
Hans van der Meer NAJAAR 2013 1

Exam Papers Revisited

Posing Questions To Students

Abstract

Described is a module for the consistent production
and maintenance of student examinations. It can type-
set questions with long or short answers, yes/no
questions and multiple choice. The questions are
formulated as XML documents and access ConTEXt
through a special interface with HTML-like syntax.

Keywords

exam, examination, collection, problem, question,
multiple choice, ConTeXt, XML, HTML

1 Introduction

The ConTEXt hvdm-xam module aims at easy and con-
sistent typesetting of student exams and maintaining
collections of exam questions. It especially facilitates
questions with short answers andmultiple choice. Many
aspects of the typesetting are con󰅮igurable. The module
depends on two othermodules hvdm-xml and hvdm-lua.
The former provides the bridge between HTML-style
formatting expressions and theConTEXt-world, the latter
contains support functions that are better programmed
in the programming language Lua than in TEX.

This module is a followup of the previous hvdm-exm
module, which in turn was an upgrade to ConTEXt of an
older LATEX package. After a period of relative inactivity
in using my own module, it turned out that working in
ConTEXt-MKII did not automatically meant working in
ConTEXt-MKIV. Nothing to be surprised of, because after
all ConTEXt is a fast moving target and incompatibilities
are the price one has to pay for using it. Moreover, it was
one of the incentives that made memove forward on the
path of separating data and program code as much as
possible.

In this latest overhaul of the exam producing mod-
ule, the questions in the exam are no longer in TEX or
ConTEXt, but in XML. A change that to a great extent
decouples the problem description from the typesetting
machinery. TEX code might sometimes be indispensible

to achieve high quality math formulae and can be con-
veniently inserted. Using MathML is another option. In a
sense, this article can be seen as an updated version of
the earlier one published in the NTG-MAPS number 36,
spring 2008.

2 Exam structure

Exams need to be typeset in different formats. First of
course is the format in which the questions will be pre-
sented to the students taking an examination. Secondly,
one can produce the samewith the answers added to the
questions. Inmy experience this is useful for scoring stu-
dent results, especially when the questions are divided
in several parts each meriting a reward for a correct
answer. Finally one can produce a catalogue of all ques-
tions including the answers, annotations and scores. In
between there is a lot of 󰅮lexibility. The product can be
customized through attributes on the nodes of the XML
data descriptions. A small built in and simple to adapt
and extend vocabulary of common language dependent
terms eases localization of the product. De󰅮ining this
vocabulary for a speci󰅮ic language allows one to typeset
them automatically in ConTEXt’s current active language.

The typesetting of exams is structured in three layers.
The top layer is a CONTEXT 󰅮ile driving the typesetting. Do
font setup and other such things here. A short example is
given below.

% Load exam module
% includes [mathml][hvdm-lua][hvdm-xml]
\usemodule[hvdm-xam]
% papersize, layout, font, language, etc.
\def\prologue{..}% execute before exam
\def\epilogue{..}% execute after exam
\starttext
% Call root node <exam> in examfile.xml
\xmlprocessfile{exam}{examfile.xml}{}
\stoptext

The above ConTEXt program processes examfile.xml,
which is the 󰅮ile harbouring the <exam> root. Within
that root are nodes that call 󰅮iles for each problem.

2 MAPS 47 Hans van der Meer

The example below clari󰅮ies the structure of this 󰅮ile.
Nodes <title>, <date>, <time> and <location> de󰅮ine
macros\thetitle,\thedate,\thetime and\thelocation,
that can be used in the \prologue and \epilogue code
󰅮iguring in the example above. How to have these called
will be explained shortly. But, as can be seen in the
example, it is also possible to use these nodes directly
in composing a header to the exam and even have them
preceded by a language localized pre󰅮ix. The bonus for
having date, etc. in nodes like <date> is the possibility to
process a bunch of exams within another XML structure
with direct access to these data.

<?xml version="1.0" encoding="UTF-8"?>
<exam attributes>

<p align="middle">
<title>So and So Exam</title>

<date>2099-09-09</date>
– <time>13:00–16:00</time>

<location Pre=": ">

Main building lounge
</location>

</p>
<file name="dirAAA/question-01.xml"/>
...
<file name="dirZZZ/question-99.xml"/>

</exam>

So and So Exam
2099-09-09 – 13:00–16:00

Location: Main building lounge
"EXAM"

There are a few commands useful in the introductory
text to the exam. These are:

1. <currentdate/> inserts the current date in the for-
mat yyyy-mm-dd, as in 24-12-2013

2. <date>content</date> for setting content as date
and at the same time remembering it. The date may
either be given as yyyymmdd in which case it will
be formatted as above, or in completely free format.
Use the attribute show="no" to set the stored value
without displaying.

