function that defines the task. As episode-based policy search
does not put any assumption on the structure of the return,
it is a special case of stochastic search.

Stochastic search algorithms are gradient-free black-box
optimizers that can be used to find a set of policy parameters
which optimize robot performance directly. These algorithms
can be applied with an arbitrary and unknown performance
function and do not require gradients. The only requirement
is that the performance of a particular control policy can be
evaluated, for example, by executing the policy with a given
parameter vector on the robot.

Stochastic search is of particular utility in contextual
policy search, where a robot must perform well over a set
of environments that are related by a context variable. For
example, inserting a peg into a hole, where the hole position
(the context vector) is provided in each case. The search
distribution is then conditional on the current context. This
conditional search distribution is then again optimized to
generate the appropriate parameters for a low-level controller
to perform well in the specific task context.

Stochastic search methods maintain a search distribution
from which the parameter vectors to be evaluated are sam-

1 School of Computer Science, McGill University, Montreal, Canada
2 Universidade de Aveiro, Aveiro, Portugal
Correspondence: victor.barbaros@mail.mcgill.ca

pled. In contextual stochastic search, there can be a different
search distribution for each context. Such methods thus need
to represent a mapping from contexts to search distributions
– this mapping represents the ability of the method to
generalize across contextually-related environments. Simple
examples are search distributions where the mean is a linear
combination of context features, or a mixture of linear
models [6]–[8]. However, if the mapping from contexts to
good controller parameters is complex, a linear model is not
powerful enough and designing good non-linear features can
be a complex task even for domain experts.

Alternatively, the mapping from contexts to search distri-
butions could be specified using a non-parametric technique.
Non-parametric techniques do not have a fixed representa-
tion that is designed beforehand, but use a representation
that is defined by the training data. Thus, non-parametric
representations are highly flexible, tend be more precise in
areas where many data points lie, and tend to automatically
become more complex for larger training set sizes.

In this paper, we will investigate two different non-
parametric methods that have recently been proposed for
use in reinforcement learning. First, we will look at locally
weighted methods [9]. This method falls in the category of
memory-based learning where learning samples are stored
and accessed each time a prediction is made. In particular,
for every query a locally linear model is fit to nearby data
points. In contrast to a globally linear model, the set of active
data points is different for each test point, and, thus, the
global shape can be highly non-linear.

On the other hand, we will investigate Gaussian processes,
a kernel method [10]. A Gaussian process can be seen as a
generalization of a linear model where we do not need to
specify basis features, but instead compute inner products
in some kernel space. Whereas locally linear methods tend
to perform a relatively simple computation each time the
model is queried, fitting a Gaussian process model requires
intensive computation. However, this computation must be
performed only once for a given training set. This up-front
computation is the hallmark of an eager learning method.

Memory-based and eager models have different strengths
and weaknesses in terms of performance and computation
time. Our comparison will quantify these differences, and
thus help determine when to select each approach. However,
the primary contribution of this paper is a novel hybrid
method that combines the representational power of the
memory-based method with the efficient run-time complexity
of the eager approach.



II. RELATED WORK

In this section, we will give an overview of work on
contextual stochastic search methods and non-parametric
methods in policy search and reinforcement learning.

A. Stochastic search methods

Several authors have considered optimizing policies for
each target context independently and subsequently using
regression methods to learn a mapping function to generalize
the learned parameter vectors for seen contexts to a new,
unseen context [11], [12]. A drawback of such methods is
that optimising for each context and generalisation between
contexts are two decoupled processes. Hence, learning the
optimal policy for each initial context starts from scratch,
which can be time consuming.

Learning for multiple tasks without restarting the learning
process is known as contextual (multi-task) policy search [5],
[8], [13]–[15]. In the area of contextual stochastic search al-
gorithms, a multi-task learning capability was established for
information-theoretic policy search algorithms [16]. Exam-
ples include the Contextual Relative Entropy Policy Search
algorithm [5], Contextual Model Based Relative Entropy
Stochastic Search (CMORE) [17] and Contextual Covariance
Matrix Adaptation Evolutionary Strategy (C-CMAES) [18].
The general framework of such systems is shown in Fig. 1.

