Cryst. Struct. Comm. (1973). 2, 23.

BENZIMIDAZOL, C7H6N2.

C.J. Dik-Edixhoven, H. Schenk and H. van der Meer.*

Laboratory for Crystallography, University of Amsterdam

Nieuwe Prinsengracht 126, Amsterdam, The Netherlands.

Preliminary information. The crystal structure of benzimidazol was solved as part of a study of several imidazol derivatives aimed at the geometry of the molecule and the hydrogen bonds between them.

Crystal data. Cell constants obtained from Weissenberg photographs calibrated with Al-powder lines: a = 6.940 (1), b = 13.498 (1), c = 6.808 (1), Z = 4, space group $P2_1nb$ (33)

Intensity data, structure determination and refinement. Intensities of 609 reflections were measured using a Nonius single crystal diffractometer with Ni-filtered CuK-radiation up to $\theta = 68.5^{\circ}$ and operating in θ -20 scan-mode. After an unsuccessful trial to solve the crystal structure from the Patterson function, it was solved by the sigma P-method (Schenk, 1972). The coordinates of the hydrogen atoms were found from a difference synthesis. Full matrix refinement (CRYLSQ) with anisotropic temperature factors for the carbon and nitrogen atoms and isotropic ones for hydrogen yielded a final R index of 0.040.

Fractional Atomic coordinates (x104).

	хσ	у σ	zσ		χσ	уσ	z o
C(1)	2168(0)	1356(2)	0101(4)	H(1)	4212(63)	0392(24)	-0671 (54)
C(2)	3405(6)	0560(2)	0385(5)	H(2)	4371 (56)	-0441(25)	2440(51)
C(3)	3343(7)	0079(3)	2184(5)	H(3)	2436(77)	0067 (35)	5049(71)
C(4)	2068(7)	0388(3)	3657(4)	H(4)	-0013(60)	1396(24)	4475 (54)
C(5)	0829(7)	1175(2)	3406(4)	H(5)	-0048(57)	3115(26)	-1908(50)
C(6)	0895(6)	1645(2)	1573(4)	H(6)	-1085(65)	2754 (24)	1418(47)
C(7)	0537(7)	2572(2)	-1023(4)				
N(1)	-0128(6)	2425(2)	0811(4)				
N(2)	1912(6)	1959(2)	-1542(3)				

Bond distances and angles.

1 = 1.389(4) A 2 = 1.386(4) 3 = 1.401(5) 4 = 1.378(5) 5 = 1.401(4)	6 = 1.392(4) 7 = 1.372(4) 8 = 1.346(4) 9 = 1.311(5) 10 = 1.395(3)	12 = 13 = 14 = 15 =	0.94(4) A 1.02(4) 1.07(4) 0.98(4) 1.03(4) 0.90(4)
1,2 = 117.8(3)° 1,6 = 120.6(3) 1,10= 130.0(2) 2,3 = 120.9(3) 3,4 = 122.3(3) 4,5 = 116.1(3) 5,6 = 122.4(3)	5,7 = 131.9(3)° 6,7 = 105.8(2) 6,10= 109.5(2) 7,8 = 106.6(3) 8,9 = 114.0(3) 9,10= 104.2(2)	1,11 = 117(2)° 2,11 = 126(2) 2,12 = 117(2) 3,12 = 122(2) 3,13 = 111(3) 4,13 = 125(3)	4,14 = 121(2)° 5,14 = 123(2) 7,16 = 126(2) 8,16 = 127(2) 8,15 = 121(2) 9,15 = 125(2)

Comments. All atoms are within two times their positional standard deviation in the plane defined by the carbon and nitrogen atoms. Each molecule is connected with two neighbours, generated by a twofold screw axis along the x-axis, via a hydrogen bond of 2.00(4) A from H(6) to N(2).

Reference.

Schenk, H., (1972), Acta Cryst. A28,412-422.

Acknowledgement. Our thanks are due to Mr D.Heijdenrijk for his valuable assistence in the experimental part of the investigation.

Received: 22 September 1972