3. <currenttime/> inserts the current time in the for-
mat hh:mm in a 24 hour clock, as in 13:05.

4. <time> the same as the date equivalent.

5. <title> place and setup a title for the exam.

6. <location/> place and setup a location for the
exam.

The nodes <date>, <time>, <title>, <location> can
carry an attribute pre="" or Pre="". If present the lan-

guage equivalent of the node name is typeset before the
contents. The capitalization of the attribute determines
the capitalization of the keyword. The value of the at-
tribute may be empty, but if there is content then the
value of the attributewill be placed before it. An example
can be seen above in the location node.

3 Problem structure

Each problem description should get its own 󰅮ile, pos-
sibly in different directories. The name attribute of the
<file> node locates the 󰅮ile, taking its origin in the
directory that contains the caller. Alternatively, one may
place the data in a ConTEXt buffer and call it up with
a <buffer> node instead of a <file> node, as is done
in the source of this article. See the heavily shortened
example below.

\startbuffer[example]
<?xml version="1.0" encoding="UTF-8"?>
<problem>

.. content of problem ..
</problem>

\stopbuffer
\startbuffer[caller]

<?xml version="1.0" encoding="UTF-8"?>
<exam>

<buffer name="example"/>
</exam>

\stopbuffer
\xmlprocessbuffer{exam}{caller}{}

Theproblems themselves have the structure shown in
the next example code. The root is a <problem>node and
within it are nodes for speci󰅮ic information and one or
more <question> nodes. If there are several questions
in the problem, they can either be alternatives or they
can comprise a series of questions all to be answered.
Most nodes can be placed in any order. But is of course
the orderingmatters for a series of successive questions.

<?xml version="1.0" encoding="UTF-8"?>
<problem category="bachelor">

<subject>Literature</subject>
<description>About Shakespeare.</description>
<history date="Earlier">First version</history>
<history date="20120322">Was changed</history>
<text>Text of question here.</text>
<question score="1">

<note>An example only.</note>
... <answer> nodes here ...

</question>
<note>Final note.</note>

</problem>

Exam Papers Revisited NAJAAR 2013 3

Buffer: example-0
Category: bachelor
Subject: Literature
Description: About Shakespeare
Maxscore: 1 point

History
Earlier First version
22-03-2012Was changed

Notes

1. An example only.

2. Final note.

Problem-1 Text of question here.

The purpose of the <subject> <description> and
<history>nodes needs no further explanation. They are
expected at the top of the node tree, i.e. directly inside
the <problem> node. As can be seen, dates may be given
either in free form or as yyyymmdd. Annotations given as
<note> may occur everywhere, but for printing they are
collected and output in one place. The <question> node
has an attribute for the score that goes with the correct
answer. Scores can either be shown or suppressed on
the printout. In this article the printing of scores is sup-
pressed, because they do not cope well with a multicol-
umn layout.

All information like <subject> etc. regarding the
problem is placed inside a framed area having three
sections.

Characteristic data, like the name of the data 󰅮ile, a
short description, the subject matter, the maximum
number of points allotted, etc.
The annotation part when there is at least one
<note> present.
The version history of the problem.

Options are provided to determine what parts of this
information should appear, if at all.

4 Question structure

There are 󰅮ive types of questions programmed:

1. <shortanswer>
2. <altanswer>
3. <listanswer>
4. <blockanswer>
5. <choiceanswer>

All will subsequently be described.

4.1 Short Answer

The 󰅮irst example shows theprogrammingof a<shortanswer>
question.Note that in this speci󰅮ic example the<problem>
node carries the optional category attribute by which
one can differentiate between various target groups.
Specify on exam production a corresponding 󰅮ilter – for
this example <exam filter="bachelor"> – to 󰅮ilter out
problems of this category and suppress all others.

The <shortanswer> example is presented here three
times. First how it is given to students at the examination,
then the same with answers 󰅮illed in and 󰅮inally how it
will appear in a catalogue of problems. This example also
demonstrates the use of consecutive questions preceded
by an introductory <text> node. As already has been
mentioned, score value are not shown but this problem
will have 3 score points reported.

<?xml version="1.0" encoding="UTF-8"?>
<problem category="bachelor">

<text>Written by Shakespeare.</text>
<question score="2">

<text>
What is the most famous question?

</text>
<shortanswer>

To be or not to be.
</shortanswer>

</question>
<question score="1">

<text>Who said that?</text>
<shortanswer>Hamlet.</shortanswer>

</question>
<note>Just an example.</note>

</problem>

Problem-1 Written by Shakespeare.
What is the most famous question?

Answer : .

Who said that?

Answer : .

Problem-1 Written by Shakespeare.
What is the most famous question?

Answer : To be or not to be.

Who said that?

Answer : Hamlet.

4 MAPS 47 Hans van der Meer

Buffer: example-1
Category: bachelor
Maxscore: 3 points
Alternatives: no

Note
Just an example.