B. Non-parametric methods for learning control

The contextual policy search algorithms in the previous
section learn a parametric mapping from context to pa-
rameters which is linear in some hand designed features.
Therefore these algorithms require a careful feature selection
to be able to find a high quality policy for the underlying task.
In order to alleviate this problem, non-parametric methods
have been proposed. Non-parametric methods do not rely
on a fixed set of features, but have a representation that
depends on the data set, and can grow in complexity as more
data becomes available. Two main types of non-parametric
methods include ‘eager’ learners and ‘lazy’ learners. Eager
learners build a model from the data set, and then use the
model to generalize to new data, performing most of the
computations up front. Lazy (or memory-based) learners
store the data, and then use the data to make predictions
whenever a query is made, thus performing most of the
computations during deployment.

There are two main sub-types of eager non-parametric
learners: those methods that explicitly represent the policy,
and those that only represent a value function. These objects
of interest are usually represented using a linear combi-
nations of kernels centered at the points in the data set.
Methods that do not explicitly represent the policy include
non-parametric value iteration methods [19], approximate
dynamical programming methods [20]–[22], TD-learning
methods [23], and least-squares methods [24]. For control,
policy iteration schemes can be employed [25], [26]. The
approximate linear programming algorithm [27] does not use
kernels. Instead, this model-free method assumes the value
function is Lipschitz continuous and assumes deterministic

context c

e.g. mass π
parameters θsearch distribution

e.g. PD gains

control policy

e.g. PD

control action ut, e.g. force

state xt

e.g. position
rewards rt return R

∑
plant

Fig. 1. General framework for contextual policy search. The target is to
update the search distribution π so as to maximize the returns.

dynamics. These methods tend to use deterministic actions
and so cannot easily be applied to robotics problems with
continuous controls.

Policy-search methods, that represent the policy explicitly,
are popular for control problems with continuous action
spaces. One such method, specific to the stochastic search
setting, is cost-regularized kernel regression [28]. For step-
based decision making, non-parametric policy gradient meth-
ods [29]–[31], path-integral based methods [32] and methods
based on a non-parametric Bayesian model [33] are available.
The non-parametric relative entropy policy search algorithm
[34] uses a non-parametric representation for the transition
model, policy, and value function.

Lazy, or memory-based, non-parametric methods for re-
inforcement learning and policy search have a long history.
Like eager methods, they can be subdivided based on what is
represented. Some methods used non-parametric methods to
represent the transition model, which was subsequently used
to learn a policy [35], [36], solving, among others, the task
of learning to catch with a simulated robot. Other methods
represented the value function or state-action value function
in this way [37]–[40]. Finally, a lazy non-parametric method
was used to approximate the policy in the non-parametric
contextual stochastic search method [15].

In this paper, we want to compare the advantages and
disadvantages of memory-based and eager methods on simu-
lated robotic tasks with continuous controls. Since contextual
policy search algorithms based on the relative entropy policy
search constraint [16] have proven effective in the past [15],
we will specifically look at a memory-based method [15]
and an eager method [34] based on these principles.

III. METHODS

As discussed in the previous section, in this paper we
want to compare a lazy and an eager contextual policy
search method for several simulated robot skill learning
tasks. In this paper, we will use the following notation.
The contexts c ∈C are drawn from some distribution µ(c)
unknown to the learner. The learner then chooses parameters
θ ∈Θ according to the search distribution π(θ |c). Applying
controller parameters θ in context c then yields a return Rθ

c ,
which the agent aims to optimize (this is typically a sum
over per time-step rewards).

Without additional constraints, based on a limited data-
set choosing a search distribution that maximizes expected
return is likely to result in overly greedy updates, that can



cause premature divergence to a suboptimal solution or di-
vergence of the policy. Therefore, we will consider methods
based on the relative entropy policy search principle. In
relative entropy policy search (REPS), the relative entropy or
Kullback-Leibler (KL) divergence between subsequent joint
distributions of contexts and parameters (in the stochastic
search setting1) is constrained. This constraint prevents pre-
mature converge or divergence due to overly greedy policy
updates [16].