Problem-1 Written by Shakespeare.
What is the most famous question?

Answer : To be or not to be.

Who said that?

Answer : Hamlet.

4.2 Alternate answers

The<altanswer> typeof question ismeant for simple
alternatives, like yes/no questions. The example also
demonstrates the use of different colors for good and
the wrong answers. Understandably they show up in the
answered version only.

<?xml version="1.0" encoding="UTF-8"?>
<problem>

<text>
Was something rotten in the state of Denmark?

</text>
<question score="1">

<altanswer>
<item value="true">yes</item>
<item value="false">no</item>

</altanswer>
</question>

</problem>

Problem-1 Was something rotten in the state of Den-
mark?

Markgood: yes / no

Problem-1 Was something rotten in the state of Den-
mark?

Markgood: yes / no

4.3 List of answers

The <listanswer> ismeant for a series of short ques-

tions. Each question has some small answer that should
be 󰅮illed in by the student.

<?xml version="1.0" encoding="UTF-8"?>
<problem>

<text>
Finish the following three statements on
quotation "To be or not to be":

</text>
<question score="1">

<listanswer>
<item>

<text>this quote is from</text>
<value>Hamlet</value>

</item>
<item> </item>
<item> </item>

</listanswer>
</question>

</problem>

Problem-1 Finish these statements on "To be or not
to be"

1. this quote is from .

2. of the English writer .

3. supposedly born at .

Problem-1 Finish these statements on "To be or not
to be"

1. this quote is from Hamlet

2. of the English writer Shakespeare

3. supposedly born at Stratford-on-Avon

4.4 Block answer

The <blockanswer> is meant for questions needing
more space for the answer. Space can be reserved below
the question or a separate answer sheet can be given.
For the latter the answer block will be completely sup-
pressedwhen answer and prompt are off both. That case
is illustrated 󰅮irst, thereafter the prompt is kept and a
given amount of space reserved for the answer.

Problem-1 Elaborate on the question "To be or not to
be?"

Exam Papers Revisited NAJAAR 2013 5

Problem-1 Elaborate on the question "To be or not to
be?"

Answer :

<?xml version="1.0" encoding="UTF-8"?>
<problem>

<text>
Elaborate on the question:
"To be or not to be"?

</text>
<question score="1">

<blockanswer frame="on" height="2cm">
This famous quote is from <i>Hamlet</i>,
a play of the English writer William
Shakespeare.

</blockanswer>
</question>

</problem>

It is even possible to 󰅮ill the block with a series of
dotted lines. To accomplish this the height attribute on
the <blockanswer> is set to zero and the lines attribute
to the number of lines.

Problem-1 Elaborate on the question "To be or not to
be?"

Answer : .
. .
. .

Finally here follows the output for the case where
answer="on".

Problem-1 Elaborate on the question "To be or not to
be?"

Answer : This famous quote is from Hamlet, a play of
the English writer William Shakespeare. One really
has to suspect that nowadays not many students
have seen even one of Shakespeare’s plays, let alone
having read one. Most might not even know when
or where William Shakespeare is supposed to have
been born.

4.5 Multiple choice answers

Multiple choicequestions are formulated in a<choiceanswer>.
The items can be presented to the students in the given
or in random order. In the 󰅮irst example below the order
has been randomized; see the differencewith the second
one. The random attribute on the <exam> node governs
this behaviour. Attribute randomseed on <exam> enables
one to set the start of the random generator.

<?xml version="1.0" encoding="UTF-8"?>
<problem>

<text>
Which person is found in <i>Hamlet</i>?

</text>
<question score="1">

<choiceanswer>
<item value="true">Ophelia</item>
<item value="false">Rosalind</item>
<item value="false">Desdemona</item>
<item value="false">Juliet</item>

</choiceanswer>
</question>

</problem>

Problem-1 Which person is found in Hamlet?

Juliet

Rosalind

Desdemona

Ophelia

Problem-1 Which person is found in Hamlet?

Ophelia

Desdemona

Rosalind

Juliet

5 Other examples

Here follow some examples showing various possibili-
ties of the package. A more systematic description of the
nodes involved is presented after this section.

5.1 De󰅳ine and use of MathML

This example shows how a MathML coded formula
can be de󰅮ined at the <problem> level, then used twice
in the subsequent code.

<?xml version="1.0" encoding="UTF-8"?>

6 MAPS 47 Hans van der Meer

<problem>
<define name="parabola">
<math xmlns='http://www.w3c.org/mathml' version='2.0'>

<apply><eq/>
<ci>y</ci>
<apply><plus/>

<apply><power/>
<ci>ax</ci>
<cn>2</cn>

</apply>
<ci>bx</ci>
<ci>c</ci>

</apply></apply></math>
</define>
<question score="1">

<text>
How is this function called?

<define name="parabola"/>

</text>
<shortanswer>

<define name="parabola"/> is a parabola
</shortanswer>

</question>
</problem>

Problem-1 How is this function called?
𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

Answer : 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is a parabola

5.2 Messages

Messages are typeset as XML nodes and can serve
as reminders. To name two examples: (1) as a note for
the corrector that special attention is needed here, (2)
as a reminder that the problem is still under construc-
tion. Messages are not shown in case answers are sup-
pressed, because the answer 󰅮lag is checked and must
be true in order to get the message through. Thus by
default messages are absent from exams to be handed
out, but visible on the correction sheet. Another 󰅮lag can
takeover the role of guardian, for example: <message
flag="series"..> will typeset the message when the
series 󰅮laghasbeen set true.Messages canbe coloredand
given another tag, as can be seen in the example.

Problem-1 Which person is found in Hamlet?

Ophelia

TODO: 3 answers missing

The following example shows how an error is pre-
sented. Here caused by the absence of <item> nodes in
the multiple choice.

Problem-1 Which person is found in Hamlet?
ERROR <choiceanswer> no items (input source = ex-
ample-9)

5.3 Random selection

Multiple choice questions have their items shuf󰅮led at
random by setting the random attribute on the <exam>
to on. Other decisions can be randomized too. For exam-
ple, a question can have two variants where a random
choice is appropriate. The <random> node does just that:
choosing at random from the nodes directly inside. But
what if a second, related question in the same problem
must be synchronized with that choice? In that case the
last random choice can be stored and called up later
on. The next example, albeit a little contrived, illustrates
the principle. A 󰅮irst <random save="yes"> generates
the random selection and saves its value, the following
<random reuse="yes"> uses this value again. In more
intricate cases, one can even remember several random
choices by replacing the yes with a name.

<?xml version="1.0" encoding="UTF-8"?>
<problem>

<random save="yes">
<text>First text</text>
<text>Second text</text>
<text>Third text</text>
</random>
<blockanswer>

<random reuse="yes">
<text>First text again</text>
<text>Second text again</text>
<text>Third text again</text>
</random>

</blockanswer>
</problem>

Problem-1 Third text

Answer : Third text again

5.4 Hide and show

The following example illustrates how parts can be
selectively shown and hidden. The <show> and <hide>
nodes take the name of a 󰅮lag (default: answer) as an
attribute triggering appearance and disappearance, re-
spectively. In the example the 󰅮lag is the otherwise un-
used user 󰅮lag. A <show> node will present its content
when the 󰅮lag=on and suppresses it for 󰅮lag=off. In con-
trast <hide> hides for 󰅮lag=on and shows for 󰅮lag=off.

<?xml version="1.0" encoding="UTF-8"?>
<problem>

Exam Papers Revisited NAJAAR 2013 7

<blockanswer user="on">
<hide flag="user">

<text><hide>: flag=on</text>
</hide>
<show flag="user">

<text><show>: flag=on</text>
</show>

</blockanswer>
<blockanswer user="off">

<hide flag="user">
<text><hide>: flag=off</text>

</hide>
<show flag="user">

<text><show>: flag=off</text>
</show>

</blockanswer>
</problem>

Problem-1

Answer : <show>: 󰅮lag=on

Answer : <hide>: 󰅮lag=off

6 Nodes at the <exam> level

This and the next section describe the attributes that
various nodes can have. The presentation takes the form
<node attributes>, where attributes is a list of one
or more attribute-value pairs.

6.1 <exam attributes>

The <exam> node has quite a number of attributes.
Many of these provide an opportunity to customize the
type, speci󰅮ic content and formatting style of the product.
If the attribute has a default, that one is presented with
the name of the attribute.

1. init="exam"
This attribute determines the product type. Also
switches on by default some 󰅮lags. Attribute values
are:

∘ exam examination paper without answers
∘ answer examination paper with answers
∘ series catalogue of questions in all variants, with

answers and full data

2. base="./"
This attribute states the directory from where
the search for included problem and other data
󰅮iles begins. By default the home of the calling
tex-󰅮ile is taken as point of departure. Macro

\currentdirectory will be de󰅮ined to the value of
the attribute. Note that the value must end with a di-
rectory separator /. Besides affecting 󰅮ile reading and
include processing, it is also doing a setup for the 󰅮ig-
ures directory with

\setupexternalfigures[
location=global,
directory={\currentdirectory}]

3. prologue="" epilogue=""
Code executed before and after processing of the
problem 󰅮iles. The value of these attributes should
be the name of a macro. For example, to call macro
\startup on the prologue one has to use <exam
prologue="startup">. Empty by default.

∘ prologue="" If present executes its value before
processing the content.

∘ epilogue="" If present executes its value after
processing the content.