Using this notation, the goal of the agent then is to choose
a new distribution π(θ |c)µ(c) under several constraints that
will be explained below. This goal can be formalized as the
contextual REPS optimization problem [7]:

max
π,µ

J(π,µ) =
∫∫

Θ×C
Rθ

c π(θ |c)µ(c)dθdc, (1)

s.t.
∫∫

Θ×C
π(θ |c)µ(c)dθdc = 1, (2)

∫∫

Θ×C
π(θ |c)µ(c)φ(c)dθdc = φ

∗, (3)

KL(π(θ |c)µ(c)||q(c,θ))≤ ε. (4)

Solutions to this problem aim to find the search distribution
π that maximizes the average reward (Eq. 1). Constraints
ensure that the joint distribution over contexts and parameters
is a probability distribution (Eq. 2) and that the chosen
context distribution is approximately equal to the observed
context distribution (as approximated by the matching of
features φ(c) to the observed feature average φ ∗). Finally,
to avoid overly greedy optimization, the Kullback-Leibler
(KL) divergence from a reference distribution q to the new
distribution over contexts and parameters is constrained to
some small value ε (Eq. 4). The reference distribution is
usually chosen to be the joint distribution from the previous
iteration.

Writing down the Lagrangian and solving for the primal
parameter p(c,θ) = π(θ |c)µ(c) yields

π(θ |c) ∝ q(c,θ)exp
(

Rθ
c −vT φ(c)

η

)
, (5)

where v and η are Lagrangian multipliers for constraints (3)
and (4), respectively [16]. We solve for these multipliers by
minimizing the dual function

g(η ,v) = ηε +η log

(
n

∑
i=1

1
n

exp

(
Rθi

ci −vT φ(ci)

η

))
, (6)

where integrals in (Eq. 1-4), that express expected values,
are approximated using samples (ci,θi) from reference dis-
tribution q(c,θ). A detailed derivation of these equation is
given in [7], [16].

In general, returns Rθ
c are only known for context-

parameter pairs that have been evaluated already. Thus,
the policy in Eq. (5) is only defined for sampled context-
parameter pairs. To be able to select actions in new contexts,

1In the step-based setting, the joint distribution of states and actions is
considered instead.

Algorithm 1 Eager non-parametric stochastic search
for iteration i = 1, ..., iterations do

weighting step
Input data set

[
c1:k,θ 1:k,R1:k

]

Optimize the dual function g for η and α

Compute the global sample weights dk

policy fitting step
Fit global non-parametric policy π̃(θ |c)
for episode j = 1, ..., samples (episodes) do

Input query context c j
Sample and execute parameters from π̃(θ |c j)

a generalizing policy π̃ is fit using supervised learning tech-
niques. Samples from q are used as training data, with the re-
weighting terms di = exp((Rθi

ci − vT φ(ci))/η) as importance
weights.

A. Eager non-parametric stochastic search

The standard version of the REPS algorithm as described
above relies on a good set of features φ . The non-parametric
REPS (NP-REPS) algorithm proposed in [34] instead pro-
poses using a data-driven representation. This algorithm can
be straightforwardly adapted from the sequential setting to
the stochastic search setting2.

The resulting eager non-parametric stochastic search al-
gorithm solves Eqs. 1–4 for the entire data set. The context
matching constraint in Eq. 3 is replaced by a non-parametric
variant, which can be interpreted as defining one feature for
each point in the data set as a kernel centered on that point.
Likewise, the approximating policy π̃ is represented non-
parametrically by a Gaussian process (GP).

Thus, most computations for eager non-parametric REPS
happen off-line. When the model is queried with a new
context, the GP policy only needs to be evaluated at that con-
text. The eager non-parametric stochastic search algorithm
summarized in Alg. 1.