4. randomseed="0"
Seeding the random generator. Give it a value differ-
ent from 0 (the default) as the start of the random
series generator.

5. filter="all"
When this attribute is not empty, <problem>’s hav-
ing the same category are allowed to pass while
others are rejected. The <problem> of the 󰅮irst exam-
ple in this paper has a category="bachelor", which
means that <exam filter="bachelor"> will select
that one.

6. <flag="off">
Here the attribute flag stands for one of the 󰅮lag
names de󰅮ined below. These 󰅮lags are provided in
order to in󰅮luence type and content of the exams
produced. They assume the value on or off. For ex-
ample, set random="on" to turn on the random or-
dering of multiple choice questions. For convenience
true/false and yes/no act as synonyms for on/off.
Flags are initialized to off. However, depending on
the init attribute some are turned on by default.

∘ init="exam" on:
prompt, random, score

∘ init="answer" on:
prompt, random, answer, subscore

∘ init="series" on:
prompt, answer, subscore, info, history,

note

This is the complete list of 󰅮lags:

∘ answer
Show answers.

∘ break
Generate linebreak after prompt.

8 MAPS 47 Hans van der Meer

∘ frame
By default frame answer blocks.

∘ history
Show history data.

∘ info
Show information block as a whole.

∘ newpage
Start each problem on a new page.

∘ note
Show notes.

∘ series
Show all problems in full.

∘ source
Typeset the sourcecode of the problem.

∘ prompt
Precede answer space with a prompt.

∘ random
Activate random generator and by default ran-

domize multiple choice item order.
∘ score

Show total score for problems; can be set to
left for putting the score on the left or right for
right placement (default).

∘ subscore
Show (sub)score for all questions within prob-

lem; values are as for score.
∘ user

Flag to be freely used.
∘ verbose

Report activities in the log󰅮ile.

In order to provide as much 󰅮lexibility as pos-
sible, the presence of 󰅮lag attributes is checked
and processed on entrance of the following nodes
<exam> <file> <buffer> <problem> <question>
and all the <...answer> nodes. Thus, if there is a
reason to permanently inhibit random item order for
a speci󰅮ic multiple choice question, one can do so by
giving <problem random="off"> on its de󰅮inition.
To inhibite randomization in just this speci󰅮ic exam,
put random="off" on the <file> node calling this
problem.

A 󰅮lag whose value was changed on a <file> or
anywhere within, will revert back to the value that
was set on the <exam> node before the next 󰅮ile is
processed. A word of advice might be in order. Use
󰅮lags sparingly below the <exam> level, because it
is all too easy to create bewildering behaviour by
indiscriminately sprinkling 󰅮lag changes all over the
place.

7. infostyle=""
Font setting for the text in the information block,
empty by default. A nonempty value triggers the ex-
ecution of \switchtobodyfont[infostyle] at the
start of the information block.

8. sourcestyle=""
Font setting for source code. Source is typeset ver-

batim, the default therefore uses the current mono-
type font. A nonempty value triggers the execution of
\switchtobodyfont[sourcestyle] at the start of
typesetting the source.

9. Color settings.

∘ errorcolor="black"
Color of error messages.

∘ messagecolor="errorcolor"
Color of <message> nodes, default is errorcolor.

∘ infocolor="black"
Color of items in information block.

∘ goodcolor="black"
Color of good answers.

∘ wrongcolor="black"
Color of wrong answers.

∘ backgroundcolor="white"
Color of background in framed blocks.

∘ infobackgroundcolor="white"
Color of background in information block.

∘ colors="yes"
Use set of colors built in, black and white other-

wise.

6.2 <file attributes>

During theprocessingof a 󰅮ile orbuffer the\currentsource
macro gives access to its name. This node has the follow-
ing set of attributes.

1. name=""
This attribute gives the path to the XML 󰅮ile contain-
ing the problem code. The path must originate in
\currentdirectory and lead to the location of the
󰅮ile. Note that the origin is dependent on the base at-
tribute on the <exam> node. The alternative src is
also accepted.

2. selection="1"
A <select="on"> attribute on a <problem> node
means the problem has alternative questions. For
problems having alternatives this attribute provides
a means to select a speci󰅮ic one. The attribute value
1…n determines which one will be chosen. That
value must be a number greater than zero and less
than or equal to the number of <question> nodes in
the problem. By default the 󰅮irst of the alternatives is
taken.

If this attribute is something other than a number,
then the list of <question> nodes is searched for a
matching selection attribute. If found, that ques-
tion is chosen otherwise the 󰅮irst question is taken
by default, An attribute of this type has precedence
over a numeric one.

3. theselector="value"
The attribute theselector denotes a selector de-
󰅮ined inside the problem. See the description of the

Exam Papers Revisited NAJAAR 2013 9

<content> node below for its usage.

6.3 <buffer attributes> Same as the <file> node
but pertaining to a ConTEXt buffer. The name attribute or
its alternative src gives the name of the buffer. Of course
\currentdirectory has no meaning here.

6.4 <page option="yes"/> Generates a ConTEXt
\page statement at this point. The default value is yes.

6.5 <vocabulary file="" buffer=""/> The terms
appearing in the information block or for example in
the answer prompt, are all localized through the value
of ConTEXt’s \currentlanguage macro. This is set by
macro call \language[..]. In the program these terms
are referred to in English and internally translated when
an equivalent one is available in the current language.
Currently built in are translations for English, Dutch and
German. With <vocabulary> one can add other lan-
guages or supersede existing translations. The structure
of a <vocabulary> can be seen in the following example.
Here the standard term 󰅳ile is replaced by another Dutch
(nl) equivalent: the word bestand. The English word
must be present too, because all translations originate
from that language.

<vocabulary>
<word>

<language name="en">file</language>
<language name="nl">bestand</language>

</word>
</vocabulary>

The vocabulary to add can be placed in a 󰅮ile or in a
buffer whose name must be given as the appropriate
attribute on the <vocabulary>. In case one needs to add
or replace a few terms only, the <vocabulary> node can
conveniently be placed in its entirety inside the <exam>
node.

6.6 <use file=""/> One is inclined to avoid the use
of the same question in successive exams. This node
facilitates this by keeping track of them. The named 󰅮ile
contains the questions used collected by date and target
group. Allthough more than one <use> node can given,
only the last one is taken into account.

The entries of the 󰅮ile are again <use>nodes (included
inside a dummy root-node), but here carrying the date
and target of the exam in their attributes. The contained
<file> nodes – calling up the questions in the original
exam – can be used without change inside the <use>
nodes; there is no need to remove any of their attributes.
Also the alternatives name and src for the 󰅮ile source
attribute are suported.

<root>
<use date="20130112" target="bachelors">

<file name="abc/q1.xml" selection="2"/>
<file name="abc/q5.xml" prompt="no"/>

<file src="pqr/q1" selection="special"/>
</use>
... more <use> nodes

</root>

The use data are presented in the history section of
the question. Thus their appearance is governed by the
setting of the history 󰅮lag.

7 Counter values

Nodes that can come in handy, are those giving access to
the counters for the number of problems and the scores.

<counter value="problem"> sequence number of
current problem.

<counter value="problemscore"> score for the
current problem.

<counter value="totalscore"> total value of
scores sofar.

7.1 <message attributes>

The <message> node without attributes has its con-
tent typeset surrounded by <MESSAGE> and has the same
color as error messages. This node can be used to draw
attention to special situations as for example an un󰅮in-
ished part in the problem. Its appearance can be made
conditional on a speci󰅮ic 󰅮lag. A message ends the pre-
ceding paragraph.

1. color="messagecolor"
The color used for the message.

2. text="MESSAGE"
The text inside the brackets appearing before and
after the message content.

3. flag=""
If the name of an existing 󰅮lag is given here, then that
󰅮lag must be true in order to typeset the message; an
unknown 󰅮lag suppresses the message.

8 Nodes at the <problem> level

8.1 <problem attributes>

A <problem> node can contain a <subject> and
<description>nodeandanynumberof<note>,<history>,
<include> and <define> nodes.

1. category="all"
Speci󰅮ies a category for this problem on which it can
be 󰅮iltered.

10 MAPS 47 Hans van der Meer

2. select="off"
Having select set to off signi󰅮ies a problem consist-
ing of several parts, all to be used. Setting this 󰅮lag to
on makes this a problem with alternative questions.
Then the one selected on an examination is deter-
mined by the value of the selection attribute on the
<file> node. To produce a catalogue of all alterna-
tives choose the series option on <exam>.

8.2 <question score="0">

This node carries the score attribute. It speci󰅮ies the
number of points to be earned by answering the ques-
tion correctly. In the information block one will see the
maximumscore for the total of all independent questions
contained in the problem. An absent score attribute
defaults to zero.

A problem with a number of questions all to be an-
swered, can be typeset as an itemized list. See the exam-
ple below.

<?xml version="1.0" encoding="UTF-8"?>
<problem select="off">

<text>Itemized questions:</text>
<ol columns="2">

<question>Question-1</question>
<question>Question-2</question>
<question>Question-3</question>
<question>Question-4</question>

</problem>

Problem-1 Itemized questions:
1. Question-1

2. Question-2

3. Question-3

4. Question-4

9 Answer nodes

9.1 <shortanswer attributes>

1. fill="dots"
Type of line 󰅮ill after the answer prompt. Other pos-
sibilities are none and line. After de󰅮inition of macro
\myfill the use of fill="myfill" is allowed.

2. lines="1"
The number of 󰅮illed lines typeset after the answer
prompt. The default is one line. It is allowed to set
the number of lines to 0.