B. Memory based non-parametric stochastic search

Recently a non-parametric stochastic search method [15],
called local Covariance Estimation with Controlled Entropy
Reduction (local CECER) was introduced. For every query
context, local CECER defines a optimization problem based
only on nearby data points. The re-weighting terms then take
both the closeness and the quality of data points into account.
Subsequently it fits a local Gaussian distribution which is
used to generate a new parameter θ ∗ for the given context.
The approximation does not need to be valid globally, so a
simple linear model can be used.

At each iteration, for every query context c∗ a locality
weighting wk is computed for each sample, with respect

2The algorithm is adapted by considering contexts and parameters instead
of states and actions, and by constraining the context distribution to be the
observed distribution (as in Eq. 3) rather than constraining it to respect the
transition dynamics in the sequential setting.



Algorithm 2 Memory-based non-parametric stochastic
search

for iteration i = 1, ..., iterations do
for episode j = 1, ..., samples (episodes) do

weighting step
Input data set

[
c1:k,θ 1:k,R1:k

]
, query context c j

Compute locality weightings wk
j

Optimize local dual function g j for η and v
Compute the local sample weights dk

j

policy fitting step
Fit local generalizing policy π̃ j(θ |c j)

Sample and execute parameters from π̃ j(θ |c j)

Essential
steps

Memory-based search Eager search

Weighting Weighting is performed
online for each sample,
thus time-consuming

Weighting is done once,
offline, for the entire iter-
ation

Policy
covari-
ance

Policy can adapt to local
changes of the covariance
in the sample

Policy covariance deter-
mined by density of data,
less flexible

Policy
fitting

Locally linear policy can
be fit efficiently

Fitting complex policy
requires expensive and
failure-prone optimization

TABLE I
LOCAL CECER VS GLOBAL NP-REPS

to the query context c∗. The locality weighting is further
used to compute the re-weighting dk that allows us to
define a local Gaussian search distribution π∗(θ |c). Then,
using the search distribution π∗(θ |c) we generate new pairs
(θ ∗,c∗), the quality of which are evaluated through the
objective function R(θ ∗,c∗). Finally, the dataset is updated
with the new sample {c∗,θ ∗,∑∗,R∗}. This memory-based
non-parametric stochastic search algorithm is summarized in
Alg. 2. The main difference to the eager method, is that in
this case the weighting step and the policy fitting step are
performed inside the inner loop.

C. A novel hybrid policy search method

Eager and memory-based non-parametric search each have
their own advantages and disadvantages. For example, the
memory-based algorithm has to perform expensive calcula-
tions for every query, and thus tends to be slower at run-time.

On the other hand, the local character of the memory-
based algorithm allows it to adapt to local characteristics
of the gathered data, while the global eager search algorithm
sometimes has difficulty finding global hyper-parameters that
fit the data in all parts of the state space (as noted in [34]).
These respective advantages are summarized in Table I.

Since we determined through preliminary experiments that
the re-weighting step is the slowest part of the algorithm,
we propose a novel ‘hybrid’ stochastic search method that
combines the off-line calculation of the re-weighting terms
from eager stochastic search with the flexible and quick

Algorithm 3 Hybrid non-parametric stochastic search
for iteration i = 1, ..., iterations do

weighting step
Input data set

[
c1:k,θ 1:k,R1:k

]

Optimize the dual function g for η and α

Compute the global sample weights dk

for episode k = 1, ...,samples (episodes) do
policy fitting step
Input query context c j

Fit local generalizing policy π̃ j(θ |c j)

Sample and execute parameters from π̃ j(θ |c j)

Fig. 2. The main setup for the Hole Reaching task experiment and optimal
policy applied. Source - “Non-parametric stochastic policy search” [15].

locally linear policy fitting from memory-based stochastic
search.

The hybrid non-parametric stochastic search algorithm
should thus inherit the positive aspects of the memory-based
and eager algorithms. The hybrid algorithm is summarized
in Alg. 3. The main difference to previous methods is that, in
this case, the weighting step is performed outside the inner
loop and the policy fitting step is performed inside the inner
loop.