9.2 <listanswer attributes>

1. break="off"

Set this attribute to on in order to break the line after
the descriptive text.

2. sym="n"
Set the symbol used for the items as de󰅮ined by
ConTEXt’s \startitemize. Numbers are the default.

3. fill and lines: See <shortanswer>

The attributes fill and line are valid also on the in-
dividual items of the list, covering the case where one
needs to vary them individually.

9.3 <altanswer break="off">

Set the attribute break to on in order to break the line
after the descriptive text.

9.4 <blockanswer attributes>

1. In case both the answer and prompt 󰅮lags are off,
the block is completely suppressed thus enabling
questions to be answered elsewhere.

2. frame="off"
Draws a frame around the block when set to on.

3. height="0pt"
Set the height of the block. Setting height to a value
greater than zero forces the answerblock to take that
height. Otherwise the lines setting is honored.

4. width="0pt"
Set the width of the block.

5. alignblock="middle"
Force the position of the answer block to either left,
middle, right or none.

6. align="right"
Force the alignment of the content of the block. Val-
ues are one of the ConTEXt options left, middle,
right.

7. break="off"
Set this attribute to value on in order to insert a
linebreak directly after the answer prompt, when-
ever the prompt option is selected. Useful when one
needs the full textwidth, for example for a multicol-
umn list to follow.

8. fill and lines: See <shortanswer>

9.5 <choiceanswer attributes>

1. distance=""
Offset between the item marker and the text.

2. skip="none"
Extra blank space between items; either a dimension

Exam Papers Revisited NAJAAR 2013 11

or one of small, medium, etc.

10 Other nodes

10.1 <text attributes>
The <text> node is meant for regular text and usually
typesets at least one paragraph. By default a bare <text>
node ends with a \par. This seems the most natural
behaviour, because the objective of this node is the place-
ment of a block of text. However, sometimes it might be
better to suppress the trailing \par, most notably when
the content is a small fragment of text. In that case, give
the par attribute the value no.

1. par="yes"
A no will suppress the \par at the end of the node.

2. align=""
Presence of an attribute value left, middle, right
will place the node content inside respectively a
\leftaligned, \midaligned, \rightaligned
macro.

3. color="black"
Color the whole text node.

Be aware that in XML the ampersand & and similar re-
served charactersmust be typed as & < > etc.
TEX’s nonbreaking space ~ must to be given as

10.2 <content attributes>

This node enables one to select from alternatives.
These alternatives are de󰅮ined by the user with a
(selector,value)-pair of freely chosen names. Within
each group a member should be designated as the de-
fault for that group. On a <file> node the attribute pair
selector="value" will select that speci󰅮ic member.

1. selector="selection"
The selector attribute designates a group of alter-
natives. Through this designator one chooses a mem-
ber from that group. Its value becomes an attribute
on the <file> node having as its legal values those
of its member value attributes.

2. value=""
This value distinguishes this alternative from
the other members of its selector group. On the
<file> node a speci󰅮ic alternative is chosen by spec-
ifying its value as the attribute value of the group
selector.

3. default="off"
Setting the default attribute to on makes this one
the default member within its group, to be chosen
whenever there is no selection made on the <file>
node. If none of the group members has been desig-

nated as the default, then none of them will be type-
set.

Thus in the following example the 󰅮irst <file>will type-
set the default and the second will typeset the content
explicitely chosen.

<question>
<content

selector="mysel"
value="first"
default="yes">
..

</content>
<content

selector="mysel"
value="second">
..

</content>
</question>
<file name=".."/>
<file name=".." mysel="second"/>

11 Inclusion and exclusion of code

11.1 <include file=""/>

Instead of repeatedly copying the same code into
several problems, one can de󰅮ine these common parts
separately (includes.xml in the example below) in a
󰅮ile. This 󰅮ile must contain a <root> node in which the
de󰅮initions of the common code parts are put. The par-
ticular name of this node is not signi󰅮icant, it is merely
a container for the <define> nodes inside. Each of the
de󰅮initions contained should be given a name whereby
they can be called up for insertion in the problem. This
inclusion mechanism greatly enhances the maintain-
ability of the problem database, because common code
corrections and alterations can be concentrated in one
place. Loading the 󰅮ile with de󰅮initions is done with the
<include> node carrying the path of the 󰅮ile to read.

<?xml version="1.0" encoding="UTF-8"?>
<root>

<define name="mypart">
.. code to include ..

</define>
</root>

<?xml version="1.0" encoding="UTF-8"?>
<exam>

<include file="includes.xml"/>
.. other nodes ..

</exam>

It is imperative that <include> nodes are placed di-
rectly inside the <exam> node, otherwise they are ig-
nored. In case the use of a speci󰅮ic de󰅮inition is local

12 MAPS 47 Hans van der Meer

to a single problem, one has the option of putting the
de󰅮inition directly inside the <problem> itself.