IV. EXPERIMENTS

A series of contextual control tasks were utilized to
compare our methods. In this section, we describe the two
simulated control domains that we considered: the hole
reaching task and the cart-pole balancing task.

A. The hole-reaching task

First, we consider a planar Hole Reaching Task which has
been proposed in [15]. The Hole Reaching task involves a
planar robotic arm consisting of 5 links of unit length. The
robot, represented as a decoupled linear dynamical system,
needs to reach the bottom of a hole in the task space without
colliding with the walls of the given hole.



0 100 200 300 400 500

Nr. of iterations

-14

-12

-10

-8

-6

-4

-2

0

2
A

v
e
ra

g
e
 R

e
tu

rn

×10 6

memory-based search

hybrid search

eager search

0 100 200 300 400 500

Nr. of iterations

10 -3

10 -2

10 -1

10 0

10 1

10 2

T
im

e
 f

o
r 

p
a

ra
m

e
te

rs
 s

e
le

c
ti
o

n
(s

)

memory-based search

hybrid search

eager search

0 100 200 300 400 500

Nr. of iterations

0

50

100

150

P
a
ra

m
 s

e
le

c
ti
o
n
 +

 m
o
d
e
l-
fi
t 
ti
m

e
 (

s
)

memory-based search

hybrid search

eager search

Fig. 3. Left: Average return for the three learners on the Hole Reaching task. Center: Time performance of the three learners on the Hole Reaching task
for parameter selection. Right: Time performance of the three learners on the Hole Reaching task on both parameter selection and model fitting. Error bars
show four standard deviations calculated over 5 independent learning trials.

We used a dynamic movement primitive (DMP) [41] as
low-level controller, with 30 parameters (5 basis functions
per dimension and 1 goal position per dimension). As in
all of our tasks, we give this task a contextual nature and
require our method to solve a wide range of problem variants,
indexed by context. The Hole Reaching Task is defined using
a three dimensional context: hole position, hole width, and
hole depth. Therefore, our agents, once trained, are able to
perform reaching into a wide range of hole geometries. All
three parameters of the hole are varied uniformly withing a
given range: the width is between 0.1m and 0.4m, the center
is between 0.5m and 2.5m, and the depth is between 0.5m
and 1.5m, as shown in Fig. 2

We used the reward function described in [15], which is
defined by a quadratic cost term for each of the following: the
desired final point, the high accelerations, and the collision
with the environment.

B. The cart-pole balancing task

We also test the cart-pole environment in the OpenAI
Gym suite of standard benchmarks [42]. In the Cart-pole
balancing task, a cart with a pole connected by a unactuated
joint is controlled by discrete actions that apply a force to
the cart to the right or to left, respectively. For a successful
completion of the task the movements should be applied such
that the pole is kept close to the vertical axis. The action
can be applied for a maximum number of time-steps and
the learning episode is interrupted prematurely if the pole
falls below a given threshold. The reward function outputs
an integer equal to the number of time-steps successfully
keeping the pole balanced. In our settings the maximum
number of time-steps is set to 500.

At each episode the cart is initialized at the origin of the
x-axis and can be moved up to -2.5 and +2.5 respectively.
When the pendulum gets more than 12 degrees from the
upright position, the episode is terminated. The standard cart
has a mass of 1.0 kg and the pole has a length of 0.5 m.
We modified the default cart-pole by varying the cart’s mass
and pole’s length uniformly within a range of 20% of their
original values, defining these variables as the context. This
variation in the context values implies that from episode to

episode the policy needs to adapt to heavier or lighter cart
as well as to longer or shorter pole.