11.2 <define name="">

A <define> node carrying content is a de󰅮inition
node. These nodes may be placed either in a separate
󰅮ile to be included in the <exam> node, in the <exam>
node itself, or put directly inside the <problem> node.
De󰅮initions in the <problem> have priority above those
in the <exam>. Those in <include> 󰅮iles come last, later
inclusions having priority above those loaded earlier.
The 󰅮irst match of a de󰅮inition breaks off the search.

A <define name="name"/> node not carrying con-
tent implies retrieval of the de󰅮inition. Thus the presence
or absence of the node’s content determines its role.
In the following example code the de󰅮inition mypart is
put inside the <problem> and afterwards substituted for
<define name="mypart"/>.

<problem>
<define name="mypart">

.. code of mypart ..
</define>
..
<text><define name="mypart"/></text>

</problem>

The <define> can have a type attribute when it is a
de󰅮inition node. In that casewhen called some special ac-
tiondependingon its value is taken. Thepreprogrammed
actions are:

1. type="image" When the <define> resolves to the
location of a 󰅮ile, this is put into the document with
an \externalfigure call.

2. type="mpgraphic" The <define> must resolve to
code for a graphic. For example a de󰅮inition can be

<define type="mpgraphic" name="example"
parameters="color=black,variant=0">

\startuseMPgraphic{example}{color,variant}
if \MPvar{variant} = 0:

draw (0,0) -- (10,10)
withcolor \MPcolor{color};

else:
draw (0,0) .. (10,10);

fi
</define>

then called with <define name="example"
parameters="color=orange"/>. Note that the
name on the <define> and MPgraphic de󰅮inition
must be the same. Other attributes on these nodes
are height, width, scale and rotation, their usage
speaking for themself.

For more details and parameter usage see the paper on

the hvdm-xml module.

Beware-1. The inclusion of <question> nodes inside
a <define> is explicitely forbidden and raises an error,
because it interferes with the intended processing of
questions within <problem>. The radical solution cho-
sen here is to delete the offending <define> from the
nodetree. As a consequence its usage later in the input
will produce another error message, enabling one to
pinpoint the cause.

Beware-2. The inclusion of a <define> is not the same
as macro substitution in a programming language as
for instance C. As a result its replacement is not always
bringing what is expected and its usage is somewhat
limited. However, for low level replacements in <text>
and <value> nodes or inclusion as list items it works
reasonably well. Complicated formulas in MathML are
good candidates too. On higher level nodes its usage
turned out somewhat erratic and is therefore not sup-
ported everywhere. Feel free to experiment and don’t be
too disappointed if it doesn’twork as youhoped for. After
all, it is nothing more than a convenient extra.

Beware-3. The inclusion throughXML canhave conse-
quences for special characters. Be especially on guard for
troublewith &, a character thatmayneed replacement by
& more proper for XML data.

11.3 <hide flag="answer">

The content of the <hide> node will appear depend-
ing on the value of its flag attribute, by default the
answer 󰅮lag. For value on of the targeted 󰅮lag the content
of the <hide> node will be suppressed. Otherwise the
content will appear. This node is especially useful in case
one wants to put something inside a <blockanswer>
having its <force> 󰅮lag set. Then for example <hide
flag="prompt"> allows suppression of content based
on the value of the prompt 󰅮lag.

11.4 <show flag="answer">

The alter ego of <hide>. When the 󰅮lag targeted by
<show> is on then the content of the <show> will be
shown, otherwise it will be suppressed. Using a <show>
and <hide> pair one can have alternating content de-
pending on the attribute value of the 󰅮lag. It is therefore
possible to have one text for answer=off and a different
one for answer=on.

11.5 <random save="" reuse="">

Chooses at random one of the nodes directly under
it. Does nothing if there aren’t nodes inside and always
takes the 󰅮irst node if randomselection is off. Intervening
<!-- comment -->’s are ignored.

Attribute save="yes" enables the user to reuse the
last value acquired by <random>. That last value is inter-

Exam Papers Revisited NAJAAR 2013 13

nally stored and can be reused (nondestructively) with
<random reuse="yes">.

For more elaborate constructions it is possible to
tie the random value to a chosen identi󰅮ication. For
example, the value of the random generator produced
with the call <random save="mysave"> is reused with
<random reuse="mysave">. Mistyping the identi󰅮ica-
tion to a nonexistent save generates an error, as is to be
expected. Furthermore the strings yes, no, on, off, true,

false cannot be used as identi󰅮ier.

I wish to thank Martin Althoff for stimulating discus-
sions contributing greatly to the rapid 󰅮inalization of the
main features of both the module code and this article.

Hans van der Meer

H.vanderMeer@uva.nl