The primary performance criterion for each of the above
experiments is average reward vs number of roll-outs at-
tempted. Each roll-out allows our method to obtain the true
cost of a context-parameter pair and good performance in-
volves learning as quickly as possible from this data. We ad-
ditionally show two timing graphs for each experiment. First
we display the time spent on parameter selection (weighting
step), and second the overall computational time (the sum
of the weighting step and the policy update step) for each
iteration. Note that the y-axis of the plots for the parameter
optimization time is in logarithmic scale. We measure these
durations separately, as in practical applications we might be
more willing to wait off-line for fitting the model, than to
wait for the parameters to be selected during operation. Each
of our results will be analyzed in the following section.

V. RESULTS

For the first task, the hole reaching task, we generated
3000 initial samples for the first iteration and 600 samples,
i.e. 20%, subsequently at each new iteration, keeping always
the last 3000 samples in memory. For each metric, we plot
the average reward and four times the standard deviation
over 5 independent learning trials (starting learning from
scratch each time). From the graph of the average reward,
Fig. 3 (left), over the first 500 iterations we can see that
hybrid REPS and memory-base NPSS have a very similar
performance, while the eager REPS method converges slower
to the optimal solution and does not reach it by the end
of the 500 iterations. The plot of the average time (in sec-
onds) for parameter selection per iteration on a logarithmic
scale, Fig. 3 (center), shows the advantage of performing
the weighting step offline - the eager REPS method has
the shortest selection time, closely followed by the hybrid
method, both clearly surpassing the memory-based NPSS. A
similar pattern is observed when plotting the time taken for
the parameter selection phase and policy fitting step together,
Fig. 3 (right), where eager and hybrid REPS exhibit similar
behavior. Both of these methods share eager characteristics,
and require less time than the memory-based NPSS. In Fig.



0 20 40 60 80

Nr. of iterations

0

100

200

300

400

500

600
A

v
e

ra
g

e
 R

e
tu

rn

memory-based search

hybrid search

eager search

0 20 40 60 80

Nr. of iterations

10 -4

10 -2

10 0

10 2

10 4

T
im

e
 f
o

r 
p
a
ra

m
e
te

rs
 s

e
le

c
ti
o
n
(s

)

memory-based search

hybrid search

eager search

0 20 40 60 80

Nr. of iterations

-50

0

50

100

150

200

250

P
a

ra
m

 s
e

le
c
ti
o

n
 +

 m
o

d
e

l-
fi
t 

ti
m

e
 (

s
)

memory-based search

hybrid search

eager search

Fig. 4. Left: Learning performance of the three learners on the CartPole balancing task with 2-dimensional context. Center: Time performance of the three
learners on parameter selection for the CartPole balancing task with 2-dimensional context. The computation time of the hybrid REPS is close to the one
for the global REPS. Right: Time performance of the three learners on the CartPole balancing task with 2-dimensional context for both parameter selection
and model fitting. Time complexity of the hybrid REPS is close to the one for the global REPS. Error bars show two standard deviations calculated over
5 independent learning trials.

3 (right) we also see occasional spikes for the global REPS
method during the model fitting phase. We presume this is
caused by the difficulty in finding good model parameters
for certain data sets.

For the experiment with two-dimensional context of the
cart-pole balancing task we generate 300 samples for the
first iteration and 60 samples, i.e. 20%, subsequently at each
new iteration, always keeping the last 300 samples. For
each metric, we plot the average reward and two times the
standard deviation over 5 independent learning trials (starting
learning from scratch each time). The average return as
a function of the number of training rollouts is shown in
Fig. 4 (left). This figure shows that the hybrid REPS and
memory-based NPSS yield similar learning curves while the
global REPS needs more iterations before starting to find
an optimal policy. The plot of the average time (in seconds)
taken by each algorithm to select parameters in each iteration
in logarithmic scale, Fig. 4 (center), again displays a better
performance for eager REPS, closely followed by the hybrid
method. Both methods clearly surpass memory-based NPSS.
Here it is worth mentioning the sudden increase in the time
taken for both the memory-based NPSS and the hybrid REPS
to find optimal parameters – this could be caused by the fact
that the optimization becomes harder as all samples perform
relatively well, rather than having some samples that do very
poorly and are easily discarded.

VI. CONCLUSIONS
This paper has compared two non-parametric stochastic

search methods for contextual control learning that were de-
rived from recent work. An eager method computes a global
mapping of contexts to controller parameters offline and then
performs rapid but inflexible computations at run-time. In
contrast, a memory-based method requires little training time
and performs well with flexible, local operations, but spends
significant time on selecting parameters at run-time. Our
novel hybrid algorithm is both efficient and high-performing
– the best of both worlds.

Contextual policy search is a highly relevant task for
robotics, where the environment is continually changing and

we can not afford a long re-learning process. For example,
contextual information can be extracted through visual per-
ception, allowing natural generalization of behaviors from
sensed changes in the environment. Our hybrid computa-
tional model will have particular benefit for visual contexts as
the balance between efficiency and performance is paramount
and we plan to investigate this extension in future work.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN), and the discov-
ery grants program.

REFERENCES

[1] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey
on policy search for robotics,” Foundations and Trends
in Robotics, 2013. [Online]. Available: http://www.ias.tu-
darmstadt.de/uploads/Site/EditPublication/PolicySearchReview.pdf

[2] T. Rückstieß, M. Felder, and J. Schmidhuber, “State-dependent Explo-
ration for Policy Gradient Methods,” in Proceedings of the European
Conference on Machine Learning (ECML), 2008.

[3] Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber, “Efficient Natural
Evolution Strategies,” in Proceedings of the Annual conference on
Genetic and evolutionary computation (GECCO), 2009. [Online].
Available: http://doi.acm.org/10.1145/1569901.1569976

[4] F. Stulp and O. Sigaud, “Path Integral Policy Improvement with Co-
variance Matrix Adaptation,” in International Conference on Machine
Learning (ICML), 2012.

[5] A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. Vadakkepat, and
G. Neumann, “Model-based contextual policy search for data-efficient
generalization of robot skills,” Artificial Intelligence, vol. 247, pp. 415
– 439, 2017, special Issue on AI and Robotics.

[6] A. Abdolmaleki, N. Lau, L. Paulo Reis, and G. Neumann, “Contex-
tual stochastic search,” in Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference Companion. ACM, 2016, pp.
29–30.

[7] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical
relative entropy policy search,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 3190–3239, 2016.

[8] S. Ha and C. Liu, “Evolutionary optimization for parameterized whole-
body dynamic motor skills,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[9] C. G. Atkeson, “Using locally weighted regression for robot learning,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 1991, pp. 958–963.

[10] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. MIT press Cambridge, 2006, vol. 1.



[11] B. Da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” International Conference on Machine Learning (ICML), 2012.

[12] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2013.

[13] J. Kober, E. Oztop, and J. Peters, “Reinforcement Learning to adjust
Robot Movements to New Situations,” in Proceedings of Robotics:
Science and Systems (R:SS), 2010.

[14] V. Tangkaratt, H. van Hoof, S. Parisi, G. Neumann, J. Peters, and
M. Sugiyama, “Policy search with high-dimensional context vari-
ables,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 2017.

[15] A. Abdolmaleki, N. Lau, L. P. Reis, and G. Neumann, “Non-
parametric contextual stochastic search,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),, 2016, pp.
2643–2648.

[16] J. Peters, K. Mülling, and Y. Altun, “Relative Entropy Policy Search,”
in Proceedings of the 24th National Conference on Artificial Intelli-
gence (AAAI). AAAI Press, 2010.

[17] A. Abdolmaleki, R. Lioutikov, J. Peters, N. Lua, L. Reis, and G. Neu-
mann, “Model Based Relative Entropy Stochastic Search,” in Advances
in Neural Information Processing Systems (NIPS), MIT Press, 2015.

[18] N. Hansen, S. Muller, and P. Koumoutsakos, “Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES).” Evolutionary Computation, 2003.

[19] S. Grünewälder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton,
“Modelling transition dynamics in MDPs with RKHS embeddings,”
in Proceedings of the International Conference on Machine Learning
(ICML), 2012, pp. 535–542.

[20] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,”
Machine learning, vol. 49, no. 2-3, pp. 161–178, 2002.

[21] G. Taylor and R. Parr, “Kernelized value function approximation for
reinforcement learning,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), 2009, pp. 1017–1024.

[22] O. Kroemer and J. Peters, “A non-parametric approach to dynamic
programming,” in Advances in Neural Information Processing Systems
(NIPS), 2011, pp. 1719–1727.

[23] Y. Engel, S. Mannor, and R. Meir, “Bayes meets Bellman: The Gaus-
sian process approach to temporal difference learning,” in Proceedings
of the International Conference on Machine Learning (ICML), vol. 20,
2003, pp. 154–161.

[24] T. Jung and D. Polani, “Kernelizing LSPE(λ ),” in Proceedings of the
IEEE International Symposium on Approximate Dynamic Program-
ming and Reinforcement Learning, 2007, pp. 338–345.

[25] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Transactions on Neural Networks,
vol. 18, no. 4, pp. 973–992, 2007.

[26] C. E. Rasmussen and M. Kuss, “Gaussian processes in reinforcement
learning.” in Advances in Neural Information Processing Systems
(NIPS), vol. 4, 2003, p. 1.

[27] J. Pazis and R. Parr, “Non-parametric approximate linear programming
for MDPs.” in Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2011, pp. 459–464.

[28] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in International Joint Conference
on Artificial Intelligence (IJCAI), 2011, pp. 2650–2655.

[29] G. Lever and R. Stafford, “Modelling policies in MDPs in reproducing
kernel Hilbert space,” in Proceedings of the International Conference
on Artificial Intelligence and Statistics (AIstats), 2015, pp. 590–598.

[30] J. Bagnell and J. Schneider, “Policy search in reproducing kernel
Hilbert space,” CMU, Tech. Rep. RI-TR-03-45, 2003.

[31] N. Vien, P. Englert, and M. Toussaint, “Policy search in reproduc-
ing kernel Hilbert space,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2016.

[32] K. Rawlik, M. Toussaint, and S. Vijayakumar, “Path integral control
by reproducing kernel Hilbert space embedding,” in International Joint
Conference on Artificial Intelligence (IJCAI), 2013.

[33] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” in Proceedings of the
International Conference on Machine Learning (ICML), 2011, pp.
465–472.

[34] H. Van Hoof, G. Neumann, and J. Peters, “Non-parametric policy
search with limited information loss,” Journal of Machine Learning
Research, vol. 18, no. 73, pp. 1–46, 2017.

[35] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning for control,” Artificial Intelligence Review, vol. 11, no. 1,
pp. 75–113, Feb 1997.

[36] D. W. Aha and S. L. Salzberg, “Learning to catch: Applying nearest
neighbor algorithms to dynamic control tasks,” in Selecting Models
from Data: Artificial Intelligence and Statistics IV, P. Cheeseman and
R. W. Oldford, Eds. New York, NY: Springer New York, 1994, pp.
321–328.

[37] P. Tadepalli and D. Ok, “Scaling up average reward reinforcement
learning by approximating the domain models and the value function,”
in International Conference on Machine Learning, 1996, pp. 471–479.

[38] L. C. Baird and A. H. Klopf, “Reinforcement learning with high-
dimensional continuous actions,” Wright Laboratory, Wright-Patterson
Air Force Base, Tech. Rep. WL-TR-93-1147, 1993.

[39] J. Peng, “Efficient memory-based dynamic programming,” in Proceed-
ings of the International Conference on Machine Learning (ICML),
1995, pp. 438–446.

[40] W. D. Smart and L. P. Kaelbling, “Practical reinforcement learning
in continuous spaces,” in Proceedings of the International Conference
on Machine Learning (ICML), 2000, pp. 903–910.

[41] A. Ijspeert and S. Schaal, “Learning attractor landscapes for learning
motor primitives,” Advances in Neural Information Processing Sys-
tems, (NIPS), 06 2003.

[42] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.


